
2C h a p t e r

Getting Started

2.1. Chapter Overview
This chapter introduces you to the sections of an ILE RPG program. It also illustrates how to
write a simple file read/write program by using a procedural approach, as well as how to include
comments within your programs as documentation.

2.2. The Sections of an ILE RPG Program
ILE RPG programs consist of four main sections:

zz Control options section—provides default options for the program
zz Declarations section—identifies and defines the files, variables, and other data items a

program is to use
zz Main procedure section—details the processes, calculations, and procedures the

program is to perform
zz Subprocedure section—includes declarations and processes for optional distinct

functions (subprocedures) of the RPG program that either the main procedure section
or other subprocedures can execute once or many times

Not every program includes each section. Within your source code, though, these sections
must appear in the order above with all program lines in the same section grouped together.
Additionally, within the declarations section, good programming style dictates that you
group certain types of declarations (e.g., file declarations) and code them in a consistent
order.

24  •  Programming in ILE RPG

	 Note
RPG is a rapidly evolving language. This textbook reflects ILE RPG’s
capabilities at Release 7.2. This release introduced significant changes to
the language, including greatly expanded free-format syntax.

Wherever practical, the text is applicable to all officially supported release
levels, including future ones. But if a feature requires a specific level, we
try to mention that requirement.

The ILE RPG compiler processes source member entries in columns 6–80 of each line.
Columns 1–5 and those beyond column 80 are not used. You code free-format RPG
statements in columns 8–80 of each line in a source member. Column 6–7 must be blank. If
a source line contains an entry in columns 6–7, the compiler assumes that the line uses an
older fixed-format specification. Free-format statements generally consist of an instruction
that indicates the purpose of the statement, followed by zero or more keywords and values
that further refine the instruction. For example, the following statement defines a variable
named Today:

Dcl-s Today Date(*Iso) Inz(*Sys); // Today's date

This statement uses the Dcl-s (Declare Standalone Variable) instruction to indicate the
purpose of the statement. It then names the variable (Today) and uses the Date keyword to
designate the data type of the variable, along with the display format of the date (*ISO). The
Inz(*Sys) keyword initializes the variable with the current system date when the program
starts; that is, the starting value of the Today variable is the current system date.

It’s important to notice the semicolon (;) at the end of the statement. Free-format RPG uses
the semicolon as a terminator character (similar to the way a period ends a sentence). A
single statement can span multiple lines of code, but only one statement can appear on any
single line.

You can add comments to a program to document it for other programmers who might
maintain the program later, or to explain it to yourself. A comment begins with two slashes
(//). When the compiler encounters two slashes, it treats the rest of the line as a comment. A
line can also consist solely of a comment with no other instructions.

	 Chapter 2  Getting Started  •  25

	 Tip
As you begin to work with RPG statements, don’t be overwhelmed by what
appear to be hundreds of entries with multiple options. Fortunately, many
entries are optional, and you use them only for complex processing or
to achieve specific effects. This book introduces these entries gradually,
initially showing you just those entries needed to write simple programs.
As your mastery of the language grows, you will learn how to use additional
entries required for more complex programs.

2.3. A Sample ILE RPG Program
Let’s start with the minimal entries needed to procedurally code a simple read/write
program. To help you understand how to write such a program, we walk you through the
process of writing an RPG program to solve the following problem.

You have a file, Customers, with records (rows) laid out, as in Figure 2.1. This layout,
called a record format, is stored in the Customers file itself when the file is created. The
record format describes the fields (columns) in a record. Every record format has a name
(CUSTSREC in Figure 2.1). ILE RPG requires that the record format name be distinct from the
filename. When the RPG program refers to the Custrec format, it uses the layout in Figure
2.1. Chapter 3 further explains how to create the Customers file by using SQL.

Figure 2.1: Record layout for Customers file

You want to produce a report laid out according to the example in Figure 2.2. This report
layout is also represented in a special kind of file called a printer file. For this example, you
call the printer file Custlist. Like the Customers file, the Custlist file contains record formats
that describe the lines to print on the report. When the output is a printed report rather than a
data file, record roughly translates to one or more related report lines. Most reports include
several different report-line formats. In the example, name the record formats Header,
Detail, and Total. The Header format describes lines 1–9 in Figure 2.2, and the Detail format

26  •  Programming in ILE RPG

describes line 10 and subsequent lines until the Total format, which prints at the end of the
report. Chapter 3 details how to create the printer file and its formats by using a utility called
Data Description Specifications (DDS).

