Thu, Jun
3 New Articles

Algorithmic Bias and Explainability

  • Smaller Small Medium Big Bigger
  • Default Helvetica Segoe Georgia Times

Algorithmic bias occurs when a computer system reflects the implicit values of its human designers in its behavior.

Editor's Note: This article is excerpted from chapter 3 of Artificial Intelligence: Evolution and Revolution

Bias can emerge due to many factors, including but not limited to the design of the algorithm itself and unintended or unanticipated use or decisions relating to the way data is collected, coded, selected, or used to train an algorithm. Algorithmic bias is found across platforms, such as search engine results and social media platforms, and can have impacts ranging from inadvertent privacy violations to reinforcement of social biases of race, gender, sexuality, and ethnicity.

The study of algorithmic bias is most concerned with algorithms that reflect “systematic and unfair” discrimination. This bias has only recently been addressed in legal frameworks, such as the 2018 European Union’s General Data Protection Regulation (GDPR). “Explainability” is the process of explaining why an ML model behaved in a certain way, such as approving or declining a bank loan.

As algorithms expand their ability to organize society, politics, institutions, and behavior, sociologists have become concerned with the ways in which unanticipated output and manipulation of data can impact the physical world. Because algorithms are often considered to be neutral and unbiased, they can inaccurately project greater authority than human expertise, and in some cases, reliance on algorithms can displace human responsibility for their outcomes. Bias can enter into algorithmic systems as a result of pre-existing cultural, social, or institutional expectations; because of technical limitations of their design; or by being used in unanticipated contexts or by audiences who are not considered in the software’s initial design.

Algorithmic bias has been cited in cases ranging from election outcomes to the spread of online hate speech. Problems in understanding, researching, and discovering algorithmic bias stem from the proprietary nature of algorithms, which are sometimes treated with great secrecy. Even when full transparency is provided, the complexity of certain algorithms poses a barrier to understanding their functioning. Furthermore, algorithms may change, or respond to input or output in ways that cannot be anticipated or easily reproduced for analysis. In many cases, even within a single website or application, there is no single “algorithm” to examine, but instead a network of many interrelated programs and data inputs, even between users of the same service.

Algorithms have become the backbone of search engines, social-media websites, recommendation engines, online retail, online advertising, and more.

Contemporary social scientists are concerned with algorithmic processes embedded into hardware and software applications because of their political and social impact, and these scientists question the underlying assumptions of an algorithm’s neutrality. Systematic and repeatable errors have occurred that create unfair outcomes, such as privileging one arbitrary group of users over others. For example, a credit score algorithm may deny a loan without being unfair if it is consistently weighing relevant financial criteria. If the algorithm recommends loans to one group of users but denies loans to another set of nearly identical users based on unrelated criteria, and if this behavior can be repeated across multiple occurrences, the algorithm can be described as biased.

This bias may be intentional or unintentional.

Bias can be introduced to an algorithm in several ways. During the assembly of a dataset, data may be collected, digitized, adapted, and entered into a database according to human-designed cataloging criteria. Next, programmers assign priorities, or hierarchies, for how a program assesses and sorts that data. This requires human decisions about how data is categorized and which data is included or discarded. Some algorithms collect their own data based on human-selected criteria, which can also reflect the bias of human designers. Other algorithms may reinforce stereotypes and preferences as they process and display “relevant” data for human users—for example, by selecting information based on previous choices of a similar user or group of users.

Beyond assembling and processing data, bias can emerge as a result of design. For example, algorithms that determine the allocation of resources or that scrutinize (such as determining school placements) may inadvertently discriminate against a category when determining risk based on similar users (as in credit scores). Meanwhile, recommendation engines that work by associating users with similar users or that make use of inferred marketing traits might rely on inaccurate associations that reflect broad ethnic, gender, socio-economic, or racial stereotypes.

Another example comes from determining criteria for what is included and excluded from results. These criteria could present unanticipated outcomes for search results, such as flight-recommendation software that omits flights that do not follow the sponsoring airline’s flight paths.

Algorithms may also display an uncertainty bias, offering more confident assessments when larger datasets are available. This can skew algorithmic processes toward results that more closely correspond with larger samples, which may disregard data from underrepresented populations.

Contemporary Critiques and Responses

Though well-designed algorithms frequently determine outcomes that are equally (or more) equitable than the decisions of human beings, cases of bias still occur and are difficult to predict and analyze. The complexity of analyzing algorithmic bias has grown alongside the complexity of programs and their design. Decisions made by one designer, or team of designers, may be obscured among the many pieces of code created for a single program. And over time, these decisions and their collective impact on the program’s output may be forgotten. In theory, these biases may create new patterns of behavior, or “scripts,” in relationship to specific technologies as the code interacts with other elements of society. Biases may also impact how society shapes itself around the data points that algorithms require. For example, if data shows a high number of arrests in a particular area, an algorithm may assign more police patrols to that area, which could lead to more arrests.

The decisions of algorithmic programs can be seen as more authoritative than the decisions of the human beings they are meant to assist, which is known as “algorithmic authority.” This is described as the decision to regard as authoritative an unmanaged process of extracting value from diverse, untrustworthy sources, such as search results. This neutrality can also be misrepresented by the language used by experts and the media when results are presented to the public. For example, a list of news items selected and presented as “trending” or “popular” may be created based on significantly wider criteria than just their popularity.

Because of their convenience and authority, algorithms are theorized as a means of delegating responsibility away from humans. This can have the effect of reducing alternative options, compromises, or flexibility. Algorithms can be considered a new form of “generative power” in that they are a virtual means of generating actual ends. Where previously human behavior generated data to be collected and studied, powerful algorithms increasingly could shape and define human behaviors.

In recent years, the study of the Fairness, Accountability, and Transparency (FAT) of algorithms has emerged as its own interdisciplinary research area with an annual conference called FAT.


Mark Simmonds

Mark Simmonds is a Program Director in IBM Data and AI communications. He writes extensively on machine learning and data science, holding a number of author recognition awards. He previously worked as an IT architect, leading complex infrastructure design projects. He is a member of the British Computer Society and holds a Bachelor’s Degree in Computer Science.

MC Press books written by Mark Simmonds available now on the MC Press Bookstore.

Artificial Intelligence: Evolution and Revolution Artificial Intelligence: Evolution and Revolution
Get started on your AI journey with insights for a path to success.
List Price $19.95

Now On Sale



Support MC Press Online

$0.00 Raised:

Book Reviews

Resource Center

  • SB Profound WC 5536 Have you been wondering about Node.js? Our free Node.js Webinar Series takes you from total beginner to creating a fully-functional IBM i Node.js business application. You can find Part 1 here. In Part 2 of our free Node.js Webinar Series, Brian May teaches you the different tooling options available for writing code, debugging, and using Git for version control. Brian will briefly discuss the different tools available, and demonstrate his preferred setup for Node development on IBM i or any platform. Attend this webinar to learn:

  • SB Profound WP 5539More than ever, there is a demand for IT to deliver innovation. Your IBM i has been an essential part of your business operations for years. However, your organization may struggle to maintain the current system and implement new projects. The thousands of customers we've worked with and surveyed state that expectations regarding the digital footprint and vision of the company are not aligned with the current IT environment.

  • SB HelpSystems ROBOT Generic IBM announced the E1080 servers using the latest Power10 processor in September 2021. The most powerful processor from IBM to date, Power10 is designed to handle the demands of doing business in today’s high-tech atmosphere, including running cloud applications, supporting big data, and managing AI workloads. But what does Power10 mean for your data center? In this recorded webinar, IBMers Dan Sundt and Dylan Boday join IBM Power Champion Tom Huntington for a discussion on why Power10 technology is the right strategic investment if you run IBM i, AIX, or Linux. In this action-packed hour, Tom will share trends from the IBM i and AIX user communities while Dan and Dylan dive into the tech specs for key hardware, including:

  • Magic MarkTRY the one package that solves all your document design and printing challenges on all your platforms. Produce bar code labels, electronic forms, ad hoc reports, and RFID tags – without programming! MarkMagic is the only document design and print solution that combines report writing, WYSIWYG label and forms design, and conditional printing in one integrated product. Make sure your data survives when catastrophe hits. Request your trial now!  Request Now.

  • SB HelpSystems ROBOT GenericForms of ransomware has been around for over 30 years, and with more and more organizations suffering attacks each year, it continues to endure. What has made ransomware such a durable threat and what is the best way to combat it? In order to prevent ransomware, organizations must first understand how it works.

  • SB HelpSystems ROBOT GenericIT security is a top priority for businesses around the world, but most IBM i pros don’t know where to begin—and most cybersecurity experts don’t know IBM i. In this session, Robin Tatam explores the business impact of lax IBM i security, the top vulnerabilities putting IBM i at risk, and the steps you can take to protect your organization. If you’re looking to avoid unexpected downtime or corrupted data, you don’t want to miss this session.

  • SB HelpSystems ROBOT GenericCan you trust all of your users all of the time? A typical end user receives 16 malicious emails each month, but only 17 percent of these phishing campaigns are reported to IT. Once an attack is underway, most organizations won’t discover the breach until six months later. A staggering amount of damage can occur in that time. Despite these risks, 93 percent of organizations are leaving their IBM i systems vulnerable to cybercrime. In this on-demand webinar, IBM i security experts Robin Tatam and Sandi Moore will reveal:

  • FORTRA Disaster protection is vital to every business. Yet, it often consists of patched together procedures that are prone to error. From automatic backups to data encryption to media management, Robot automates the routine (yet often complex) tasks of iSeries backup and recovery, saving you time and money and making the process safer and more reliable. Automate your backups with the Robot Backup and Recovery Solution. Key features include:

  • FORTRAManaging messages on your IBM i can be more than a full-time job if you have to do it manually. Messages need a response and resources must be monitored—often over multiple systems and across platforms. How can you be sure you won’t miss important system events? Automate your message center with the Robot Message Management Solution. Key features include:

  • FORTRAThe thought of printing, distributing, and storing iSeries reports manually may reduce you to tears. Paper and labor costs associated with report generation can spiral out of control. Mountains of paper threaten to swamp your files. Robot automates report bursting, distribution, bundling, and archiving, and offers secure, selective online report viewing. Manage your reports with the Robot Report Management Solution. Key features include:

  • FORTRAFor over 30 years, Robot has been a leader in systems management for IBM i. With batch job creation and scheduling at its core, the Robot Job Scheduling Solution reduces the opportunity for human error and helps you maintain service levels, automating even the biggest, most complex runbooks. Manage your job schedule with the Robot Job Scheduling Solution. Key features include:

  • LANSA Business users want new applications now. Market and regulatory pressures require faster application updates and delivery into production. Your IBM i developers may be approaching retirement, and you see no sure way to fill their positions with experienced developers. In addition, you may be caught between maintaining your existing applications and the uncertainty of moving to something new.

  • LANSAWhen it comes to creating your business applications, there are hundreds of coding platforms and programming languages to choose from. These options range from very complex traditional programming languages to Low-Code platforms where sometimes no traditional coding experience is needed. Download our whitepaper, The Power of Writing Code in a Low-Code Solution, and:

  • LANSASupply Chain is becoming increasingly complex and unpredictable. From raw materials for manufacturing to food supply chains, the journey from source to production to delivery to consumers is marred with inefficiencies, manual processes, shortages, recalls, counterfeits, and scandals. In this webinar, we discuss how:

  • The MC Resource Centers bring you the widest selection of white papers, trial software, and on-demand webcasts for you to choose from. >> Review the list of White Papers, Trial Software or On-Demand Webcast at the MC Press Resource Center. >> Add the items to yru Cart and complet he checkout process and submit

  • Profound Logic Have you been wondering about Node.js? Our free Node.js Webinar Series takes you from total beginner to creating a fully-functional IBM i Node.js business application.

  • SB Profound WC 5536Join us for this hour-long webcast that will explore:

  • Fortra IT managers hoping to find new IBM i talent are discovering that the pool of experienced RPG programmers and operators or administrators with intimate knowledge of the operating system and the applications that run on it is small. This begs the question: How will you manage the platform that supports such a big part of your business? This guide offers strategies and software suggestions to help you plan IT staffing and resources and smooth the transition after your AS/400 talent retires. Read on to learn: