
ILE RPG Style Guide

Overview
This appendix presents some suggestions for how to write RPG programs that are easy to read,
understand, and maintain. Professional programmers appreciate the importance of standards in
developing programs. The issue of program style goes beyond any one language, but the ILE RPG
syntax has some unique features that promote specific style guidelines. Here are some simple
rules that you can use to ensure that bad code doesn’t happen to otherwise good RPG software
construction.

Defining Data
Within the Declarations section of the program, organize your definitions in a predictable
order by definition type:

zz File declarations
zz Named constants
zz Prototype for main procedure
zz Procedure interface for main procedure
zz Other prototype definitions
zz Data structures
zz Standalone variables

Within each definition type, alphabetize the declarations.

2  •  Programming in ILE RPG

Expand Naming Conventions
Perhaps the most important aspect of programming style deals with the names you give to
data items (e.g., variables, named constants) and routines. Establish naming conventions that
fully identify variables and other identifiers. A good naming strategy can make the difference
between program code and a program description.

When you name an item, be sure the name fully and accurately describes the item. The
name should be unambiguous, easy to read, and obvious. Although you should exploit
RPG’s allowance for long names, don’t make your names too long. Name lengths of 10
to 14 characters are usually sufficient, and longer names may not be practical in many
specifications.

A data item’s name should describe the item. When naming a procedure with a return
value, name the procedure after the return value, or use a get/set naming convention if the
procedure retrieves or assigns a data value.

For subroutines or procedures without a return value, use a verb/object syntax (similar to a
CL command) to describe the process. Maintain a dictionary of names, verbs, and objects,
and use the dictionary to standardize your naming conventions.

Avoid using special characters (e.g., @, #, $) when naming items. Some of these characters
can cause compile errors in some character sets. Although ILE RPG allows an underscore
(_) within a name, you can easily avoid this noise character if you use mixed case
intelligently.

Declare Named Constants Instead of Using Literals
This practice helps document your code and makes it easier to maintain. One obvious
exception to this rule is the allowable use of 0 and 1 when they make perfect sense in the
context of a statement. For example, to initialize an accumulator field or increment a counter,
you can use a hard-coded 0 or 1 in the source.

Indent Data Item Names
Use indentation to document data structures and their subfields:

Dcl-ds Errmsg;

 Errprefix Char(3);

 Errmsgid Char(4);

 Errmajor Char(2) Overlay(Errmsgid);

 Errminor Char(2) Overlay(Errmsgid:*Next);

End-ds;

	 ILE RPG Style Guide  •  3

Avoid Compile-Time Arrays
As you decompose a program into its individual procedures, it helps to have all related
pieces of code physically and logically self-contained. The traditional compile-time array
coding separates the array definition from the array data by perhaps thousands of code lines
in the program. A better solution is to code the array (Days in the following example) inside
a data structure (Daysctdata):

Dcl-ds Daysctdata;

 *N Char(9) Inz('Sunday');

 *N Char(9) Inz('Monday');

 *N Char(9) Inz('Tuesday');

 *N Char(9) Inz('Wednesday');

 *N Char(9) Inz('Thursday');

 *N Char(9) Inz('Friday');

 *N Char(9) Inz('Saturday');

 Days Char(9) Dim(7) Pos(1);

End-ds;

Avoid Multiple-Occurrence Data Structures
The array data structure is a better construct because it uses standard array notation in your
program. In addition, it doesn’t limit you to processing a single occurrence in the same line,
and it allows you to deal with those instances where nested (multiple dimension) arrays
are useful.

Dcl-ds Customers Dim(100) Qualified;

 Name Char(35);

 Address Char(35) Dim(2);

 City Char(21);

 State Char(2);

 Postalcode Char(10);

End-ds;

Use Qualified Data Structures
Qualified data structures force you to qualify their subfield names with the data structure
name (e.g., Customer.Name, Customer.Address). This feature not only provides clear
documentation for the data item, indicating where a data item originates, but it also allows
you to have identically named subfields in different data structures (e.g., Before.Name, After​

.Name). To define a qualified data structure, use the Qualified keyword in its definition.

4  •  Programming in ILE RPG

The Likeds and Likerec keywords are also useful when a data structure inherits its subfields
from another data structure or record format. Data structures using Likeds and Likerec are
implicitly qualified, without coding the Qualified keyword. You can control the subfields that
appear in a Likerec data structure or an externally described data structure by specifying *All,
*Input, *Ouput, or *Key fields.

Free-Format Syntax
At current releases, ILE RPG is a free-format language. Free-format specifications
effectively render the traditional fixed-format specifications obsolete. When maintaining
older programs, you will undoubtedly encounter fixed-format code. The advantages of
free format are well proven. It is easier to read, document, and maintain than fixed-format
code, and its syntax is consistent with other modern computer languages. You should use it
exclusively, especially when writing new programs or performing extensive maintenance on
existing programs. In many cases, if you use the free-format specification, good standards
will result automatically because the free-format specifications don’t permit much of the
obsolete baggage and poor practices that fixed-format specifications allowed.

Avoid mixing fixed-form style and free-form style in your programs. The result is
inconsistent and difficult to read. Take full advantage of the more natural order and expanded
space that the free-form specification affords.

Indent Code in Loops and Groups
When coding loops and groups, indent the code within a group by two spaces to highlight
the structure of the code group, as the following examples illustrate:

If %Found;

 Eval(h) Totalpay = Regpay + Ovtpay;

Endif;

Select;

 When Hours <=40;

 Totalpay = Hours * Rate;

 When Dblhours = 0;

 Totalpay = (Hours * Rate) + ((Hours – 40) * Rate * 1.5);

 Other;

 Totalpay = (Hours * Rate) + ((Hours – 40) * Rate * 1.5) +

 (Dblhours * Rate * 2);

Endsl;

Continued

	 ILE RPG Style Guide  •  5

Dou %Eof(Master);

 Read(e) Master;

 Select;

 When %Eof(Master);

 Leave;

 When %Error;

 Exsr Errsubr;

 Other;

 Exsr Process;

 Endsl;

Enddo;

But don’t completely abandon columnar alignment as a tool to aid readability in expressions.
Especially when an expression must continue onto subsequent lines, align the expression to
make it easier to understand:

Totalpay = (Reghours * Rate) +

 (Ovthours * Rate * 1.5) +

 (Dblhours * Rate * 2);

If your program includes embedded SQL statements, integrate the SQL completely by using
the same indenting standards for the SQL statements that you use for the rest of the program:

If Instate = 'TX';

 Pgmaccount = 'G5X67';

 Exec SQL Select Firstname, Lastname, City, State

 Into :Infirstname, :Inlastname, :Incity, :Instate

 From Master

 Where Account = :Pgmaccount;

 Exsr Process;

Endif;

For a long SQL statement, as in this example, consider coding the individual SQL predicates
on separate lines and aligning them as you would multi-line expressions.

6  •  Programming in ILE RPG

Use Mixed-Case Source
Closely related to using free-format syntax is the standard to use mixed-case characters
in the source code. Exploit this capability to make your program source easy to read.
When coding a symbolic name, use mixed case to clarify the named item’s meaning and
use. Do not code in ALL UPPERCASE or all lowercase characters. Instead, use a logical
combination of uppercase and lowercase, perhaps capitalizing each word in the code line:

Chain Postalcode Citymaster;

Another possibility is to use a notation commonly called CamelCase, which joins compound
words without spaces, capitalizing each section of the compound:

Chain PostalCode CityMaster;

Only if your installation integrates Java programs into its applications, consider using Java’s
traditional Hungarian notation, a variation of CamelCase in which the variable’s name
indicates its type; the name begins with lowercase characters. Using Hungarian notation, the
name unsCounter might indicate an unsigned integer, and decAmount might signify a packed
decimal number.

For RPG-reserved words and operations, and possibly for named constants, consider using
all uppercase characters. No matter which standard you use, be consistent.

Modular Applications
The RPG syntax, along with the Integrated Language Environment (ILE), encourages a
modular approach to application programming. Modularity offers a way to organize an
application, facilitate program maintenance, hide complex logic, and efficiently reuse code
wherever it applies.

Write Modular Programs with Procedures
Isolate reusable code in a procedure. Instead of monolithic, all-purpose monsters, write
smaller, single-function compile units and bind them to the programs that need them.
Eliminate duplicate code, even little bits of it. Your coding mantra should be “once and only
once.”

Relegate mysterious code to a well-documented, well-named procedure. Despite your best
efforts, on extremely rare occasions, you simply will not be able to make the meaning of
a chunk of code clear without extensive comments. Separating such heavily documented,

	 ILE RPG Style Guide  •  7

well-tested code into a procedure will save future maintenance programmers the trouble of
deciphering and dealing with the code unnecessarily.

Procedures and subroutines share many of the same advantages in building modular
programs. But procedures have many features that subroutines do not support—parameter
passing, local variables, Nomain modules, and service programs, for example. Your standards
should favor using procedures over subroutines as a modular programming mechanism.

Use Return Values
As a general rule, a procedure should always return a value to its caller, even if that value is
nothing more than an indicator of whether the procedure executed successfully. This syntax
allows you to embed a procedure call inside an expression, and it makes the program easy
to read:

Metrictemp = Celsius(Englishtemp);

If Isweekday(Shipdate);

 ...

Endif;

If GetCustomer(Custnbr);

 ...

Endif;

Use Binding Directories Consistently
A binding directory is an object that can help organize the pieces required to create a
program. Using binding directories to list often-reused modules or service programs
prevents tedium and errors by letting you refer to the binding directories instead of explicitly
listing the required components when you bind a program. To use binding directories
effectively, you need a consistent strategy for them. Perhaps the most useful strategy is to
have a generic binding directory that refers to reusable code that crosses applications, along
with an application-specific binding directory for code that relates only to one application.

Package Often-Reused Procedures in Service Programs
The service program is an elegant means of reusing procedures without physically copying
them into each program that needs them. Generally, if a procedure is to appear in more than
just one or two programs, package that procedure in a service program.

8  •  Programming in ILE RPG

Use Binder Language to Control a Service Program Signature
Binder language source lets you explicitly control a service program’s signature, and more
important, allows the service program to maintain multiple signatures. With this feature,
you can make dramatic changes to a service program (adding, changing, and removing
procedures) without ever touching the programs that use the service program.

Parameters and Shared Data
Prototypes (PR definitions) and procedure interfaces (PI definitions) offer many advantages
when you’re passing data between modules and programs. For example, they avoid runtime
errors by giving the compiler the ability to check the data type and number of parameters.
Prototypes also let you code literals and expressions as parameters, declare parameter lists,
and pass parameters by value and by read-only reference as well as by reference.

Generally, if the procedure interface for a program or procedure does not appear in the same
source member as the calling code, the calling module should include a prototype for that
called program or procedure. The prototype need not appear in the same source member as
the program or procedure code itself.

Store Prototypes in /COPY Members
Code a /Copy member to contain prototypes for all or most of your reused procedures. Then
include a reference to that /Copy member in each module that uses those prototypes. This
practice saves you from typing the prototypes each time you need them and reduces errors.
An alternative to having one large /Copy member is to group related prototypes in individual
/Copy members. Even if you won’t use all the prototypes in the /Copy member, remember
that there’s no runtime penalty for having unused prototypes during the compile.

Include constant declarations for a module in the same /Copy member as the prototypes for
that module. If you then reference the /Copy member in any module that refers to the called
module, you’ve effectively globalized the declaration of those constants.

Protect Parameters from Unintended Changes
In a modular programming environment, you might not always know what a called program
or procedure will do to a parameter’s value. To prevent unintentional changes to a parameter,
you should generally pass parameters by value when calling a procedure or by read-only
reference (Const) when calling a program:

Dcl-pr Celsius Dec(5:0);

 *N Dec(5:0);

Continued

	 ILE RPG Style Guide  •  9

End-pr;

Dcl-pr Updcust Extpgm('AR003');

 *N Dec(5:0) Const;

 *N Dec(7:0) Const;

End-pr;

Only in those cases where the caller truly needs to see any changes to a parameter, such as in
the case of an error message, should you pass a parameter by reference.

Not only do these parameter-passing methods (value or read-only reference) avoid accidental
changes to parameter values, but they also allow the caller to pass literals or expressions as
parameters, making the ILE RPG code more flexible:

Metrictemp = Celsius(Englishtemp);

Metrictemp = Celsius(212);

Metrictemp = Celsius(Englishtemp + 50);

Use IMPORT and EXPORT Only for Global Data Items
The Import and Export keywords let you share data among the procedures in a program
without explicitly passing the data as parameters. In other words, they provide a hidden
interface between procedures. Limit use of these keywords to data items that are truly
global in the program, usually values that are set once and then never changed. To share data
between modules, you should usually pass parameters instead of using Import and Export to
share the data.

Indicators
Historically, indicators have been an identifying characteristic of the RPG syntax, but they
are fast becoming relics of an earlier era. Reducing a program’s use of indicators may well
be the single most important thing you can do to improve the program’s readability.

Eliminate Numbered Indicators
ILE RPG completely eliminates the need for conditioning indicators and resulting indicators,
and it does not support them in free-form specifications. The indicator data structure (Indds
keyword) and several functions render obsolete the predefined numbered indicators. Use the
file I/O functions (e.g., %Eof, %Found, %Error) and the (E) operation code extender to indicate
file exception conditions.

10  •  Programming in ILE RPG

If you must use indicators, name them. ILE RPG supports a Boolean data type (N) that
serves the same purpose as an indicator. You can use the Indds keyword with a display file
specification to associate a data structure with the indicators for a display or printer file; you
can then assign meaningful names to the indicators.

Include a description of any indicators you use. Even after you eliminate numbered
indicators, a handful of predefined indicators may remain (e.g., L0–L9 level break indicators,
or the U1-U8 external indicators). It’s especially important to document these indicators
because their purpose isn’t usually obvious by reading the program. The preface is a good
place to list them.

Always Qualify File I/O Functions
The %Found, %Eof, %Equal, and %Status functions allow you to specify a filename with which
to associate the functions’ return value. To avoid ambiguous file exception reporting, always
include the filename with these functions:

%Eof(Customers)

instead of

%Eof

The %Error function does not provide for a filename qualifier. Check the %Error function
immediately after executing an operation with the (E) extender, or use the %Status function
instead.

Structured Programming Techniques
Give those who follow you a fighting chance to understand how your program works by
implementing structured programming techniques at all times. Use the structured operation
codes—If, Dou, Dow, For, and Select/When/Other—instead of their older fixed-format
ancestors. Do not use conditioning indicators to execute loops or groups of code. And avoid
using Goto, Cabxx, or Comp. Employ Iter to repeat a loop iteration, and use Leave or Leavesr
for premature exits from loops or subroutines, respectively.

Perform Multipath Comparisons with Select/When/Other Groups
Deeply nested If/Else code blocks are hard to read and result in an unwieldy accumulation of
Endifs at the end of the group. Elseif improves the situation somewhat, but Select/When/Other
is usually a better and more versatile construct. The same advice goes for the obsolete Casxx
opcode; use Select/When/Other instead.

	 ILE RPG Style Guide  •  11

Character String Processing
IBM has greatly enhanced RPG’s ability to easily manipulate character strings. Many of the
tricks necessary with earlier versions of RPG are now obsolete. Modernize your source by
exploiting these new features.

Use a Named Constant to Declare a String
Instead of storing a string constant in an array or table, declare it in a named constant.
Declaring a string (such as a CL command string) as a named constant lets you refer to
it directly, rather than forcing you to refer to the string through its array name and index.
Use a named constant to declare any value that you don’t expect to change during program
execution.

Avoid using arrays and data structures to manipulate character strings and text. Use
expressions and functions (e.g., %Subst, %Replace, %Editc) instead.

Use Variable-Length Fields to Simplify String Handling
You can process variable-length fields by using simple expressions. Not only does the code
look better (eliminating the %Trim function, for example), but it’s also faster than using
fixed-length fields. For example, use this code

Dcl-s File Varchar(10);

Dcl-s Library Varchar(10);

Dcl-s Member Varchar(10);

Dcl-s Qualname Varchar(33);

Qualname = Library + '/' + File + '(' + Member + ')';

instead of the following:

Dcl-s File Char(10);

Dcl-s Library Char(10);

Dcl-s Member Char(10);

Dcl-s Qualname Char(33);

Qualname = %Trim(Library) + '/' +

 %Trim(File) + '(' +

 %Trim(Member) + ')';

12  •  Programming in ILE RPG

Use variable-length fields as parameters to every string-handling subprocedure (passing by
value or read-only reference), as well as for work fields where appropriate.

Comments
Good programming style can serve a documentary purpose in helping others understand
your source code. But use comments judiciously. If you practice good code construction
techniques, you’ll find that less is more when it comes to commenting the source. Too many
comments are as bad as too few. Here are some specific commenting guidelines.

Use Comments to Clarify, Not Echo, Your Code
Comments that merely repeat the code add to a program’s bulk but not to its value. In
general, use comments for just three purposes:

zz to provide a brief program or procedure summary
zz to give a title to a subroutine, procedure, or other section of code
zz to explain a technique that isn’t readily apparent by reading the source

Always include a brief summary at the beginning of a program or procedure. This prologue
should include the following information:

zz the program or procedure title
zz a brief description of the program’s or procedure’s purpose
zz a chronology of changes that includes the date, programmer name, and purpose of

each change
zz a summary of indicator usage
zz a description of the procedure interface (the return value and parameters)
zz an example of how to call the procedure

Use Marker Line Comments to Organize Code
You can employ marker line comments to divide the major sections of your program. For
example, you should definitely section off with lines of dashes (-) the declarations, the main
procedure, each subroutine, and all subprocedures. Identify each section for easy reference:

// -- Prototypes

Dcl-pr Dayofweek Dec(1:0);

 *N Date;

End-pr;

Continued

	 ILE RPG Style Guide  •  13

// -- Standalone variables

Dcl-s Daynbr Dec(5:0);

// ---

// Main processing routine

// ---

// Calculate total pay for employee

Chain(ne) EmployeeID Employees;

If %Found(Employees); // If employee active, calculate total pay

 Eval(h) TotalPay = (RegHours * Rate) + (OvtHours * Rate * 1.5);

Endif;

Use blank lines to group related source lines, and make them obvious. In general, you should
use completely blank lines instead of blank comment lines to group lines of code, unless
you’re building a block of comments. Use only one blank line, though; multiple consecutive
blank lines make your program hard to read.

Avoid Using Positions 1–5
The original RPG syntax, which was oriented to using punched paper cards, used positions
1–5 to sequence program line numbers. In ILE RPG, these columns are commentary only.
You can use them to identify changed lines in a program or structured indentation levels, but
be aware that these columns may be subject to the same hazards as right-hand comments.

Also leave positions 6 and 7 blank for free-format coding. All code should appear between
columns 8–80.

Avoid Obsolescence
RPG is an old language. After nearly 60 years, many of its original, obsolete features are still
available. Don’t use them.

Eliminate Obsolete Operation Codes
How do you identify an obsolete operation? Simple answer: if the free-form specification
doesn’t support it, the operation code is obsolete. In introducing the free-form specification,
IBM simplified RPG by paring the number of supported operation codes in half. Appendix A
summarizes the preferred substitutions for those operations that you shouldn’t use anymore.

14  •  Programming in ILE RPG

Choose Functions over Operation Codes
If a function offers the same capability as an operation, use the function instead of the
operation. With some operations, you can substitute a function for the operation and use the
function within an expression. Functions are preferable if they offer the same capability as
the operation codes.

Avoid Program-Described Files
Instead, use externally defined files whenever possible.

Use Native Date Data Types to Process Dates
Eliminate the clever date and time routines that you may have gathered and jealously
guarded over the years. The RPG date functions (e.g., %Date, %Diff, %Subdt, %Days) are
more efficient, more clear, and more modern. Even if your database includes dates in legacy
formats, you can use the date functions to manipulate them.

Avoid Programming Tricks
Such maneuvers aren’t so clever to someone who doesn’t know the trick. If you think you
must add comments to explain how a block of code works, consider rewriting the code to
clarify its purpose or hiding the code’s complexity in a procedure. Use of the obscure bit-
twiddling functions (%Bitand, %Bitnot, %Bitor, %Bitxor) may be a sign that your source needs
simplifying.

Final Advice
Sometimes good style and efficient runtime performance don’t mix. Wherever you face a
conflict between the two, choose good style. Hard-to-read programs are difficult to debug,
maintain, and get right. Program correctness must always win out over speed. Keep in mind
these admonitions from Brian Kernighan and P.J. Plauger’s The Elements of Programming
Style (McGraw-Hill; 2nd edition, 1978):

zz Make it right before you make it fast.
zz Make it clear before you make it faster.
zz Keep it right when you make it faster.
zz Write clearly—don’t sacrifice clarity for efficiency.