Figure 2.2: Report layout for Printer file

When you compare the desired output with the Custsrec record layout, you can see that
the Detail format’s output fields are present on the input records, but not all input fields in
Customers are used in the report. The processing consists of reading each record from the
input file, counting it, writing that data to the report with appropriate headings, and formatting
the variable data. Finally, at the end of the report, the Total format prints the record count.

The following is the completed sample ILE RPG program. Note that the order of the program
statements is control options, declarations, and main procedure. (This program does not
include subprocedures.) RPG requires this order. Also note that you can use blank comment
lines or comment lines of dashes to visually break the program into logical units and that
using lowercase lettering within internal documentation helps it stand out from program code.

// ---

// This program produces a customer listing report. The report data

// comes directly from input file Customers.

//

Continued

	 Chapter 2  Getting Started  •  27

// Date Written: 10/31/2013, Bryan Meyers

// ---

// --- Control options

Ctl-opt Option(*Nodebugio);

// --- File declarations

Dcl-f Customers Disk Usage(*Input);

Dcl-f Custlist Printer Usage(*Output) Oflind(Endofpage);

// ---------------------------------- Standalone variable declarations

Dcl-s Endofpage Ind Inz(*On);

// -- Main procedure

Read Customers;

Dow Not %Eof(Customers);

 If Endofpage;

 Write Header; // Header is a format in the Custlist file

 Endofpage = *Off;

 Endif;

 Count += 1; // Count is a variable defined in Custlist

 Write Detail; // Detail is a format in Custlist

 Read Customers;

Enddo;

If Endofpage;

 Write Header;

Endif;

Write Total; // Total is a format in Custlist

*Inlr = *On;

Return;

ILE RPG lets you use both uppercase and lowercase alphabetic characters, but the language
is not case sensitive. Thus, any lowercase letter you use within a file or variable name is
interpreted as its uppercase equivalent by the compiler. To aid in the program’s readability,
use title case, wherein each word in the source code is capitalized.

28  •  Programming in ILE RPG

Let’s examine the program, line by line, to understand its basic syntax and purpose. As we
examine the program in detail, you can refer back to it to get a complete picture of the entire
program. The comments each begin with // characters and require no further explanation.

	 Tip
It’s a good idea to designate the various sections of the program with
comment divider lines, as the example shows, to make the program easier
to read and analyze.

2.3.1. Control Options
The first section, control options, is useful for controlling the program’s behavior and for
specifying certain compiler options. Control specifications provide the following functions:

zz default formats (e.g., date formats) for the program
zz changes to normal processing modes (e.g., changing the internal method the program

uses to evaluate expressions)
zz special options to use when compiling the program
zz language enhancements that affect the entire program

A Ctl-opt (Control option) instruction can include more than one keyword (with at least
one space between each one), and a program can have multiple Ctl-opt statements. Appendix
A includes a complete list of Control option keywords and their usage. Not all programs
require Ctl-opt statements, but if they are present, control options must appear as the first
statements in a program.

In this example, the following instruction informs the compiler that the debugger facility
(described in Appendix C) is to ignore all input and output specifications, improving the
debugger’s performance:

Ctl-opt Option(*Nodebugio);

Control options might also dictate the date and time formats to use, as in the following example:

Ctl-opt Datfmt(*USA) Timfmt(*HMS);

2.3.2. Declarations
Next is the declarations section. RPG uses this section to declare (define) all the data items
that the program needs to do its job. Every data item the program requires must be defined

	 Chapter 2  Getting Started  •  29

to the program. The example program includes two types of declarations: file declarations
and standalone variable declarations. The declarations can be in any order, but it’s a good
idea to group similar declarations and organize them in a logical fashion. Let’s start with file
declarations.

2.3.2.1. File Declarations

File declarations describe the files your program uses and define how to use the files within
the program. Each file a program uses requires its own file declaration, which begins with
a Dcl-f (Declare File) instruction. Although you can declare the files in any order, it is
customary to declare the input files first:

Dcl-f Customers Disk Usage(*Input);

Dcl-f Custlist Printer Usage(*Output) Oflind(Endofpage);

When a program declares a file, all the record formats and fields in that file become available
to the program. No further declarations are necessary for the program to use those items.
Let’s examine each of the entries for the sample program. As you continue in subsequent
chapters, we’ll explain the entries not described here. (Appendix A includes a complete
summary of all the ILE RPG instructions.)

In the illustrative problem, file Customers contains the data you want to process. The
program’s output is a printed report. Although you usually think of a report as hardcopy,
rather than as a file per se, in RPG you produce a report through a printer file. This file then
resides as a spooled file in an output queue, where it waits until you release it to a printer.
Your administrator or instructor will tell you which output queue to use for your programs
and explain how to work with spooled files in the output queue.

2.3.2.1.1. Filename

The first entry following the Dcl-f instruction names the file. In ILE RPG, filenames can
be a maximum of 10 characters. They must begin with an alphabetic character or one of
the special characters $, #, or @. The remaining characters can be alphabetic characters,
numbers, or any of the four special characters _, $, #, and @. A filename cannot contain
blanks embedded within the permissible characters.

The practice problem’s input file is called Customers. The report file is Custlist.

2.3.2.1.2. Device

The entry following the filename indicates the device associated with a file. Database files
are stored on disk. Accordingly, Disk is the appropriate device entry for the Customers file.
The device associated with printer files is Printer.

30  •  Programming in ILE RPG

2.3.2.1.3. File Usage

The Usage keyword specifies how the program is to use the file. The two types in this
program are *Input and *Output. An input file contains data to be read by the program, and
an output file is the destination for writing output results from the program. In the example,
Customers is an input file, and Custlist is an output file.

2.3.2.1.4. Overflow Indicator

RPG supports many other file keywords (discussed in Chapter 4, and listed in Appendix A)
to give you an opportunity to amplify and specialize the basic file description. Typically, you
code them with one or more values (arguments) in parentheses immediately following the
keyword itself. You can code more than one keyword on a declaration line. If a declaration
requires more than one line, you can simply continue coding keywords on subsequent lines,
ending the last line with a semicolon (;).

In the sample program, the printer file uses one such keyword: Oflind (Overflow indicator).
Overflow is the name given to the condition that happens when a printed report reaches
the bottom of a page. Usually, when overflow occurs, you eject the printer to the next page
and print a new set of heading lines before printing the next detail line. Your program can
automatically detect overflow through the use of a variable called an overflow indicator. The
Oflind keyword associates the printer device with the overflow indicator for that file. In the
example, the overflow indicator is named Endofpage (you can name it anything you choose).
If the Custlist file signals overflow, the Endofpage indicator is automatically set to *On. You
can then test that indicator just before printing a detail line to determine whether you want
to print headings first. After printing the headings, the program should set Endofpage to *Off
and then wait for the printer file to turn it *On again.

No other Dcl-f entries are required to describe the files the sample program used. In this
introductory explanation, we skip some of the entries that are not needed in this program
(we’ll cover them later).

2.3.2.2. Standalone Variable Declarations

Variable declarations describe those variables that do not originate from a file and that do not
depend upon a specific structure or format. They stand alone in the program and are often
referred to as standalone variables. For these data items, the program needs to know, at a
minimum, the name of the variable and its data type (e.g., character or numeric). Additional
keywords can amplify or specialize the variable’s properties. The example program declares
one variable by using the Dcl-s (Declare Standalone Variable) instruction:

Dcl-s Endofpage Ind Inz(*On);

	 Chapter 2  Getting Started  •  31

2.3.2.2.1. Variable Name

The first entry following the Dcl-s instruction names the variable. In ILE RPG, variable
names can be up to 4,096 characters (although the practical limit is much lower). They must
begin with an alphabetic character or one of the special character $, #, or @. The remaining
characters can be alphabetic characters, numbers, or any of the four special characters _, #, $,
and @. A variable name cannot contain blanks embedded within the permissible characters.

The example declaration describes the Endofpage variable, which you are using as the
overflow indicator for the Custlist file. Because this variable isn’t defined anywhere else, you
must declare it here.

	 Tip
Although RPG allows them, avoid the use of special characters $, #, or @
in RPG names. These special characters may not exist in all languages
and character sets within which your program may attempt to compile.
When the language or character set cannot recognize the character, the
compiler cannot successfully translate the code. Also avoid the underscore
(_) in an RPG name; it’s a noisy character and doesn’t significantly aid the
readability of your program.

Although not an RPG requirement, it is good programming practice to choose field names
that reflect the data they represent. For example, Loannumber is far superior to X for the
name of a field that stores loan numbers. Choosing descriptive field names can prevent your
accidental use of the wrong field as you write your program, and it can help clarify your
program’s processing to others who may have to modify the program.

If the name won’t fit on a single line, consider renaming the data item. You can, however, use
an ellipsis (…, three periods across three positions) as a special continuation character within
the name to allow a longer name. On the following lines, you simply continue the definition.

2.3.2.2.2. Data Type

Following the variable name, you use a keyword to indicate the general type of data the
variable represents (e.g., character, numeric, date) as well as how the program is to store it
internally. Chapter 4 examines the various data types that RPG supports. In the example,
the Ind data type designates the variable as an indicator. An indicator (which many other
computer languages refer to as a Boolean data type) is a single-byte variable that can
contain only two logical values: '1' or '0'. You can also refer to these values by using the
figurative constants *On and *Off, respectively. Indicator data is usually used within an RPG
program to signal a true/false condition.

32  •  Programming in ILE RPG

In the example, Endofpage is an indicator that the program uses to signal printer overflow.

2.3.2.2.3. Initialize Keyword

You can enter the remaining keywords in a variable declaration in any order. In the example,
you have only one additional keyword: Inz (Initialize). The purpose of a variable is to hold
a value. Once you’ve defined a standalone variable, you can assign it a value, use it with
operations, or print it. The Inz keyword supplies an initial value for a variable. This is the
value the variable has when the program first starts. In the example, you initialize Endofpage
to have a value of *On.

2.3.3. Main Procedure Section
You have now defined the files and variables your application is to use. Next, you need to
describe the processing steps to obtain the input and write the report. That is the purpose of
the main procedure. The main procedure is the main body of your program—the part that
outlines the processes, calculations, and procedures that your program executes. In many
cases (as in the example), the program does all the work in the main procedure. The main
procedure is the first part of your program that is executed when you initially call it.

In the example, the main procedure is coded with no special designation and without an
explicit name. It simply consists of a number of instructions that the program executes to
do its work. When the program is called, an internal sequence of preset events known as the
RPG cycle starts the program, initializes its storage, and executes the main procedure. When
the main procedure is finished, the cycle shuts down the program, deallocates all objects it
is using, and cleans up its storage. Because the built-in cycle controls the execution of the
main procedure, this type of program is termed a cycle main program. Unlike with some
other computer languages, an RPG cycle main program does not require that you explicitly
name the main procedure. Most of the programs you encounter will be cycle main programs.
Another ILE RPG program model, the linear main program, which Chapter 14 covers, does
allow you to explicitly name the main procedure.

Before coding the main procedure, you need to develop the logic to produce the desired
output. Generally, you complete this stage of the program development cycle—designing the
solution—before doing any program coding, but we delayed program design to give you a
taste of the language.

You can sketch out the processing of your program by using pseudocode, which is simply
stylized English that details the underlying logic needed for a program. Although no single
standard exists for the format used with pseudocode, it consists of key control words and
indentation to show the logic structures’ scope of control. It is always a good idea to work
out the design of your program before actually coding it in RPG (or in any other language).

	 Chapter 2  Getting Started  •  33

Pseudocode is language independent and lets you focus on what needs to be done, rather
than on the specific syntax requirements of a programming language.

The program exemplifies a simple read/write program in which you want to read a record,
increment the record count, process that record, and repeat the process until no more records
exist in the file (a condition called end-of-file). This kind of application is termed batch
processing because once the program begins, a batch of data (accumulated in a file) directs
its execution. Batch programs can run unattended because they do not need control or
instructions from a user.

The logic the read/write program requires is quite simple:

Correct algorithm

Read a record

While there are records

Print headings if necessary

Increment the record count

Write a detail line

Read the next record

Endwhile

Print last report total line

End program

Note that While indicates a repeated process, or loop. Within the loop, the processing
requirements for a single record (in this case, simply writing a report line) are detailed and
then the next record is read.

You may wonder why the pseudocode contains two read statements. Why can’t there be just
a single read, as in the first step within the following While loop?

Incorrect algorithm

While there are records

Read the next record

Print headings if necessary

34  •  Programming in ILE RPG

Increment the record count

Write a detail line

Endwhile

Print last report total line

End program

The preceding algorithm works fine as long as each read operation retrieves a data record
from the file. The problem is that eventually the system tries to read an input record and
fails because no more records exist in the file to read. When a program reaches end-of-file,
it should not attempt to process more input data. The preceding incorrect algorithm will
inappropriately write a detail line after reaching end-of-file.

The correct algorithm places the read statement as the last step within the While loop so that
as soon as end-of-file is detected, no further writing occurs. However, if that is the only read,
your algorithm will try to write the first detail line before reading any data. That’s why the
algorithm also requires an initial read (often called a priming read) just before the While
loop to prime the processing cycle.

After you have designed the program, it is a simple matter to express that logic in a
programming language—once you have learned the language’s syntax. The following main
procedure shows the correct algorithm expressed in ILE RPG. Notice the striking similarity
to the pseudocode you sketched out earlier.

Read Customers;

Dow Not %Eof(Customers);

 If Endofpage;

 Write Header;

 Endofpage = *Off;

 Endif;

 Count += 1;

 Write Detail;

 Read Customers;

Enddo;

Continued

	 Chapter 2  Getting Started  •  35

If Endofpage;

 Write Header;

Enddo;

Write Total;

*Inlr = *On;

Return;

The instructions usually begin with an operation that specifies an action to take. RPG
supports numerous reserved words, called operation codes, to identify valid operations.
Many of these operations are followed by operand values, which RPG calls factors, to
provide the compiler with the details necessary to perform an operation. Other operation
codes (Dow and If in this example) are followed by expressions that the program is to
evaluate. Finally, each instruction must end with a semicolon (;). Spacing is not usually
critical. You can code the specification in any position from 8 to 80, but positions 6 and 7
must be blank. You can also indent operations to clarify the flow of the program.

2.3.3.1. RPG Operations

The RPG program executes the main procedure sequentially from beginning to end, unless
the computer encounters an operation that redirects flow of control. The program uses eight
operation codes: Read, Dow, Enddo, If, Endif, Write, Eval, and Return. Let’s look at the specific
operations within the main procedure of the program. The intent here is to provide you
with sufficient information to understand the basic program and to write similar programs.
Several of the operations described in the following section are discussed in more detail in
subsequent chapters of this book.

2.3.3.1.1. Read (Read Sequentially)

Read is an input operation that instructs the computer to retrieve the next sequential record
from the named input file—in this case, your Customers file. To use the Read operation with
a file, you must have defined that file as Usage(*Input). Reading a record makes all the field
values in that record available to the program for processing.

2.3.3.1.2. Dow (Do While), Enddo

The Dow operation establishes a loop in RPG. An Enddo operation signals the end of the
loop. Note that this Dow and Enddo correspond to the While and Endwhile statements in
your pseudocode. The Dow operation repetitively executes the block of code in the loop as
long as the condition associated with the Dow operation is true. Because the program’s Dow
condition is preceded by the word Not, this line reads, “Do while the end-of-file condition

36  •  Programming in ILE RPG

is not true.” It is the direct equivalent of the pseudocode statement “While there are more
records…,” because the end-of-file condition turns on only when your Read operation runs
out of records.

The %Eof entry in this statement is an ILE RPG built-in function, which returns a true ('1'
or *On) or false ('0' or *Off) value to indicate whether or not the file operation encountered
end-of-file. Built-in functions (or BIFs) perform specific operations and then return a
value to the expression in which they are coded. Most BIFs let you enter values called
arguments in parentheses immediately following the BIF to govern the function. In this
case, %Eof(Customers) means that you want your program to check the end-of-file condition
specifically for the Customers file.

The Enddo operation marks the end of the scope of a Do operation, such as Dow. All the
program statements between the Dow operation and its associated Enddo are repeated as long
as the Dow condition is true. Every Dow operation requires a corresponding Enddo operation
to close the loop.

2.3.3.1.3. If

RPG’s primary decision operation is the If operation. When the relationship expressed in the
conditional expression coded with the If operation is true, all the calculations between the If
and its associated Endif operation are executed. However, when the relationship is not true,
those statements are bypassed. By coding

If Endofpage = *On;

or simply (because Endofpage is an indicator)

If Endofpage;

you are instructing the program to execute the subsequent lines of code only if the overflow
indicator Endofpage is *On:

Write Header;

Endofpage = *Off;

The Endif operation marks the end of an If operation’s scope. All the program statements
between the If operation and its associated Endif are executed as long as the If condition is
true. Every If operation requires a corresponding Endif operation to close the block.

	 Chapter 2  Getting Started  •  37

	 Tip
It is common practice to indent blocks of code that appear between Dow or
If and their associated Enddo or Endif operations. By indenting the blocks,
you can easily see which code is associated with the Dow or If operation.
Don’t overdo it, though. Indenting a couple of spaces is enough.

2.3.3.1.4. Write (Write a Record)

A Write operation directs the program to output a record to an output file. In the example,
because the output file is a printer file, writing a record to the file has the effect of printing
the format, consisting of one or more lines. The first Write operation specifies Header as the
record format to print if Endofpage has been reached. As a result, the three heading lines of
your report are printed. Later, a second Write specifies the Detail format. When the program
executes this line of code, the record format Detail is printed, using the values of the fields
from the currently retrieved Customers record. The last Write operation prints the Total
record format. Header, Detail, and Total are record formats that reside in the Custlist file
(Figure 2.2). All the information you need to format the printed report is in the file, not in the
RPG program.

Write Header;

Write Detail;

Write Total;

2.3.3.1.5. Eval (Evaluate Expression)

The Eval operation assigns a value to a variable. In the sample program, coding

Eval Endofpage = *Off;

assigns the value *Off to the overflow indicator Endofpage. You do this after printing the
heading lines so that the program knows that it is no longer necessary to print the headings
until Endofpage is reset to *On automatically. (Endofpage is initially set to *On to ensure that
the program prints headings on the first page of the report.)

In most cases, specifying Eval is optional. You can simply code the assignment expression
without explicitly coding the Eval operation:

Endofpage = *Off;

38  •  Programming in ILE RPG

Later in the program, you use the line

*Inlr = *On;

to assign the value *On to a special reserved indicator variable called Last Record (coded
as *Inlr, read as indicator LR). *Inlr (commonly referred to simply as LR) performs a special
function within ILE RPG. If LR is on when the program ends, it signals the computer to
close the files and free the memory associated with the program. If LR is not on, the program
continues to tie up some of the system’s resources even though the program is no longer
running.

You may have also noticed this implied Eval statement in the example:

Count += 1;

This statement uses the += operator, one of several concise operators that RPG supports.
This statement simply adds 1 to the current value of the Count variable. It is equivalent to
coding the following:

Count = Count + (1);

RPG’s concise operators are simply shortcut coding techniques you can use when the
result of an expression (Count, in this case) is also the first operand in the expression. RPG
supports the following concise operators:

zz += to increment a variable
zz -= to decrement a variable
zz *= for multiplication
zz /= for division
zz **= for exponentiation

2.3.3.1.6. Return (Return to Caller)

The Return operation returns control to the program that called it—either the computer’s
operating system or perhaps another program. Program execution stops when a Return is
encountered. Although your program ends correctly without this instruction (provided you
have turned on LR), including it is a good practice. Return clearly signals the endpoint of
your program and lets the program become part of an application system of called programs.
(Chapter 13 deals with called programs in detail.)

	 Chapter 2  Getting Started  •  39

2.4. Building the Program
To create this program, you use an editor, such as SEU or LPEX, to enter the ILE RPG code
into a source file member with a member type of RPGLE. A source file member is a set of data
within a source file. Usually, a source file contains more than one member, each of which
holds the source code for a single program. Once the source member contains all the necessary
code, you then use the CRTBNDRPG (Create Bound RPG Program) command to compile
the source and create the program. Figure 2.3 shows the prompted CRTBNDRPG command.
The compiler generates a listing, which you use to verify the creation of the program or to find
errors. Appendix B describes the tools you might use to edit and compile a program.

Figure 2.3: CRTBNDRPG command

Once the program is successfully created, execute it by using the CALL command. The output
of your program is a spooled file, CUSTLIST, in an output queue. You can view the report by
using the WRKSPLF (Work with Spooled Files) command, or you can release it to a printer.

2.5. Navigating Legacy Code
Earlier releases of RPG (Release 7.1 and earlier) identify the sections of a program by using
different kinds of lines, called fixed-format specifications. Fixed format means that the
location of an entry within a program line is critical to the entry’s interpretation by the RPG
compiler. Although you can write most modern programs by using free-format coding,
which does not have significant positional restrictions, you may encounter fixed format when
you are maintaining existing programs. Good programming style prefers free-format coding,
but you can freely mix fixed format and free format within the same program.

Each type of fixed-format specification has a particular purpose. Following are the
specification types:

zz Header (Control) specifications—provide default options for the source
zz File specifications—identify the files a program is to use
zz Definition specifications—define variables and other data items the program is to use
zz Input specifications—depict the record layout for program-described input files

40  •  Programming in ILE RPG

zz Calculation specifications—detail the procedure the program is to perform
zz Output specifications—describe the program output (results)
zz Procedure boundary specifications—segment the source into units of work, called

procedures

Not all programs need every kind of fixed-format specification. Fixed-format specification
types require a different identifier, or form type, which must appear in position 6 of each
program line. A File specification line of code, for example, must include an F in position 6.
For this reason, File specifications are commonly called F-specs.

Fixed-format specifications must appear in a specific order, or sequence, within your source
code, with all program lines that represent the same kind of specification grouped together. The
following list illustrates the order in which the specifications are grouped. Notice that the fixed-
format specifications generally follow the same order as the free-format sections of a program.

H Header (control) specifications

F File specifications*

D Definition specifications*

I Input specifications

C Calculation specifications

O Output specifications

P Procedure boundary

F File specifications for procedure*

D Definition specifications for procedure*

C Calculation specifications for procedure

P Procedure boundary

*	 Beginning with Release 7.2, you can mix File specifications and Definition specifications in any order.

Most specifications require fixed-position entries in at least part of the specification. The
editor you use to enter your source code can provide you with prompts to facilitate making
your entries in the proper location. (Appendix B provides more information about editors.)

Even though specifications are primarily fixed format, some also support a free-form area,
where you can code keywords and values with little or no regard to their specific location
within the free-form portion of the specification. Beginning with Version 5, RPG supports
free-format calculation specifications, but—until Release 7.2—all other specifications must
be fixed format.

	 Chapter 2  Getting Started  •  41

	 Note
The fixed-format code samples in this book use two (or more) ruler lines
to help you determine where to insert your fixed-format entries. The
first ruler line indicates column position, and the following line (or lines)
contains prompts similar to those an editor supplies. Most editors also
provide a similar ruler line near the top of the editing window. These ruler
lines should not appear in your source code; they are provided to help you
understand where entries should appear.

When you begin maintaining a fixed-format program, notice that an entry does not always
occupy all the positions allocated for it within a specification. When that happens, a good
rule is that alphabetic entries start at the leftmost position of the allocated space, and unused
positions are to the right. Numeric entries, however, are usually right-adjusted, and unused
positions are to the left.

2.5.1. Fixed-Format Specifications for a Sample Program
Let’s look at a fixed-format version of the example program and compare it with the free-
format version shown earlier.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+ ... 8

 * ---

 * This program produces a customer listing report. The report data

 * comes directly from input file Customers.

 * Date Written: 10/31/2013, Bryan Meyers

 * ---

 * --- Control options

H Option(*Nodebugio)

 * --- File declarations

FCustomers IF E Disk

FCustlist O E Printer Oflind(Endofpage)

 * -- Standalone variable declarations

D Endofpage S N Inz(*On)

Continued

42  •  Programming in ILE RPG

 * -- Main procedure

C Read Customers

C Dow Not %Eof(Customers)

C If Endofpage

C Write Header

C Eval Endofpage = *Off

C Endif

C Eval Count += 1

C Write Detail

C Read Customers

C Enddo

C If Endofpage

C Write Header

C Enddo

C Write Total

C Eval *Inlr = *On

C Return

Notice that fixed-format RPG specifications do not require a semicolon delimiter. Fixed
format traditionally uses an asterisk (*) in position 7 to denote a comment. You can also use
slashes (//) to begin a comment in fixed-format code, but the comment cannot be on the same
line as other code; it must be on a separate line.

2.5.2. Control Specifications
Control specifications (Control options) require an H in position 6. The remaining positions,
7–80, consist of reserved keywords, which have special values and meanings associated
with them. Fixed-format control specifications mimic the function of the Ctl-opt instruction
in free-format code. The keywords have no strict positional requirements—they can appear
in any order and in any position 7–80. The following header shows the layout of a Control
specification for the fixed-format variation of your program:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

HKeywords++

H Option(*Nodebugio)

