
Getting Started

 n Chapter Overview
This chapter introduces you to RPG IV specifications. You’ll learn how to write a
simple file read/write program using a procedural approach. You’ll also learn how to
include comments within your programs as documentation. Finally, you’ll see how
RPG’s techniques of output editing let you control the appearance of values on reports.

RPG IV Specifications
RPG IV programs consist of different kinds of lines, called specifications. Each type of specification
has a particular purpose. The specification types are

• Header (Control) specifications—provide default options for the source
• File specifications—identify the files a program will use
• Definition specifications—define variables and other data items the program will use
• Input specifications—describe the record layout for program-described input files
• Calculation specifications—detail the procedure the program will perform
• Output specifications—describe the program output (results)
• Procedure boundary specifications—segment the source into units of work, called

procedures

 Not every program requires every kind of specification. Most of the specification types require
a different identifier, or form type, which must appear in position 6 of each program line. A
File specification line of code, for example, must include an F in position 6; for this reason, File
specifications are commonly called F-specs.
 Specifications that you use must appear in a specific order, or sequence, within your source
code, with all program lines that represent the same kind of specification grouped together. Figure
2.1 illustrates the order in which the specifications are grouped.

Figure 2.1
Order of Specifications in an RPG Program

 H Header (control) specifications
 F File specifications
 D Definition specifications
 I. Input specifications
 C Calculation specifications
 O Output specifications
 P Procedure boundary
 D Definition specifications for procedure
 C Calculation specifications for procedure
 P Procedure boundary

19

Chapter 2

 Most RPG IV specifications require fixed-position entries in at least part of the specification.
Fixed position, or fixed format, means that the location of an entry within a program line is critical
to the entry’s interpretation by the RPG IV compiler. The editor you use to enter your source code
can provide you with prompts to facilitate making your entries in the proper location. (Appendix C
provides more information about editors.)
 Most specifications also support a free-form area of the specification, where you can code
keywords and values with little or no regard to their specific location within the free-form portion of
the specification.
 The code samples in this book use two (or more) ruler lines to help you determine where
to make your entries. The first ruler line indicates column position; the following line (or lines)
contains “prompts” similar to those given by an editor. Most editors also provide a similar ruler line
near the top of the editing window. These ruler lines should not appear in your source code; they
are provided to help you understand where entries should appear.

 J Tip
As you begin to work with RPG specifications, don’t be overwhelmed by what appear
to be hundreds of entries with multiple options. Fortunately, many entries are optional,
and you will use them only for complex processing or to achieve specific effects. This
book introduces these entries gradually, initially showing you just those entries needed to
write simple programs. As your mastery of the language grows, you will learn how to use
additional specification entries that may be required for more complex programs.

 When you begin writing your first program, you will notice that an entry does not always take
up all the positions allocated for it within a specification. When that happens, a good rule of thumb
is that alphabetic entries start at the leftmost position of the allocated space, with unused positions
to the right, while numeric entries are usually right-adjusted, with unused positions to the left.

RPG Specifications for a Sample Program
Let’s start with the minimal entries needed to procedurally code a simple read/write program. To
help you understand how to write such a program, we will walk through writing an RPG IV program
to solve the following problem.

20 Programming in RPG IV, Fourth Edition

 We have a file—Customers—with records laid out as follows:

Field Data Type Length Decimal Positions
Account Identifier Alphanumeric 4 -
Salesperson Alphanumeric 4 -
Customer Name Alphanumeric 35 -
Customer Address Alphanumeric 35 -
City Alphanumeric 21 -
State/Province Alphanumeric 2 -
Postal Code Alphanumeric 10 -
Foreign Country Alphanumeric 20 -
Date of Last Sale Date (mm/dd/yyyy) 10 -
Year-to-Date Sales Numeric 11 2

You want to produce a report laid out as follows:

When you compare the desired output with the input record layout, you can see that all the output
fields are present on the input records. No data transformation, data generation, or arithmetic
calculation needs to take place within the program. Not all of the input fields are used in the report,
but their locations in the input record layout will need to be considered when we are coding the
RPG program. The required processing consists of reading each record from the input file, writing
that data to the report with appropriate headings, and formatting the variable data.

Chapter 2 Getting Started 21

1 2 3 4 5 6 7 8 9

1234567890123456789012345678901 23456789012345678901234567890 123456789012345678901234567890

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

YTD SALES REPORT DATE XX/XX/XXXX PAGE XXX0

ACCT SALES YTD DATE OF
 ID PERSON CUSTOMER SALES LAST SALE

XXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX,XXX,XX0.XX XX/XX/XXXX
XXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX,XXX,XX0.XX XX/XX/XXXX

Control Specifications

Although our sample program doesn’t include them, Control specifications (sometimes called Header
specifications, or H-specs) may be useful to control an RPG program’s behavior. Control specifications provide the
following functions:

• default formats (e.g., date formats) for the program
• changes to normal processing modes (e.g., changing the internal method the program uses to evaluate

expressions)
• special options to use when compiling the program
• language enhancements that affect the entire program

 Control specifications require an H in position 6. The remaining positions, 7–80, consist of reserved keywords,
which have special values and meanings associated with them. There are no strict positional requirements for the
keywords; they may appear in any order and in any position 7–80. The following header shows the layout of a
Control specification:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
HKeywords++

In the following example, Control specification keywords dictate the date and time formats to be used:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
HKeywords++
H Datfmt(*USA) Timfmt(*HMS)

 A Control specification can include more than one keyword (with at least one space between them), and
a program can have multiple Control specifications. Appendix A includes a complete list of Control spec i fication
keywords and their usage. Not all programs require Control specifications, but if they are present, Control
specifications must appear as the first specifications in a program.

File Description Specifications
Our introductory RPG IV program will begin with File description specifications (also known by
the shorter names File specifications and F-specs). All File specifications include an F in position 6.
File specifications describe the files our program uses and define how the files will be used within
the program. Each file used by a program requires its own File specification line. In our illustrative
problem, the file Customers contains the data we want to process.
 The output of our program is a printed report. Although you usually think of a report as
hard copy rather than as a file per se, in RPG we produce a report through a printer file. Our
introductory program will use a system-supplied printer file, Qprint, as the destination file for our
report lines. This file then resides as a spooled file in an output queue, where it will wait until we
release it to the printer. Your instructor will tell you which printer file to use in your programs and
explain how to work with spooled files in the output queue.
 You must code one File specification for each file the program uses. Although you can describe
the files in any order, it is customary to describe the input file first. The following header shows the
layout of a File specification. Note that in addition to column positions, the layout includes prompts
to help you remember where to insert required entries.

22 Programming in RPG IV, Fourth Edition

Chapter 2 Getting Started 23

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

The completed File specifications for our program are shown below. We’ll explain in detail each
of the necessary entries for our sample program, and in subsequent chapters we will explain
the entries not described here. (Appendix A includes a complete summary of all the RPG IV
specifications.)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FCustomers IF F 152 Disk
FQprint O F 132 Printer Oflind(*Inof)

RPG IV lets you use both uppercase and lowercase alphabetic characters, but the language is not
case sensitive. Thus, any lowercase letter you use within a file or variable name will be interpreted
as its uppercase equivalent by the compiler. To aid in the program’s readability, many programmers
use title case, wherein each word in the source code is capitalized.

File Name (Positions 7–16)
First, in positions 7–16 (labeled Filename++ on the ruler line), you enter the name of the file. In
RPG IV, file names can be a maximum of 10 characters long. They must begin with an alphabetic
character or the special character $, #, or @; the remaining characters may be alphabetic characters,
numbers, or any of the four special characters _, #, $, and @. A file name cannot contain blanks
embedded within the permissible characters.
 Our practice problem input file is called Customers. The report file is Qprint. Note that you
code file names like other alphabetic entries: beginning in the leftmost position allowed for that
entry—in this case, position 7. Simply leave blank any unneeded positions to the right of the name.

File Type (Position 17)
Position 17 (labeled I on the ruler line) specifies the type of file or how the file will be used by the
program. The two types we will work with in this program are input (type I) and output (type O).
An input file contains data to be read by the program; an output file is the destination for writing
output results from the program. In our example, Customers is an input file, and Qprint is an
output file.

File Designation (Position 18; Input Files Only)
Every input file requires a file designation entry (position 18, labeled P). File designation refers
to the way the program will access, or retrieve, the data in the file. In our example, we are going
to retrieve data by explicitly reading records within our program rather than by using the built-in
retrieval of RPG’s fixed logic cycle. In RPG terminology, that makes the input file full procedural,
so F is the appropriate entry for position 18. Since this designation applies only to input files, we’ll
leave it blank for the Qprint specification line.

File Format (Position 22)
The next required entry is file format. An F in position 22 (labeled F) stands for fixed format,
which means that file records will be described within this program and that each record has the
same fixed length. Although it is preferable to describe files externally using OS/400’s built-in
database facilities, for simplicity’s sake we will start with program-described files and progress to

externally described files in the next chapter. Because our files will be program described, an F is
appropriate for both files of our sample program. All files, regardless of type, require an entry for
file format.

Record Length (Positions 23–27)
You need to define the record length for each program-described file. Data file records can be of
any length from 1 to 32,766 bytes; it is important that you code the correct value for this specification.
When we add up the lengths of all the fields in Customers, we come up with a length of 152 bytes,
so we enter 152 in positions 23–27. Note that record length is right-adjusted within the positions
allocated for this entry. This is typical of most RPG IV entries that require a numeric value.
 Most printers support a line of 132 characters. As a result, records of printer files (which
correspond to lines of report output) are usually 132 positions long. Accordingly, output file Qprint
is assigned a record length of 132 on its File specification.

Device (Positions 36–42)
The Device entry indicates the device associated with a file. Database files are stored on disk; accord-
ingly, Disk is the appropriate device entry for the Customers file. The device associated with printer
files is Printer. You enter these device names, left-adjusted, in positions 36–42 (labeled Device+).

Keywords (Positions 44–80)
The Keywords area of the File specification gives you an opportunity to amplify and specialize the
basic file description in the positional area (positions 6–43) of the F-spec. RPG allows a number of
reserved keywords (listed in Appendix A) in this area of the specification. Typically, they are coded
with one or more values (arguments) in parentheses immediately following the keyword itself.
You can code more than one keyword on a specification line in positions 44–80 without being too
concerned about any other positional requirements. Most RPG programmers, however, prefer to
limit their code to one keyword per line; if a specification requires more than one keyword, you can
simply continue coding them in the Keywords area on subsequent F-spec lines.
 Our sample program will use only one keyword: Oflind (Overflow indicator). Overflow
is the name given to the condition that occurs when a printed report reaches the bottom of a
page. Usually, when overflow occurs you will want to eject the printer to the next page and print
a new set of heading lines before printing the next detail line. Your program can automatically
detect overflow through the use of a reserved variable called an overflow indicator. The overflow
indicators provided by RPG are called OA, OB, OC, OD, OE, OF, OG, and OV; you would
code these indicators as *INOA, *INOB, and so on. The Oflind keyword associates one of these
indicators with a printer device file—if that file signals overflow, the file’s overflow indicator will
be automatically set to *On. You can then test that indicator just before printing a detail line to
determine whether or not you want to print headings first. In our sample, we name indicator OF as
the overflow indicator for Qprint by coding Oflind(*Inof) in the Keywords area of the appropriate
F-spec.
 No other File specification entries are required to describe the files used by our sample program.
In this introductory explanation, we’ve skipped over some of the entries that are not needed in this
program; we’ll cover them later. The completed File specifications for the program are shown again
below.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FCustomers IF F 152 Disk
FQprint O F 132 Printer Oflind(*Inof)

24 Programming in RPG IV, Fourth Edition

Input Specifications
Input specifications, identified by an I in position 6, come after the File specifications in our
introduc tory program. Input specifications (I-specs) describe the records within program-described
input files and define the fields within those records. Every program-described input file defined on
the File specifications must be represented by a set of Input specification lines.
 Input specifications use two types of lines:

• Record identification entries, which describe the input records at a general level
• Field description entries, which describe the specific fields within the records

 Together, these two types of lines describe the structure of the record layout for each program-
described input file in the program. Each record identification line must precede the field entries
for that record. The general layout for these two kinds of Input specifications is shown below.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrP1MnZr......

 The I-specs for our introductory program are shown here. We’ll explain in detail those entries
required by our sample program.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrP1MnZr......
ICustomers NS
I 1 4 Accountid
I 5 8 Salesperson
I 9 43 Name
I 44 78 Address
I 79 99 City
I 100 101 State
I 102 111 Postalcode
I 112 131 Country
I *USA D 132 141 Lastsaledate
I 142 152 2Ytdsales

Record Identification Entries
Record identification lines describe the input records at a general level. Each line takes the
following form:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................

File Name (Positions 7–16)
A record identification line must contain the name of the input file in positions 7–16 (labeled
Filename++ on the specification line). This name must match the entry on the File specification—in
our case, Customers. The file name is a left-adjusted entry.

Chapter 2 Getting Started 25

Sequence (Positions 17–18)
The next required record identification entry is Sequence, in positions 17–18 (labeled Sq). This
entry signals whether the system should check the order of records in the file as the records are
read during program execution. Sequence checking is relevant only when a file contains multiple
record formats (that is, records with different field layouts). When sequence checking is not
appropriate (which is usually the case), code any two alphabetic characters in positions 17–18 to
signal that sequence checking is not required. Many programmers use NS to signal “no sequence.”
Because the Customers file contains a single record format, we enter NS in positions 17–18.
 The complete record identification specification is illustrated below.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................
ICustomers NS

 C Note
Note that with the specification coded as shown, the compiler will issue a warning that
a record identification indicator is missing from the line. Although record identification
indicators are relevant in fixed logic processing (discussed in Appendix E), they are not used
in modern RPG programming. Simply ignore the compiler warning; it will not prevent your
program from being compiled successfully.

Field Description Entries
Field description entries immediately follow the record identification entry. You define each field
within the record by giving the field a valid name, specifying its length, and declaring its data type.
Although you can define the fields of a record in any order, convention dictates that fields be
described in order from the beginning of the record to the record’s end.
 Each field description entry takes the following form:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrP1MnZr......

Field Location (Positions 37–46)
You define a field’s length by specifying the beginning position and the ending position of the field
within the input record. Length notation is not allowed. The beginning position is coded as the
“from” location (positions 37–41 of the Input specifications, labeled From+); the ending position is
the “to” location (positions 42–46, labeled To+++). If the field is 1 byte long, the from and to entries
will be identical because the field begins and ends in the same location of the record.
 Character fields may be up to 65,535 bytes long. Numeric fields may be up to 63 digits long.
The length of native dates depends on their format but may be up to 10 bytes long. The beginning
and ending positions are right-adjusted within the positions allocated for these entries. You do not
need to enter leading, nonsignificant zeros.

26 Programming in RPG IV, Fourth Edition

Decimal Positions (Position 47–48)
Numeric fields require a decimal position entry in positions 47–48 (labeled Dc) indicating the
number of decimal positions to the right of the decimal point. In RPG IV, a field must be numeric
to be used in arithmetic calculations or to be edited for output, so it is important to not overlook
the decimal position entry. If a numeric field represents whole numbers, the appropriate entry for
its decimal positions is 0 (zero). Numeric fields can contain up to 63 positions to the right of the
decimal point. Remember that the total length of the numeric field includes any decimal places
(but not the decimal point itself or comma separators).
 To define a field as a character field, simply leave the decimal position entry blank. Date fields
(with a D in position 36) are also coded with a blank in the decimal position entry. Chapter 4
provides a more complete discussion of RPG IV data types.

Field Name (Positions 49–62)
The last required entry for a field description specification is a name for the field being described.
This name, entered left-adjusted in positions 49–62 (labeled Field+++++++++) must adhere to the
rules for valid field names in RPG IV. Within a record, a valid field name

• Uses letters, digits, or the special characters _, #, @, and $
• Does not begin with a digit or an underscore
• Does not include embedded blanks

In addition, a field name generally is 14 characters long or less. This is a practical limit, imposed by
the fixed-format nature of the input specification.
 The alphabetic characters can be either uppercase or lowercase or a combination (mixed case).
RPG IV does not distinguish between letters on the basis of their case, but using a combination of
upper- and lowercase characters—for example, capitalizing each word in the source code—makes
your field names easier for others to understand.

 J Tip
Although RPG allows them, you should avoid the use of special characters $, #, and @ in
RPG names. These special characters may not exist in all the languages or the character sets
your program may use to compile. If the language or character set cannot recognize the
character, the compiler will not be able to successfully translate the code. You should also
avoid the underscore (_) in an RPG name; it’s a “noisy” character and doesn’t significantly
aid the readability of your program.

 Although not an RPG IV requirement, it is good programming practice to choose field names
that reflect the data they represent by making full use of the 14-character limit for names. For
example, “Loannumber” is far superior to “X” for the name of a field that will store loan numbers.
Choosing good field names can prevent your accidental use of the wrong field as you write your
program and can help clarify your program’s processing to others who may have to modify the
program.

Data Attributes (Positions 31–34)
RPG most commonly uses positions 31–34 to specify a format for date or time fields. RPG supports
native date and time data types to enable date calculations and manipulation—important factors in
modern business processing. We’ll discuss dates and date formats in more detail in Chapter 7. The

Chapter 2 Getting Started 27

entry *USA in positions 31–34 of an I-spec indicates that the field Lastsaledate is in mm/dd/yyyy
format, including the slash (/) separator characters. Since the other fields in the record layout are
not date fields, this entry for those fields is left blank.

Data Type (Position 36)
For most alphanumeric (character) or numeric fields, you may leave position 36 blank. But for
fields that represent other types of data, you must make an entry in position 36 to tell the compiler
the external data type of the field. In our sample program, the D entry in this position indicates that
the field Lastsaledate is a native date. The other fields in the record layout are character or numeric
fields and do not require an entry here. Chapter 4 provides a more complete discussion of RPG
data types.

 C Note
Native date fields are not the same as numeric fields that may be used to store date
informa tion. A native date field is stored in a special format that the computer will implicitly
recognize as a date. Numeric fields require specific arithmetic or conversion coding to treat
them as dates. We’ll cover more about native dates in Chapter 7.

 You’ll recall that not all the fields in the Customers file will appear on our desired report. If
a program does not use all the fields coded in the Input specifications, the compiler will issue a
warning, but this is not necessarily an error condition that will prevent a successful compile. You can
omit the unused fields from the I-specs, but the remaining entries must reflect their correct position
in the record layout. To review, the field description entries of the Input specifications for our
sample program are shown below. Unused fields have been omitted.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrP1MnZr......
ICustomers NS
I 1 4 Accountid
I 5 8 Salesperson
I 9 43 Name
I *USA D 132 141 Lastsaledate
I 142 152 2Ytdsales

In these Input specifications, we define field Ytdsales as numeric by including a decimal position
entry in positions 47–48. Lastsaledate is a native date (with a D in position 36). The remaining fields
are character fields.

Output Specifications
Calculation specifications follow immediately after Input specifications in RPG programs. We,
however, will discuss Output specifications next because their required entries parallel those
required on Input specifications in many ways. Every program-described output file named on
the File specifications needs a set of Output specifications that provide details about the required
output. All Output specification lines require an O in position 6.

28 Programming in RPG IV, Fourth Edition

 Output specifications, like Input specifications, include two kinds of lines: record identification
lines, which deal with the output at the record level; and field description lines, which describe
the content of a given output record. When the output is a report rather than a data file, “record”
roughly translates to “report line.” Most reports include several different report-line formats; each
needs definition on the Output specifications.
 To refresh your memory, our output file, Qprint, is to contain a weekly sales report, formatted
as shown in the printer spacing chart on page 21.
 Our report includes four kinds of lines, or record formats. Three of the lines are headings,
which should appear at the top of the report page, while the fourth is a detail line of variable
information. The term “detail line” means that one line is to be printed for each record in an input
file. The line contains detailed information about the data records being processed.
 The following RPG IV code shows the complete Output specifications to produce the report
described above. You should refer to this code again as you read about the required Output
specification entries.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
OQprint E Headings 2 2
O 16 ‘YTD SALES REPORT’
O 56 ‘DATE’
O *Date Y 67
O 74 ‘PAGE’
O Page Z 79

O E Headings 1
O 4 ‘ACCT’
O 11 ‘SALES’
O 65 ‘YTD’
O 78 ‘DATE OF’

O E Headings 2
O 3 ‘ID’
O 12 ‘PERSON’
O 22 ‘CUSTOMER’
O 66 ‘SALES’
O 79 ‘LAST SALE’

O E Detail 1
O Acountid 4
O Salesperson 11
O Name 49
O Ytdsales 1 66
O Lastsaledate 79

Chapter 2 Getting Started 29

Record Identification Entries
Output specifications require a record identification entry for each different line of the report.
Each of these lines represents a record format and must be followed with detailed information
about what that record format (or report line) contains. Because our report has four types of lines
to describe, we have four record format descriptions in our Output specifications.
 The header that follows illustrates the layout for record identification entries. The following
discussions refer to this layout.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................

File Name (Positions 7–16)
The first record identification entry requires a file name entry in positions 7–16 (labeled
Filename++). This file name serves to associate the record being described with the output file
described on the File specifications. Thus Qprint, our output file, appears as the file name entered
on the first record identification line of the Output specifications above. Although the Output
specifications include four record format descriptions, because each describes a format to be written
to the same file (Qprint), you do not have to repeat the file name entry on subsequent record
identification entry lines.

Type (Position 17)
Each record format description requires an entry in position 17 (labeled D) to indicate the type of
line being described. In this context, “type” refers to the way RPG IV is to handle printing the line.
Because we will be using procedural techniques to generate the report instead of relying on RPG’s
fixed logic cycle, all the record format lines are Exception lines. As a consequence, we enter an E in
position 17 of each record format line.

Exception Name (Position 30–39)
In RPG IV, it is common practice to provide a name in positions 30–39 (labeled Excnam++++) for
each exception line. Although not required, such names let you control printing without the use of
indicators. By using exception names, you can easily refer to lines to be printed from within your
Calculation specifications.
 Moreover, you can assign the same name to lines that need to be printed as a group at the same
time. Because our report has three lines that should be printed together at the top of the page, we
have given each the name Headings. The fourth line, which will contain the variable information
from our data file, is identified as Detail. Note that Headings and Detail are arbitrarily assigned
names, not RPG-reserved terms. Exception names follow the same rules of naming as field names
(up to 10 characters long), and they are left-adjusted within positions 30–39.

Space and Skip Entries (Positions 40–51)
One more set of entries is needed to complete the record format line definitions. These entries
describe the vertical alignment of a given line within a report page or relative to other report lines.
Two kinds of entries control this vertical alignment: Space entries and Skip entries. Each variant
offers “before” and “after” options.
 It is important to understand the differences between Space entries and Skip entries. Space
entries specify vertical printer positioning relative to the current line. Space is analogous to the
carriage return on a typewriter or the Enter key on a computer. Each Space is the equivalent of

30 Programming in RPG IV, Fourth Edition

hitting the Return (or Enter) key. Space before (positions 40–42, labeled B++) is like hitting the
Return key before you type a line; Space after (positions 43–45, labeled A++) is like hitting Return
after you type a line.
 The same record format line can include both a Space before and a Space after entry. If both
the Space before and the Space after entries are left blank within a record format description, the
system defaults to Space 1 after printing—the equivalent of single-spacing. If you have either a Space
before or a Space after entry explicitly coded and the other entry is blank, the blank entry defaults
to 0. The maximum value you can specify for any Space entry is 255.
 In contrast to Space entries, Skip entries instruct the printer to “skip to” the designated line on
a page. Skip entries specify an absolute vertical position on the page. Skip 3 before printing causes
the printer to advance to the third line on a page before printing; Skip 20 after printing causes the
printer to advance to the 20th line on the page after printing a line. If the printer is already past
that position on a given page, a Skip entry causes the paper to advance to the designated position
on the next page. Most often, you will have a Skip before entry only for the first heading line of a
report. Programmers most often use Skip entries to advance to the top of each new report page.
Skip entries are also useful when you are printing information on a preprinted form, such as a
check or an invoice.
 You code any Skip before entry in positions 46–48 (labeled Sb+); Skip after entries are made in
positions 49–51 (labeled Sa+). If you do not code any Skip entries, the system assumes that you do
not want any skipping to occur. The maximum value you can specify for any Skip entry is 255.
 The following record format lines show the spacing and skipping entries for our sample
program:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
OQprint E Headings 2 2
 ...
O E Headings 1
 ...
O E Headings 2
 ...
O E Detail 1

 Because we want the first heading of our report to print on the second line of a page, we code
a Skip 2 before entry in positions 46–48 of the record format line describing that line. The Space 2
after entry (positions 43–45) for that same heading line will advance the printer head to the correct
position for the second Headings line—that is, line 4.
 The second Headings line, with its Space 1 after entry, positions the printer head for the third
Headings line, which in turn, with its Space 2 after entry, positions the printer head for the first
Detail line of data to print. Because the report-detail lines are to be single spaced, exception line
Detail contains a Space 1 after entry.

Field Description Entries
Each record format line of the Output specifications is followed by field description entries that
describe the contents of the line. Each field description specification

• Identifies an item to appear on the line
• Indicates where the item is to appear horizontally on the line
• Specifies any special output formatting for that item

Chapter 2 Getting Started 31

 The field-level items to be printed will be either a variable (field) or a constant (literal).
Field-level items to be included within a record format may be entered in any order, although by
convention programmers enter them in the order in which they are to appear in the output. The
code below illustrates the layout for these field description entries.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++

Field Name (Positions 30–43)
The name of each field whose value is to appear as part of the output record is coded in positions
30–43 (labeled Field+++++++++). Any field appearing as part of the Output specifications must
have been defined earlier in the program.
 In our sample program, most of the fields to be printed are part of the Detail record format.
These are the same fields—Accountid, Salesperson, Name, Ytdsales, and Lastsaledate—that we
defined as part of our input record (though not necessarily in the same order as they appear in the
record layout). When we include these field names in the output, each time our program processes
a successive record from the input file, each Detail line printed will contain the data values present
in those fields of the input record.
 In addition to the input fields, two RPG IV reserved words that function as built-in, predefined
fields appear as part of the report headings. In the first Headings line defined on page 29, notice
the field name Page. RPG supplies this field to automatically provide the correct page numbers
for a report. Page, a four-digit numeric field, has an initial value of 1; this value is automatically
incremented by 1 each time the report begins a new page.
 The *Date field, which also appears as part of the first Headings line, is another RPG IV
reserved word. *Date, an 8-digit numeric field, stores the current date, typically in mmddyyyy
format. Any time your program needs to access the date on which the program is running, you can
simply use *Date as a field. RPG IV also stores a 6-digit version of the date in reserved word Udate.
Reserved words *Day, Uday, *Month, Umonth,*Year (4 digits), and Uyear (2 digits) let you individually
access the day, month, and year portions of the current date. Note that these reserved words refer to
numeric fields, not native dates; the RPG program will treat them as numbers.

Constants (Positions 53–80)
In addition to fields, whose values change through the course of a program’s execution, Output
specifications typically contain constants, or literals—characters that do not change and instead
represent the actual values that are to appear on the report. You enter each constant, enclosed
within apostrophes ('), in positions 53–80 (labeled Constant/editword/DTformat++) of the Output
specifications. The apostrophe on the left of the code should appear in position 53; in other words,
you enter constants left-adjusted within positions 53–80. A constant cannot appear on the same
Output specification line as a field; each needs its own line.
 In our sample program, the first heading is to contain the word PAGE as well as the page
number. Accordingly, we code PAGE as a constant within the first Heading line. Also, part of this
first heading is the title—YTD SALES REPORT. Although several words make up this constant,
you enter the group of words as a single constant, enclosed in apostrophes; the spaces between the
words form part of the constant.
 The second and third report lines, or record formats, consist of column headings for the
report. These, too, are handled as constants, with the appropriate values entered in positions 53–80.

32 Programming in RPG IV, Fourth Edition

Chapter 2 Getting Started 33

Notice that in the sample program, the column heading lines are broken up into conveniently sized
logical units and that each unit is then coded as a separate constant.
 Note also that you can ignore blank, or unused, positions in output lines unless they appear
within a string of characters that you want to handle as a single constant (e.g., 'DATE OF' or 'LAST
SALE').

End Position in Output Record (Positions 47–51)
You denote where a field or constant appears horizontally within a line by coding its end position—
that is, the position of its last, or rightmost, character—within the line. To specify an end position,
enter a numeric value that is right-adjusted within positions 47–51 (labeled End++); this represents
the actual position desired for the rightmost character of the field or constant.
 For example, because we want the E in constant PAGE to appear in column 74 of the first
heading line of our sample report, we code a 74 in positions 50–51 of the specification entry for
the constant PAGE. The printer spacing chart indicates that the rightmost digit of the page number
should appear in column 79 of the report line. Accordingly, 79 is the specified end position for field
PAGE within its Output specification line.
 Our Output specifications include an end position for each field or constant that is part of our
report. If you omit an end position for a field or constant, that item is output immediately adjacent
to the previous item, with no blanks separating the items.
 You can also optionally specify the placement of a field or constant relative to the end position
of the previously defined field. To use this alternative method, you put a plus sign (+) in position
47 and a right-adjusted numeric value in the remaining positions. The value tells how many blanks
you want between the end of the previous field and the beginning position of the current field. The
listing below illustrates how you would code the Detail line of our report using this relative notation.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O E Detail 1
O Acountid 4
O Salesperson + 3
O Name + 3
O Ytdsales 1 + 3
O Lastsaledate + 3

The above code will end field Accountid in position 4 and put three blanks between the end of
Accountid and the start of Salesperson, three blanks between the end of Salesperson and the start of
Name, and so on.

Edit Codes (Position 44)
Three of the fields appearing in the output—Page, *Date, and Ytdsales—have an entry in position
44, Edit codes (labeled Y). An edit code formats numeric values to make them more readable. The
Z edit code associated with Page suppresses leading zeros when printing the value; so if Page shows
a value of 0001, it will print as 1.
 The Y edit code associated with *Date inserts slashes within the printed number. Thus, if
*Date has a value of 12202009, it will be printed as 12/20/2009. Note that edit codes apply to
numeric fields only. Lastsaledate, which is a native date field—not a number—already has separator
characters as part of its value, so it does not require an edit code.

 Edit code 1 causes commas and a decimal point to be inserted within the printed value of
Ytdsales, and it signals that if the Ytdsales value is 0, the zero balance should appear on the report
rather than being completely suppressed. RPG IV includes a large selection of editing alternatives to
let you print or display values using a format most appropriate to your needs. A detailed discussion
of these editing features appears at the end of this chapter.

Output Continuation Lines

Although they are not appropriate for our current report, output continuation lines introduced in RPG IV let you
code long constants as a single entry that spans more than one specification line. The layout for the continuation
form of the Output specification is as follows:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
O..Constant/Editword-continues+

Assume, for example, that you’re defining a report that is to be captioned “ACME EXPLOSIVES SALES REPORT”—
a constant too long to fit on one specification line. You can code this caption as a single constant on two (or more)
specification lines by using the continuation feature. (Of course, you could also break the constant into two or
more constants and then just code each constant on its own output line.)

To use the continuation feature, you code the end position for the entire constant on the first line—here, we use
90—together with some portion of the constant; then, signal that the constant is continued by terminating the entry
on the first line with a hyphen (-) or a plus sign (+). A hyphen signals that the continuation resumes with the first
position (i.e., position 53) of the continued constant on the next line, while a plus signals that the continuation
resumes with the first nonblank character encountered in the continued constant on the next line.

The following code illustrates this output feature. Notice that you use an apostrophe only at the very begin ning and
the very end of the continued constant, rather than needing a set of apostrophes on each line.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O..Constant/Editword-continues+
 // The two examples below would produce the same output because of the
 // use of the + and -.
O 90 ‘ACME EXPLOSIVES SALES +
O REPORT’

O 90 ‘ACME EXPLOSIVES SALES -
O REPORT’

Calculation Specifications
We have now defined the files to be used by our application, the format of the input records to
be processed, and the desired output of the application. All we need to complete our program
is a description of the processing steps required to obtain the input and write the report. We use
Calculation specifications to describe these processing steps.
 Before coding Calculation specifications, you need to develop the logic required to produce
the desired output. In general, you would complete this stage of the program-development cycle—
designing the solution—before doing any program coding, but we delayed program design to
introduce you to some of the RPG IV specifications and give you a taste of the language.

34 Programming in RPG IV, Fourth Edition

 We can sketch out the required processing of our program using pseudocode. Pseudocode is
simply stylized English that details the underlying logic needed for a program. Although no single
standard exists for formatting pseudocode, it consists of key control words and indentation to show
the scope of control of the logic structures. It is always a good idea to work out the design of your
program before actually coding it in RPG IV (or in any other language). Pseudocode is language
independent and lets you focus on what needs to be done rather than on the specific syntax
requirements of a programming language.
 Our program exemplifies a simple read/write program in which we want to read a record, write
a line on the report, and repeat the process until no more records exist in the file (a condition
called end-of-file). This kind of application is termed batch processing because once the program
begins, a “batch” of data, accumulated in a file, directs its execution. Batch programs can be run
unattended because they do not require control or instructions from a user.
 The logic required by our read/write program is quite simple:

Correct algorithm

Print headings
Read a record
While there are more records
 Print headings if necessary
 Write a detail line
 Read the next record
Endwhile
End program

 Note that While indicates a repeated process, or loop. Within the loop, the processing
requirements for a single record—in this case, simply writing a report line—are detailed and then
the next record is read. Because we want to print report headings just once at the beginning of
the report rather than once for each record, that step is listed at the beginning of the pseudocode
outside the loop.
 You may wonder why the pseudocode contains two read statements. Why can’t there be just a
single read, as in the first step within the While loop below?

Incorrect algorithm

Print headings
While there are more records
 Read the next record
 Print headings if necessary
 Write a detail line
Endwhile
End program

The preceding algorithm would work fine as long as each read operation retrieved a data record
from the file. The problem is that eventually the system will try to read an input record and fail
because there are no more records in the file to read. Once a program has reached end-of-file,
it should not attempt to process any more input data. The incorrect algorithm above would
inappropriately write a detail line after reaching end-of-file.
 The correct algorithm places the read statement as the last step within the While loop so that as
soon as end-of-file is detected, no further writing will occur. However, if that were the only read, our
algorithm would try to write the first detail line before reading any data. That’s why the algorithm

Chapter 2 Getting Started 35

also requires an initial read (often called a priming read) just before the While loop to “prime” the
processing cycle.
 After you have designed the program, it is a simple matter to express that logic in a
programming language—that is, once you have learned the language’s syntax. The following free-
format Calculation specifications show the correct algorithm expressed in RPG IV. Notice the
specifications’ striking similarity to the pseudocode we sketched out earlier.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
 /Free
 Except Headings;
 Read Customers;

 Dow Not %Eof(Customers);

 If *Inof;
 Except Headings;
 Eval *Inof = *Off;
 Endif;

 Except Detail;
 Read Customers;
 Enddo;

 Eval *Inlr = *On;
 Return;
 /End-Free

 Calculation specifications specify the processing that needs to be done. Free-format Calculation
specifications are specified between /Free and /End-free instructions. These instructions, called
compiler directives, direct the RPG IV compiler to use free-format syntax rules for any of the
instructions within the block of code between the directives. The /Free and /End-free directives
must be coded exactly as shown, beginning with a slash (/) character in position 7.
 The instructions within the /FREE block usually begin with an operation that specifies an
action to be taken. RPG IV supports a number of reserved words to identify valid operations. Many
of these operations are followed by operand values, which RPG calls factors, to provide the compiler
with the details necessary to perform an operation; other operation codes (Dow, If, and Eval in
our example) are followed by expressions that the program will evaluate. Finally, each free-format
Calculation specification must end with a semicolon (;).
 Spacing is not usually critical in a free-format Calculation specification. You may code the
specification in any position from 8 to 80; positions 6 and 7 must be blank. You may also indent
operations to clarify the flow of the program.

RPG IV Operations
The RPG program executes the Calculation specifications sequentially (from beginning to end)
unless the computer encounters an operation that redirects flow of control. Our program uses
eight opera tions: Eval, Except, Read, Dow, Enddo, If, Endif, and Return. Let’s look at the specific
operations used within the calculations of our program. The intent here is to provide you with
sufficient information to understand our basic program and to write similar programs. Several
of the operations described in the following section are discussed in more detail in subsequent
chapters of this book.

36 Programming in RPG IV, Fourth Edition

Except (Calculation Time Output)
An Except operation directs the program to output one or more E lines from the Output
specifications. If no factor is coded with Except, the operation causes the system to output all
unnamed E lines. In general, however, RPG programmers name their E lines and use the Except
operation with an E-line name to state explicitly which line or lines are to be involved in the output
operation. In the sample program, the first Except operation specifies Headings as the name of the
group of E-lines to print. As a result, the three heading lines of our report will be printed. Later on,
a second Except also prints heading lines if overflow has been reached. A third Except specifies
Detail. When the program executes this line of code, our exception line named Detail will be
printed, using the values of the fields from the currently retrieved Customers record.

Read (Read Sequentially)
Read is an input operation that instructs the computer to retrieve the next sequential record from
the named input file—in this case, our Customers file. To use the Read operation with a file, you
must have defined that file as input-capable on the File specifications.

Dow (Do While)
The Dow operation establishes a loop in RPG IV. An Enddo operation signals the end of the
loop. Note that this Dow and Enddo correspond to the While and Endwhile statements in our
pseudocode. The Dow operation repeatedly executes the block of code in the loop as long as the
condition associated with the Dow operation is true. Because our program’s Dow condition is
preceded by the word Not, this line reads “Do while the end-of-file condition is not true.” It is the
direct equivalent of the pseudocode statement “While there are more records” because the end-of-
file condition will come on only when our Read operation runs out of records.
 The%Eof entry in this statement is an RPG IV built-in function that returns a true ('1' or
*ON) or false ('0' or *OFF) value to indicate whether the file operation encountered end-of-file.
Built-in functions (sometimes called BIFs) perform specific operations and then return a value
to the expression in which they are coded. Most built-in functions allow you to enter values called
arguments in parentheses immediately following the built-in function to govern the function. In
this case, %Eof(Customers) means that we want our program to check the end-of-file condition
specifically for the Customers file.

Enddo (End Do Group)
The Enddo operation serves to mark the end of the scope of a Do operation, such as Dow. All the
program statements between the Dow operation and its associated Enddo are repeated as long as
the Dow condition is true.

If
RPG’s primary decision operation is the If operation. If the relationship expressed in the
conditional expression coded with the If operation is true, all the calculations between the If and
its associated Endif operation are executed; if the relationship is not true, those statements are
bypassed. By coding

If *Inof = *On;

or simply

If *Inof;

Chapter 2 Getting Started 37

we are telling the program that it should execute the following lines of code only if the overflow
indicator OF is on:

Except Headings;
Eval *Inof = *Off;

Endif (End If Group)
The Endif operation marks the end of the scope of an If operation. All the program state ments
between the If operation and its associated Endif are executed as long as the If condition is true.

 J Tip
It is common practice to indent blocks of code that appear between Dow or If and their
associated Enddo or Endif operations. By indenting the blocks, you can easily see which
code is associated with the Dow or If operation. Don’t overdo it, though. Indenting a
couple of spaces is enough.

Eval (Evaluate Expression)
Eval is an operation used to assign a value to a variable. In the sample program, by coding

Eval *Inof = *Off;

we are assigning the value *Off to the overflow indicator OF (coded as *Inof). We do this after
printing the heading lines, so that the program will know that it is no longer necessary to print the
headings until indicator OF is once again set to *On automatically.
 Later in the program, we use the line

Eval *Inlr = *On;

to assign the value *On to a special reserved indicator variable called Last Record (coded as *Inlr,
read as indicator LR). *Inlr (commonly referred to as LR) performs a special function within RPG
IV. If LR is on when the program ends, it signals the computer to close the files and free the memory
associated with the program. If LR is not on, the program continues to tie up some of the system’s
resources even though the program is no longer running.
 In most cases, specifying Eval is optional in a free-format Calculation specification; you can
simply code the assignment expression without explicitly coding the Eval operation. Eval is included
in this example to provide easy comparison with the fixed-format code—where it is required—but it
could have been left out in the free-format C-spec.

Return (Return to Caller)
The Return operation returns control to the program that called it—either the computer’s
operating system or perhaps another program. Program execution stops when a Return is
encountered. Although your program will end correctly without this instruction—provided you have
turned on LR—including it is a good practice. Return clearly signals the endpoint of your program
and lets the program become part of an application system of called programs. Chapter 12 deals in
detail with called programs.

38 Programming in RPG IV, Fourth Edition

Fixed-Format Calculations

You may wonder why the free-format section of code is called Calculation specifications. Earlier versions of RPG
IV (before Version 5) did not support free-format specifications. Instead, this function was handled by a fixed-
format specification, which had a C in column 6. These specifications were called Calculation specifications
(C-specs). Though modern RPG programming style encourages free format, this section of code is still commonly
called Calculation specifications—even though the C in column 6 is no longer used.

The following shows the fixed-format C-specs equivalent to our free-format code.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++
C Except Headings
C Read Customers
C Dow Not %Eof(Customers)
C If *Inof
C Except Headings
C Eval *Inof = *Off
C Endif
C Except Detail
C Read Customers
C Enddo
C Eval *Inlr = *On
C Return

Fixed-format Calculation specifications do not require the /Free and /End-free directives. Instead, each line
requires a C in position 6. Each Calculation specification contains an operation entered in positions 26–35 (labeled
Opcode(E)+). Depending on the operation, specifications may also include a value in Factor 1 (positions 12–25),
Factor 2 (positions 36–49), the Result field (positions 50–63), or the extended Factor 2 field (positions 36–80).
Indicators associated with operations may also appear in positions 71–76. Fixed-format Calculation specifications
do not require a semicolon delimiter at the end of the line. Appendix E covers fixed-format Calculation
specifications in more detail.

Internal Documentation
You might think that once you have a program written and running, you are done with it forever
and can move forward and develop new programs. Actually, about 70 percent of all programming is
maintenance programming rather than new application development. Maintenance programming
involves modifying existing programs to fix problems, address changing business needs, or satisfy
user requests for modifications.
 Because of the high probability that any program you write will be revised sometime in the
future—either by yourself or by some other programmer in your company—it is your responsibility
to make your program as understandable as possible to facilitate these future revisions. RPG
programmers use several techniques to document their programs.

Chapter 2 Getting Started 39

Program Overview
Most companies require overview documentation at the beginning of each program. This documen-
ta tion, coded as a block of comments, states the function or purpose of the program, the program’s
author, the date when the program was written, and any special instructions or peculiarities of the
program that those working with it should know.
 If the program is revised, entries detailing the revisions—including the date of the revisions and
their author—are usually added to that initial documentation. If a program uses several indicators,
many programmers will provide an indicator “dictionary” as part of their initial set of comments to
state the function or role of each indicator used within the program.

Comments
Another good way to help others understand what your program does is to include explanatory doc-
umentation internal to your program through the use of comment lines. RPG IV comments begin
with double slashes (//) entered anywhere within positions 8–80. In free-format specifications,
these comments can make up an entire line or a portion of the line. Once the compiler encounters
the // characters, it will ignore the rest of the line, treating the remainder as a comment. Using
// to specify comments is not limited to free-format specifications; you can enter comment lines
anywhere in the program. In fixed-format specifications, the comments make up an entire line
(positions 7–80); the line must begin with // characters and cannot include any compilable code.
 Comments exist within the program at a source-code level only; they are for the benefit of
program mers who may have to work with the program later. You should include comments
throughout your program as needed to help explain specific processing steps that are not obvious. In
adding such comments, you should assume that anyone looking at your program has at least a basic
proficiency with RPG IV; your documentation should help clarify your program to such a person.
Documenting trivial, obvious aspects of your program is a waste of time. On the other hand, failing
to document difficult-to-grasp processing can cost others valuable time. Inaccurate documentation
is worse than no documentation at all because it supplies false clues that may mislead the person
responsible for program modification.
 Appropriately documenting a program is an important learned skill. If you are uncertain about
what to document, ask yourself, “What would I want to know about this program if I were looking at
it for the first time?”

Fixed-Format Comments

In addition to the preferred // comment notation, fixed-format RPG statements allow an older alternative:
asterisk comments. In fixed-format RPG IV syntax, an asterisk (*) in position 7 of any line—regardless of the
specification type—designates that line as a comment; you can enter any documentation, in any form that you
like, within the remaining portion of the line.

Free-format specifications do not allow asterisk comments. This book uses // comments exclusively. All the
specification forms also include a comment area in positions 81–100 so that you can easily add a short
comment to any line of code.

40 Programming in RPG IV, Fourth Edition

Blank Lines
In addition to the use of comments, many programmers find that a program’s structure is easier to
understand when blank lines are used to break the code into logical units. To facilitate using blank
lines within your code, RPG IV treats two types of lines as blank: first, any line that is completely
blank between positions 6 and 80 can appear anywhere within your program. Second, if position 6
contains a valid specification type and positions 7–80 are blank, the line is treated as a blank line;
however, the line must be located in that portion of the program appropriate for its designated
specification type.

The Completed Program
Our completed sample RPG IV program is shown below. Note that the order of the program state-
ments is File, Input, Calculations, and Output. RPG requires this order. Also note that you can use
blank comment lines or lines of asterisks to visually break the program into logical units and that
using lowercase lettering within internal documentation helps it stand out from program code.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
 // --
 // This program produces a year-to-date sales report. The report data
 // comes directly from input file Customers.
 // Date Written: 12/15/2006
 // --

FCustomers IF F 152 Disk
FQprint O F 132 Printer Oflind(*Inof)

ICustomers NS
I 1 4 Accountid
I 5 8 Salesperson
I 9 43 Name
I *USA D 132 141 Lastsaledate
I 142 152 2Ytdsales

 /Free

 Except Headings;
 Read Customers;

 Dow Not %Eof(Customers);

 If *Inof;
 Except Headings;
 *Inof = *Off;
 Endif;

 Except Detail;
 Read Customers;
 Enddo;

 *Inlr = *On;
 Return;

 /End-Free

Chapter 2 Getting Started 41

continued…

OQprint E Headings 2 2
O 16 ‘YTD SALES REPORT’
O 56 ‘DATE’
O *Date Y 67
O 74 ‘PAGE’
O Page Z 79

O E Headings 1
O 4 ‘ACCT’
O 11 ‘SALES’
O 65 ‘YTD’
O 78 ‘DATE OF’

O E Headings 2
O 3 ‘ID’
O 12 ‘PERSON’
O 22 ‘CUSTOMER’
O 66 ‘SALES’
O 79 ‘LAST SALE’

O E Detail 1
O Accountid 4
O Salesperson 11
O Name 49
O Ytdsales 1 66
O Lastsaledate 79

 To create this program, you would use an editor to enter the RPG IV code into a source
member with an SEU member type of RPGLE. Once the source member contains all the required
code, then you would compile the source using the CRTBNDRPG (Create Bound RPG Program)
command to compile the source and create the program. Once the program is successfully created,
you would execute it, using the CALL command.
 Now that you have seen how to write a complete RPG IV program, we can return to the concept
of output editing to learn RPG IV’s editing features in greater detail.

Output Editing
Output editing refers to formatting output values by suppressing leading zeros and adding special
characters—such as decimal points, commas, and dollar signs—to make the values easier for people
looking at the output to comprehend. RPG IV allows numeric fields (but not character fields) to be
edited as part of the Output specifications. You often will use editing to obtain the output format
requested in a printer spacing chart.
 Editing is used in part because of the way numbers are stored in the computer. For example,
if Amount—a field six bytes long with two decimal positions—is assigned the value 31.24, the
computer stores that value as 003124. Although the computer keeps track of the decimal position, a
decimal point is not actually stored as part of the numeric value. If you were to specify that Amount
be printed without editing, the number would be printed as 003124; the nonsignificant zeros would
appear, and there would be no indication of where the decimal point should be.

42 Programming in RPG IV, Fourth Edition

continued…

Chapter 2 Getting Started 43

continued…

Edit Codes
To make it easier to specify the most commonly needed kinds of editing, RPG IV includes several
built-in edit codes you can use to indicate how you want a field’s value to be printed. You associate
an edit code with a field by entering the code in position 44 of the Output specification containing
that field. All commonly used edit codes automatically result in zero suppression—that is, printing
blanks in place of nonsignificant leading zeros—because that is a standard desired format.

Editing Numbers
Some editing decisions vary with the application. Do you want numbers to be printed with commas
(or other appropriate grouping separator for your region) inserted? How do you want to handle
nega tive values—ignore them and omit any sign, print CR immediately after a negative value, print
a float ing minus sign (-) after the value, or print a floating negative sign to the left of the value? And
if a field has a value of zero, do you want to print a zero or leave that spot on the report blank? A
set of 16 edit codes—1 through 4, A through D, and J through Q—cover all combinations of these
three options: commas, sign handling, and zero balances. The following table details the effects of
the 16 codes (in the shaded area).

Options and Edit Codes
 Print Print No
 commas zero balance sign CR Right - Floating -

Yes Yes 1 A J N
Yes No 2 B K O
No Yes 3 C L P
No No 4 D M Q

Thus, if you want commas, zero balances to print, and a floating negative sign, you would use edit
code N; if you did not want commas or any sign but did want zero balances to print, you would use
edit code 3.
 To give you a clearer understanding of the effects of each of these edit codes, the following
table demonstrates how various values would appear when printed with each of the edit codes. The
position of the decimal place in the values is indicated by a caret (^). Notice that if you use edit
codes 1–4 with a field containing a negative value, the field will be printed like a positive number.

 Edit
code Value
 1234^56 1234^56- 0234^56- 0000^00 000000^
1 1,234.56 1,234.56 234.56 .00 .00
2 1,234.56 1,234.56 234.56
3 1234.56 1234.56 234.56 .00 .00
4 1234.56 1234.56 234.56
A 1,234.56 1,234.56CR 234.56CR .00 .00
B 1,234.56 1,234.56CR 234.56CR
C 1234.56 1234.56CR 234.56CR .00 .00
D 1234.56 1234.56CR 234.56CR
J 1,234.56 1,234.56- 234.56- .00 .00

44 Programming in RPG IV, Fourth Edition

Edit
code Value
 1234^56 1234^56- 0234^56- 0000^00 000000^
K 1,234.56 1,234.56- 234.56-
L 1234.56 1234.56- 234.56- .00 .00
M 1234.56 1234.56- 234.56-
N 1,234.56 -1,234.56 -234.56 .00 .00
O 1,234.56 -1,234.56 -234.56
P 1234.56 -1234.56 -234.56 .00 .00
Q 1234.56 -1234.56 -234.56

 RPG provides three additional useful edit codes: X, Y, and Z. Edit code Y results in slashes being
printed as part of a date. For example, if you run your program on December 11, 2009, the reserved
field *Date will contain 12112009. If edited with edit code Y, this date will be printed as 12/11/2009.
Although edit code Y is normally used to edit dates, you can also use it with any field for which slash
insertion is appropriate.
 Edit code Z simply zero suppresses leading nonsignificant zeros. Z does not enable the printing
of a decimal point or a negative sign, so if a field contained a value of -234.56, the Z edit code would
cause the field to be printed as 23456. The use of Z is usually limited to whole number fields.
 With one exception, all the edit codes suppress leading zeros. Edit code X, however, retains
them. For this reason, the X edit code is useful when you want to convert a numeric value to a
character string and retain the leading zeros.

Currency Output Editing
You occasionally will want dollar signs (or other local currency symbols) to be printed as part of
your report. As we mentioned in Chapter 1, you can position dollar signs in a fixed column of the
report or you can place them just to the left of the first significant digit of the values with which they
are associated. This latter type of dollar sign is called a floating dollar sign.

Fixed currency symbol Floating currency symbol
 $ 12.34 $12.34
 $5,432.10 $5,432.10
 $.00 $.00

 In general, you want to use a dollar sign in addition to one of the editing codes. To specify a
floating dollar sign, code '$' (apostrophes included) in the constant/edit word positions (columns
53–80) of the Output specifications on the same line as the field and its edit code. To specify a fixed
dollar sign, code '$' as a constant on its own line with its own end position.
 You can use one additional feature along with edit codes. An asterisk coded in the constant/
edit word position on the same line as the field and edit code specifies that insignificant leading
zeros be replaced by asterisks rather than simply being suppressed. This feature is called asterisk
fill or sometimes check protection because its most common use is in printing checks—to prevent
tampering with a check’s face value. For example, a check worth $12.15 might include the amount
written as $****12.15.
 The following examples illustrate how to code the various currency output options.

continued…

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
 // The following line illustrates a floating dollar sign.
O Amount 1 65 ‘$’
 // The next two lines illustrate a fixed dollar sign.
O 56 ‘$’
O Amount 1 65
 // The following line illustrates asterisk fill.
O Amount 1 65 ‘*’
 // The next two lines combine a fixed dollar sign with asterisk fill.
O 56 ‘$’
O Amount 1 65 ‘*’

Edit Words
You would think that given the variety of edit codes built into RPG IV, you would be able to find
a code to fit your every need. Unfortunately, that is not the case. Social Security and telephone
numbers represent good examples of values that we are used to seeing in a format that an edit code
cannot supply. RPG IV includes an alternative to edit codes, called edit words, that can help in this
kind of situation.
 You code an edit word in the constant/edit word portion of the Output specifications on the
same line as the field with which it is to be used. Note that because they perform the same function,
edit words and edit codes are never used together for the same field. An edit word supplies a
template into which a number is inserted. The template is enclosed with apostrophes. Within the
template, a blank position indicates where a digit should appear, while a 0 indicates how far zero
suppression should take place. With no zero in the edit word, the default is to zero suppress to the
first significant digit.
 You can use any character—including commas—as an insertion character within the template.
The insertion characters will be printed in the specified place as long as they are to the right of a
significant digit. A dollar sign at the left of the edit word signals a fixed dollar sign; a dollar sign
adjacent to a zero denotes a floating dollar sign. To indicate a blank as an insertion character, use
an ampersand (&).
 Examine the table below to see how edit words work.

Raw value Edit word Printed result
 999999999 ‘ - - ‘ 999-99-9999
 999999999 ‘ & & ‘ 999 99 9999
 1234123412 ‘0() - ‘ (123)412-3412
 00012^14 ‘ $0. ‘ $12.14
 00012^14 ‘$ 0. ‘ $ 12.14
 00012^14 ‘ *0. ‘ ***12.14
 05678^90 ‘$, 0. ‘ $ 5,678.90
 05678^90- ‘ , $0. CR’ $5,678.90CR
 05678^90- ‘ , $0. -’ $5,678.90-
 05678^90 ‘ , **DOLLARS* *CENTS’ *5,678*DOLLARS*90*CENTS

 You can duplicate the effects of any edit code with an edit word. In general, RPG programmers
use edit words only when there is no edit code that provides the format they want for their output.

Chapter 2 Getting Started 45

Chapter Summary
RPG IV programs are written as fixed-format or free-format specifications. Different specification
forms convey different kinds of information to the RPG IV compiler, which translates the program
into machine language.
 File specifications contain descriptions of all files used within a program. Input specifications
provide detailed information about each program-described input file used by a program. There
are two kinds of Input specification lines: one that contains record identification entries to generally
describe a record format within a file, and one that contains field identification entries to define the
fields of the record. Each field is described on a separate line.
 Calculation specifications center on operations, or processing steps, to be accomplished by
the computer. Each Calculation specification includes an RPG IV operation either by coding it
explicitly (or, in the case of the Eval operation, implicitly) in an expression. Depending on the specific
operation, it may also include additional entries. The computer executes operations in the order
specified on the Calculation specifications unless the computer encounters an operation that
specifically alters this flow of control.
 Output specifications provide details about each program-described output file. You use two
kinds of Output specification lines: a record identification line to describe an output record format
at a general level and field description lines to describe each field or constant that appears as
part of a record format. When the output is a report, you need a record identification line and
corresponding field-identification entries for each kind of line to appear on the report.
 An important part of programming is documenting the program. Comment lines—signaled
by double slashes (//) in nearly any position of a specification line—can appear anywhere within
a program. Most comments are coded on a separate line, but in free-format specifications, they
may be included on the same line as executable RPG statements but positioned after the RPG
statements. The RPG IV compiler ignores such comments.
 Within your code, you can insert completely blank lines and lines that are blank except for the
specification type to visually break the code into sections.
 It is customary to edit printed numeric values. RPG IV supplies ready-made edit codes for
common editing requirements and lets you create special editing formats by using edit words.
 The following table summarizes the operation codes and built-in functions discussed in this
chapter. Optional entries are shown within curly braces ({ }).

Function or operation Description Syntax
Dow Do while Dow logical-expression
Enddo
Endif

End a structured group Endxx

%Eof End of file %Eof{(file-name)}
Eval Evaluate expression {Eval} result =
 expression
Except Calculation time output Except {name}
If If If logical-expression
Read Read a record Read file-name
Return Return to caller Return

46 Programming in RPG IV, Fourth Edition

Key Terms

Discussion/Review Questions
 1. What is a fixed-format language? Can you give an example of a free-format language? Which

form offers the most advantages?
 2. Why do reports generated by RPG IV programs need to appear on File specifications?
 3. Why don’t you need to enter a File Designation for output files?

Chapter 2 Getting Started 47

X
ABC
@end
_YTD_Sales
YR END
InvoiceNumber

 1STQTR
 QTY-OH
 SALES
 CUST#
 YR_END
 avg.sales

#3
CustNo
$AMT
Day1
Yearend
cusTnbR

arguments
asterisk fill
batch processing
built-in functions
Calculation specifications
case sensitive
character field
check protection
comment lines
compiler directives
constants
continuation lines
Control specifications
detail line
double slashes (//)
Dow (Do While)
edit code
edit words
end position
Enddo (End Do Group)
Endif
end-of-file
Eval
Except
exception lines
exception names
factors
field-level
field description entries
File specifications/F-specs
fixed format

fixed position
free form
full procedural
If
indicator
*Inlr
Input specifications
keywords
Last Record
literals
native date fields
numeric fields
operand values
output editing
output file
Output specifications
overflow
overflow indicator
Page
priming read
pseudocode
Read
record formats
record identification entries
reserved word
Return
sequence checking
Skip entries
Space entries
title case
zero suppression

 4. Which of the following are invalid RPG IV variable names? Why?
 5. What is an indicator? What specific methods of turning on indicators were introduced in

this chapter? How can you use indicators to control processing? What alternative RPG IV
feature can be used to reduce or eliminate indicators in a program?

 6. Describe the difference between a Skip entry and a Space entry on the Output
specifications.

 7. How could you obtain five blank lines between detail lines of a report?
 8. What is the advantage of giving the same name to several exception lines of output?
 9. What are some fields that are automatically provided by RPG IV for your use?
 10. Why do you often need two read statements within a program?
 11. What is the correct order of specifications within an RPG IV program?
 12. What is the purpose of each kind of RPG IV specification introduced in this chapter?
 13. What is LR? Why is it used?
 14. What is maintenance programming? And what programming techniques can you adopt to

facilitate it?
 15. Why does RPG IV include both edit codes and edit words? What exceptions are there to the

rule that an edit code and an edit word or constant should never appear together on the
same Output specification line?

 16. What are the programming implications of the fact that RPG IV is not case sensitive?
 17. Describe internal and external documentation. Why is there so much importance placed on

correctly documenting a program?
 18. Research Control specifications. What are some of the advantages of using them? Are there

disadvantages?

Exercises
 1. A Customer listing program uses data from file Customers to generate a report that reflects

all the data in the file. The record layout of file Customers follows:

Description Positions (Decimal positions) Notes
Customer number 1–5 (0) —
Customer name 6–25 — —
Last order date 26–33 — mmddyyyy
Balance owed 34–43 (2) —

 Write the File specifications for this program.
 2. Given the above problem definition, write the Input specifications.
 3. Write the pseudocode to produce the report.
 4. Design a report for the application in Exercise 1, using the printer spacing chart notation

of Chapter 1.
 5. Develop Output specifications based on your printer spacing chart from Exercise 4 and the

File specifications of Exercise 1.

48 Programming in RPG IV, Fourth Edition

1 2 3 4 5 6 7 8 9 0

1234567890123456789012345678901 23456789012345678901234567890 1234567890123456789012345678901234567890

1

2

3

4

5

6

7

8

1

 3. CompuSell wants to send out two separate mailings to each of its customers contained in file
CSCSTP (see Appendix F for the record layout). Accordingly, the company asks you to write
a label-printing program that will print two-across labels. Each of the labels reading across
should represent the same customer. The printer will be loaded with continuous label stock
when this program is run. Each label is five print lines long. The desired format for the
labels is shown below. Note that the information in the parentheses is included to let you
know what should appear on the label; it should not appear within your output.

 4. CompuSell wants a telephone and address listing of all its suppliers. Write a program to
produce this listing. Your input file, CSSUPP, is described in Appendix F.

 5. CompuSell wants a listing of all its employees. Write a program to produce this listing. Your
input file, CSSEMP, is described in Appendix F.

50 Programming in RPG IV, Fourth Edition

1 2 3 4 5 6 7 8 9 0

1234567890123456789012345678901 23456789012345678901234567890 1234567890123456789012345678901234567890

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

 Compusell Supplier List as of XX/XX/XX Page XX0X

 Name/Address Phone Contact Person

XXXXXXXXXXXXXXXXXXXXXXXXX (XXX) XXX-XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX XX XXXXX-XXXX

XXXXXXXXXXXXXXXXXXXXXXXXX (XXX) XXX-XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX XX XXXXX-XXXX

XXXXXXXXXXXXXXXXXXXXXXXXX (XXX) XXX-XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX XX XXXXX-XXXX

1 2 3 4 5 6 7 8 9 0

1234567890123456789012345678901 23456789012345678901234567890 1234567890123456789012345678901234567890

1

2

3

4

5

6

7

8

9

10

11

1

XX/XX/XX Page XX0X
 CompuSell Employee Listing By Employee Number

Employee First Last Street Phone
Number Name Name Address City St Zip Code Number
999999 XXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XX 99999-9999 999-999-9999
999999 XXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XX 99999-9999 999-999-9999
999999 XXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XX 99999-9999 999-999-9999

1 2 3 4 5 6 7 8 9 0

1234567890123456789012345678901 23456789012345678901234567890 1234567890123456789012345678901234567890

1

2

3

4

5

6

7

8

9

10

11

12

1

 XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX (first, last name)
 XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX (street address)
 XXXXXXXXXXXXXXX XX XXXXX-XXXX XXXXXXXXXXXXXXX XX XXXXX-XXXX (city, state, zip)

 XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX
 XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX
 XXXXXXXXXXXXXXX XX XXXXX-XXXX XXXXXXXXXXXXXXX XX XXXXX-XXXX

