Data observability: The missing piece in your data integration puzzle

Typography
  • Smaller Small Medium Big Bigger
  • Default Helvetica Segoe Georgia Times

Historically, data engineers have often prioritized building data pipelines over comprehensive monitoring and alerting. Delivering projects on time and within budget often took precedence over long-term data health. Data engineers often missed subtle signs such as frequent, unexplained data spikes, gradual performance degradation or inconsistent data quality. These issues were seen as isolated incidents, not systemic ones. Better data observability unveils the bigger picture. It reveals hidden bottlenecks, optimizes resource allocation, identifies data lineage gaps and ultimately transforms firefighting into prevention.

Until recently, there were few dedicated data observability tools available. Data engineers often resorted to building custom monitoring solutions, which were time-consuming and resource-intensive. While this approach was sufficient in simpler environments, the increasing complexity of modern data architectures and the growing reliance on data-driven decisions have made data observability an indispensable component of the data engineering toolkit.

It’s important to note that this situation is changing rapidly. Gartner® estimates that “by 2026, 50% of enterprises implementing distributed data architectures will have adopted data observability tools to improve visibility over the state of the data landscape, up from less than 20% in 2024”.

As data becomes increasingly critical to business success, the importance of data observability is gaining recognition. With the emergence of specialized tools and a growing awareness of the costs of poor data quality, data engineers are now prioritizing data observability as a core component of their roles.

Hidden dangers in your data pipeline

There are several signs that can tell if your data team needs a data observability tool:

  • High incidence of incorrect, inconsistent or missing data can be attributed to data quality issues. Even if you can spot the issue, it becomes a challenge to identify the origin of the data quality problem. Often, data teams must follow a manual process to help ensure data accuracy.
  • Recurring breakdowns in data processing workflows with long downtime might be another signal. This points to data pipeline reliability issues when the data is unavailable for extended periods, resulting in a lack of confidence among stakeholders and downstream users.
  • Data teams face challenges in understanding data relationships and dependencies.
  • Heavy reliance on manual checks and alerts, along with the inability to address issues before they impact downstream systems, can signal that you need to consider observability tools.
  • Difficulty managing intricate data processing workflows with multiple stages and diverse data sources can complicate the whole data integration process.
  • Difficulty managing the data lifecycle according to compliance standards and adhering to data privacy and security regulations can be another signal.

If you’re experiencing any of these issues, a data observability tool can significantly improve your data engineering processes and the overall quality of your data. By providing visibility into data pipelines, detecting anomalies and enabling proactive issue resolution, these tools can help you build more reliable and efficient data systems.

Ignoring the signals that indicate a need for data observability can lead to a cascade of negative consequences for an organization. While quantifying these losses precisely can be challenging due to the intangible nature of some impacts, we can identify key areas of potential loss

There might be financial loss as erroneous data can lead to incorrect business decisions, missed opportunities or customer churn. Oftentimes, businesses ignore the reputational loss where inaccurate or unreliable data can damage customer confidence in the organization’s products or services. The intangible impacts on reputation and customer trust are difficult to quantify but can have long-term consequences.

Prioritize observability so bad data doesn’t derail your projects

Data observability empowers data engineers to transform their role from mere data movers to data stewards. You are not just focusing on the technical aspects of moving data from various sources into a centralized repository, but taking a broader, more strategic approach. With observability, you can optimize pipeline performance, understand dependencies and lineage, and streamline impact management. All these benefits help ensure better governance, efficient resource utilization and cost reduction.

With data observability, data quality becomes a measurable metric that’s easy to act upon and improve. You can proactively identify potential issues within your datasets and data pipelines before they become problems. This approach creates a healthy and efficient data landscape.

As data complexity grows, observability becomes indispensable, enabling engineers to build robust, reliable and trustworthy data foundations, ultimately accelerating time-to-value for the entire organization. By investing in data observability, you can mitigate these risks and achieve a higher return on investment (ROI) on your data and AI initiatives.

In essence, data observability empowers data engineers to build and maintain robust, reliable and high-quality data pipelines that deliver value to the business.

IBM is a leading global hybrid cloud and AI, and business services provider, helping clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Nearly 3,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM's hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently, and securely. IBM's breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM's legendary commitment to trust, transparency, responsibility, inclusivity, and service.

For more information, visit: www.ibm.com.

BLOG COMMENTS POWERED BY DISQUS

LATEST COMMENTS

Support MC Press Online

$

Book Reviews

Resource Center

  •  

  • LANSA Business users want new applications now. Market and regulatory pressures require faster application updates and delivery into production. Your IBM i developers may be approaching retirement, and you see no sure way to fill their positions with experienced developers. In addition, you may be caught between maintaining your existing applications and the uncertainty of moving to something new.

  • The MC Resource Centers bring you the widest selection of white papers, trial software, and on-demand webcasts for you to choose from. >> Review the list of White Papers, Trial Software or On-Demand Webcast at the MC Press Resource Center. >> Add the items to yru Cart and complet he checkout process and submit

  • SB Profound WC 5536Join us for this hour-long webcast that will explore:

  • Fortra IT managers hoping to find new IBM i talent are discovering that the pool of experienced RPG programmers and operators or administrators with intimate knowledge of the operating system and the applications that run on it is small. This begs the question: How will you manage the platform that supports such a big part of your business? This guide offers strategies and software suggestions to help you plan IT staffing and resources and smooth the transition after your AS/400 talent retires. Read on to learn: