
Chapter One

Portals and Portlets: The Basics

Without a portal to plug into, portlets by themselves are quite useless. Put
another way, just as you put letters together to form words and put words
together to create sentences, you put portlets together to create one portal page.
To understand what portlets are and where they come into play, we must
therefore look at what a portal is. To do otherwise would be like trying to
explain why letters are such a great thing without mentioning that you can
combine them together to create words and sentences.

In this chapter, we briefly consider the different types of portals that exist and
how portlets fit into the picture. Then, we take a closer look at the runtime
environment of portlets: the portlet container. Just as the servlet container
provides the infrastructure for running servlet components in the servlet world,
so the portlet container provides the infrastructure for running portlets.

To get started, let’s first look at what a portal is and explore the key benefit
portals offer to the user — namely, the integration of several independent
applications on one screen.

WHAT IS A PORTAL?

Figure 1.1 depicts a typical portal page. This portal consists of several pages,
including Welcome, My Workplace, and My Finances. The figure shows the My
Finances page of the portal, on which five portlets interact with each other.

5



At the top of the portal page, a navigation bar lets the user move between portal
pages. On the upper-right side, administration links let the user log in or out of
the portal, access the user profile, and get help. Immediately below this upper
bar, two finance-related portlets appear below:

• The CT Profile portlet displays details about a specific company.
• The CT Chart portlet displays charts and graphs relevant to the company.

These portlets, and the others you see in the figure, are placed on the page and
represent applications with which the user can interact. These different applica-
tions are now integrated onto one page with one consistent API and are managed
centrally. This approach offers advantages for the user, who now can access dif-
ferent applications consistently and in one place, and for the portal administrator,
who can manage access to back-end services for a specific user in one place. If
we examine this example more closely, you can see what a portal really offers.
Portals enable users, even when they’re using the Web, to work more as they 
do on their desktop, with different applications on one screen that can be inter-
connected and exchange data.

CHAPTER 1: Portals and Portlets: The Basics

6

Figure 1.1: Sample portal page



Most readers of this book probably have an understanding of what a portal is,
and specifically of what WebSphere Portal Server is and how it generally works,
but for completeness we should go over some obligatory information. If you’re
unfamiliar with WebSphere Portal, the references at the end of this chapter will
point you to more information.

Types of Portals

We encounter the concept of portals throughout our daily lives. Newspapers,
magazines, company bulletin boards, and car dashboards are all examples of portals
we take for granted every day. Newspapers and magazines are general portals into
world events, sports scores, stock market prices, and local happenings. Company
bulletin boards are tailored, providing a look at the world through the eyes of the
company — for example, by displaying the cafeteria’s current lunch menu,
clippings from the latest CEO memo, and workplace safety information. Each
posting on the bulletin board is a view into the company. Automobile dashboards
offer us a very specific portal into the inner workings of the different systems of our
cars. The speedometer, oil pressure gauge, temperature gauge, and odometer all
provide crucial information about the current condition of our vehicle’s systems.

Web pages, too, provide a view of some type of information. With the rise of the
World Wide Web, sites such as Yahoo and Excite started turning up as some of
the first examples of portals on the Internet. These portals give users access to the
latest news, weather, and stock reports. Some current Internet portals let you
make stock trades or book flights and hotel rooms. They act as a single point of
entry into applications and information on the Internet or your intranet. Today’s
portal combines applications and information into a consistent, single user inter-
face (UI). It also supports user customization, personalization, and single sign-on.

IBM’s WebSphere Portal product, shown in Figure 1.2, is essentially a frame-
work for building portals. WebSphere Portal is capable of creating portals that
are more general (like magazines and newspapers), tailored (like a company
bulletin board), or very specific (like a car dashboard). You can use WebSphere
Portal to create portals you can access from a desktop computer, your cell phone
display, a PDA, or even your voice telephone. WebSphere Portal enables this
functionality by combining portlets on a single Web page to give the end user
access to information.

WHAT IS A PORTAL?

7



Although we tend to imagine a browser interface when we think of WebSphere
Portal, the product is really a set of complementary products that all combine to
provide a dizzying array of function. These individual products that combine to
create the portal include IBM DB2 Universal Database, IBM Tivoli Directory
Server, and IBM WebSphere Application Server, as well as development tools,
collaboration components, and, of course, IBM WebSphere Portal Server. To
learn more about the various options of the product, visit
http://www.ibm.com/software/genservers/portal.

What Does the Specification Say About Portals?

So how shall we define a portal? Many of the definitions available center on
aggregation and integration. We’ll take the following definition from the Java
Portlet Specification V1.0 (Reference 1):

CHAPTER 1: Portals and Portlets: The Basics

8

Figure 1.2: WebSphere Portal



“A portal is a web based application that — commonly — provides
personalization, single sign on, content aggregation from different
sources and hosts the presentation layer of Information Systems.
Aggregation is the action of integrating content from different sources
within a web page. A portal may have sophisticated personalization
features to provide customized content to users. Portal pages may
have different set of portlets creating content for different users.”

In the next sections, we shed some more light on the different parts of the portal
definition that all center on the main portal theme: application integration.

PORTAL APPLICATIONS AND PORTLETS

A portal application is a group of portlets that form a logically associated group.
Portlets in an application are installed as a single package. When programmed
appropriately, they’re able to communicate with one another by sending and
receiving messages.

Because WebSphere portal is the framework, you can think of portlets as the
pieces of art we place into the frames created by WebSphere Portal. A portlet
could be an article, as in a magazine. It could be column, as in a newspaper. A
portlet could be the cafeteria menu or a speedometer. A portlet is one small
piece of an overall portal. It is one element of many that could appear on the
user’s screen. In this book, we cover in detail how to create these portlets, and
we look at various facilities WebSphere Portal offers for portlets. In addition, in
the second half of the book, we discuss composite applications and some of the
approaches for designing and developing them.

PORTAL ARCHITECTURE

Portlets are run by a component, called a portlet container, that provides the
portlet with the required runtime environment. The portlet container manages the
life cycle of all the portlets and provides persistent storage mechanisms for the
portlet preferences, letting portlets produce user-dependent markup. The portlet
container passes requests from the portal on to the hosted portlets. It doesn’t

PORTAL APPLICATIONS AND PORTLETS

9



aggregate the content produced by the portlets; that’s the portal’s job. Figure 1.3
depicts the overall portal architecture.

Here’s how it works:

1. A registered user (client) opens the portal, and the portal application
receives the client request and retrieves the current user’s page data
from the portal database.

2. The portal application then issues calls to the portlet container for all
portlets on the current page.

3. The portlet container, which holds the user’s preferences, calls the
portlets via the portlet API, requesting the markup fragment from each
portlet and returning the fragment to the portal.

4. The portal aggregates all markup fragments together into one page,
which the portal finally returns to the client/user, giving the user the
integrated, useful interface he or she is used to on the desktop.

You’ll learn more details about the portal architecture in later portions of this
book as we explain the components and their subcomponents in more detail. 
For now, it should be enough to keep in mind that there are the two major
components: the portal itself and the portlet container. Now that you know this
much about portals, let’s take a closer look at what portlets really are and what
their role is in the big picture.

And What Is a Portlet?

Now that you know how a portal functions, it’s time to take a closer look at
portlets and their role in this environment. Let’s start with a definition.

CHAPTER 1: Portals and Portlets: The Basics

10

Figure 1.3: Portal architecture, with the portal aggregating the content and 
the portlet container running the portlets



A portlet is a Java-based Web component that processes requests from a portlet
container and generates dynamic content. The content generated by a portlet is
called a fragment, which is a piece of markup (e.g., HTML, WML, XHTML)
adhering to certain rules. A fragment can be aggregated with other fragments to
form a complete document, called the portal page.

One could ask why portlets were invented and specified in the Java Portlet
Specification at all. Why were existing J2EE concepts (namely the servlet) 
not enough? As you’ve already seen, that would lead to challenges in creating 
a consistent user experience. But what else is there that justifies creating a 
new component? Table 1.1 lists the reasons we think portlets are a separate
component.

PORTAL APPLICATIONS AND PORTLETS

11

Table 1.1: Portlets vs. servlets as portal components

Servlets Portlets

Web clients interact
directly.

Web clients interact with portal. Portal acts as mediator,
provides infrastructure.

Each servlet assumes it
is the only responding
component and
produces a complete
document.

Portlets assume other portlets are responding to the
portal's request and produce markup fragments. Portal
coordinates response to client, handles character set
encoding, content type, and setting of HTTP headers.

Directly bound to a URL. Addressed only via portal.

Less-refined request
handling.

Request handling includes action processing and
rendering options.

Portlets have predefined modes and window states that
indicate the function the portlet is performing and the
amount of real estate in the portal page available to the
portlet.

Numerous portlets exist on a portal page and therefore
require concepts such as the portlet window and portlet
entity.



All these requirements made it a cleaner choice to introduce a new component,
portlets, instead of bending the servlet definition to also fulfill these require-
ments. However, the Java Portlet Specification is closely aligned with J2EE
concepts to permit the reuse of as much of the existing J2EE infrastructure as
possible. The following points reflect this close alignment:

• Portlet applications are packaged as WAR files, with an additional portlet
deployment descriptor (portlet.xml) for the portlet component, and can be
deployed using the existing J2EE Web application infrastructure for WAR
files.

• Portlet applications reuse the standard HttpSession; thus, portlets can
share data via the session with other J2EE artifacts, such as servlets and
JavaServer Pages (JSPs).

• Portlets can access the Web application context via the portlet API and
share data with other J2EE artifacts on the context level.

• Portlets can access Web application initialization parameters defined in
the web.xml file via the portlet context.

CHAPTER 1: Portals and Portlets: The Basics

12

Table 1.1: Portlets vs. servlets as portal components (continued)

Servlets Portlets

Portlets need means for accessing and storing persistent
configuration and customization data on a per-user basis.
Because portlets need to be plugged into an existing
portal, these storage functions must be provided by the
portal infrastructure for the portlet and thus need to show
up in the portlet API.

Portlets need access to user profile information to gener-
ate user-specific output.

Because portlets are plugged into portal systems, they
need URL rewriting functions for creating hyperlinks
within their content, letting URL links and actions in page
fragments be created independently of the specific portal
server implementation.



• Portlets can include servlets and JSPs via a request dispatcher.

• Portlet J2EE roles defined in the portlet.xml file can reference J2EE roles
defined in web.xml, enabling a unified role mapping between portlets and
servlets.

To leverage the existing J2EE infrastructure for portlets today, we can wrap them
as servlets and deploy them in the Web container with the portlet container run-
ning on top of the Web container (see Figure 1.4). The Pluto Java Specification
Request (JSR) 168 portlet reference implementation as well as the Jetspeed por-
tal both take this approach.

PORTAL APPLICATIONS AND PORTLETS

13

Figure 1.4: How portlets relate to J2EE



Today, while using as many J2EE concepts as possible, portlets aren’t an integral
part of J2EE. Thus the portlet container is running on top of the servlet container.

The plan is to keep future portlet specification aligned with the next J2EE versions.
The goal is to integrate the Portlet Specification into J2EE in the future. This
integration would permit treating portlets as first-class J2EE citizens, and the whole
J2EE infrastructure, including application management, monitoring, deployment,
and authorization, would support them. When this happens, a portlet container will
be part of the application server and leverage the server’s entire infrastructure,
including administration and performance tuning. Portals will then be Web applica-
tions running on the application server and leveraging the different containers
provided by the application server. Figure 1.5 shows the portlet container as an
independent container beside the servlet and Enterprise JavaBeans (EJB) container.
For more information about the J2EE specification, consult Reference 2.

CHAPTER 1: Portals and Portlets: The Basics

14

Figure 1.5: Future scenario in which portlets are part of J2EE and the portlet container 
is another J2EE container, like the servlet and EJB containers



The Java Portlet Specification is also aligned with another upcoming important
J2EE technology, JavaServer Faces (JSF), which enables server-side user interfaces
for Web components. For more information about JSF and portlets, see Chapter 6.

Portlets in Practice

What does our definition of portlets mean in practice? You’ve already seen a
real-life portal page in Figure 1.1. Figure 1.6 depicts the basic structure of such a
portal page.

The markup fragments produced by portlets are embedded into a portlet window as
portlet content. Portlet windows on a page have several basic elements. In addition
to the portlet content, the portlet window has a decoration area that can include the
portlet title and controls to influence the window state and the mode. The user can
control the size of the portlet window via the portlet window controls, from
minimized (only the title is displayed) to normal to maximized (only portlet on the
page). The portlet mode influences the requested function of the portlet. A portlet
may offer help in a help mode or allow customizing the behavior in an edit mode.

The portal may aggregate several portlet windows to produce a complete portal
page. This means that each portlet produces only the portlet content and the

PORTAL APPLICATIONS AND PORTLETS

15

Figure 1.6: Portlet windows on a portal page



portal produces everything else visible on the portal page, such as the portlet
window, the portlet window controls, and the layout of the page.

Until now, all our examples have been HTML-based, but portlets aren’t restricted
to HTML. Figure 1.7 shows an example of a portlet that can produce different
markups for different devices. For desktop browsers, it produces HTML markup;
for Wireless Markup Language (WML) devices (e.g., mobile phones), it pro-
duces WML markup. This multidevice support offered by portlets lets users
access the same applications regardless of the device they use.

CREATING PORTLETS

Thus far, you’ve learned a lot about what portals and portlets are. In this section,
we start looking at how to make portlets. There are three main scenarios:

• creating a new portlet-based application project

• migrating a portlet-based application from a proprietary portlet API to the
standard portlet API (Java Portlet Specification)

• transforming an existing Web application into a portlet-based application

We’ll cover all of these scenarios, beginning with creating new portlet
applications from scratch.

Creating Portlet Applications from Scratch

Why would someone write portlet-based applications? That’s a good question
and one we’ll answer in this section.

CHAPTER 1: Portals and Portlets: The Basics

16

Figure 1.7: Alternative portlet markups (HTML for a desktop 
browser and WML on a mobile phone)



Previously, we defined a portlet as a Java-based Web component that processes
requests and generates dynamic content. Thus our question should have been
more precisely: Why would someone write portlet-based Web applications? In
the days before portlets appeared, the Web programming model consisted of
servlets and JavaServer Pages. We explain this programming model in more
detail later, but for now we can concentrate on its major characteristics:

• Adherence to a request/response paradigm: Web applications
communicate with the Web client by having the client send a request, and
the Web application responds back to the client.

• Self-contained application: A Web application comes with all needed
components and doesn’t interact with other applications installed on the
server running the Web application. This means you get one monolithic,
consistent application that solves a specific problem, such as an Internet
store.

While the first bullet also holds true for portlet applications, the second does 
not. In fact, this monolithic structure of Web applications was the reason portlets
were invented. The monolithic structure of a complete application still has its use
scenarios in a world of portlets — for example, in a self-contained online shop
that doesn’t need further customizations. However, more and more Web applica-
tions are becoming portal-like to permit users, as we’ve said, to work more in a
desktop manner with different applications on one screen that can be intercon-
nected and exchange data.

As the demand for more portal-like applications grows, the need to manage
multiple applications in a single portal becomes critical. In all likelihood, more
than one provider or group created the many applications typically included in 
a portal. Therefore, each Web application must be modular enough to fulfill
several new requirements:

• Portlet applications must easily “plug in” to an existing portal to provide
the portal with new functionality.

• Portlet applications must adhere to some rules to “play well” together
with other portlet applications in the same portal.

• The portal must provide a unified user interface across multiple portlet
applications.

CREATING PORTLETS

17



The servlet API doesn’t provide these kinds of rules and integration points;
therefore, the new portlet API was created to support building modular Web
applications that can be plugged into portals and produce content that is
aggregated with content from other portlet applications into one page.

So the answer to the question at the beginning of this section is: You would write
portlet applications if they will be used inside portals or if they need to 
be modular and integrate with other applications. But what if you’ve already
created portlets using a proprietary portlet API? Let’s consider this scenario.

JSR 168, the IBM Portlet API, and Other Tools

The current version of the Java Portlet Specification, JSR 168, was created
jointly by several companies, including IBM, BEA Systems, Oracle, and Sun
Microsystems, and released near the end of 2003. WebSphere Portal includes
support for this standard to allow compatibility with other portals and portlet
vendors.

IBM’s strategy is to embrace open standards such as JSR 168. For this reason,
we’ve decided to focus on that specification fully in this book. The JSR 168
standard is still evolving; the next version, called JSR 286, should be out toward
the middle of 2007. (Appendix A describes the features expected in JSR 286.)
Because of this, JSR 168 is still not as complete by itself as many portal teams
require to achieve the functionality they need. With this point in mind, we focus
the first part of this book on plain JSR 168 portlets, while the second part
focuses on extensions and additional APIs for JSR 168 portlets that are
WebSphere Portal–specific.

On another note, it’s necessary to comment on portlet builder tools that have
gained some popularity in the market lately. Over the past few years, several
such products have become available. Some of these tools are better than others,
and any of them may have a place in your organization or development effort.
Having used some of these tools recently on various projects, we can say that it
they indeed make it possible to quickly put together a simple portlet. Not every
portlet or project is simple, however, and we want to caution you that total
abstraction from the portlet API may not be possible or useful, and nearly every
portal development effort requires some Java programming skills.

CHAPTER 1: Portals and Portlets: The Basics

18



Moving from Proprietary APIs to Standard APIs

Here’s another problem. Perhaps you were a portlet early adopter, but no
standard existed when you started, or maybe you found the first version of the
Java Portlet Specification too restrictive. For these reasons, you programmed
your portlets against a proprietary portlet API. Now that the standard is in place,
it’s a good time to move from proprietary portlet APIs to the standard portlet
API. Doing so will make your portlets vendor-independent, broadening their
market or letting you move later on from your current portal vendor to a
different one without throwing away all your portlet applications.

If you’ve written a portlet to a proprietary API, your situation looks like the one
depicted in Figure 1.8. Here, the portlet is very tightly coupled to the available
portal infrastructure because all the portlet APIs available are specific to the
portal for which the portlet was developed.

When you move to the standard API, there are two different cases to look at. In
the first, the proprietary and standard APIs each support the same feature set; in
the second, the proprietary API has a more robust feature set than the standard
API.

Migrating Supported Features

The first case is the easy one. Here, the functionality that the portlet uses in the
proprietary API is also available in the standard API; you can thus rewrite the
portlet against the standard portlet API. This way, you end up with a portlet that’s
completely vendor-independent, guaranteed to run unchanged for years because

CREATING PORTLETS

19

Figure 1.8: Portlets written against a proprietary portlet API



new versions of the portlet standard will be backward-compatible and easier to
maintain. And even years from now, people will know how to program against
V1.0 of the standard portlet API.

Migrating Non-Supported Features

Now for the more complex case. In this situation, your portlet uses some
functionality currently unavailable in the standard portlet API, such as sending
events between portlets. Even here, it may still be beneficial to move to the
standard API and use vendor-specific extensions only for the functions not
available in the standard API. You can then program your portlet to query the
portal at runtime for supported extensions. If the portal lacks the extension 
(or extensions) you want, it can still run with degraded functionality.

Figure 1.9 depicts this scenario. As you see, the portlet plugs into two different
APIs, the Java Portlet API and the Portal Extension API. Now, the portlet is
decoupled from the portal infrastructure and can also run in a standard
environment and just offer less functionality.

Now that we’ve covered creating portlet applications from scratch and
converting portlets written against proprietary portlet APIs, let’s take a look at
transforming Web applications into portlet applications and thus handle the last
use scenario for portlets.

CHAPTER 1: Portals and Portlets: The Basics

20

Figure 1.9: Portlet written against the standard portlet API but using vendor extensions 
when available



Transforming Web Applications to Portlet Applications

This last scenario deals with another common case. You already have an existing,
servlet-based Web application, and now you’ve read all this exciting stuff about
portlets and want to leverage the advantages of portals and portlets. Of course,
you’d like to avoid throwing away your existing code and starting again from
scratch. It would be rather nice to put your existing Web application into a tool
and have the tool transform it into a portal application. Unfortunately, reality
isn’t so easy, and only limited automated-tool support for transforming Web
applications to portal applications is coming in the latest tool versions.

Let’s look at the different ways your Web application might be implemented to
see how easy or complicated it is to transform it into a portal application.

As with the last scenario, one implementation method is easier to transform than
the other. If you were lucky enough to have written your Web application from
scratch without using any Model-View-Controller (MVC) framework, such as
Struts, just a few considerations apply. The answer largely depends on how
modular your Web application is and whether you can easily factor out and
remove the parts that don’t fit in the portlet programming model we’ll discuss in
the next few chapters. These parts include

• using HTTP error codes or error JSPs. These parts must now be delegated
to the portal.

• mixing of state-changing code and rendering code. Unless you separate
these two, you’ll have a hard time moving to the portlet programming
model (or any MVC-based framework).

• parts of the code that deal with protocol handling and markup selection
that aren’t not cleanly separated. The portal handles these tasks in the
portlet case.

If you stick to the Sun guidelines for J2EE Web applications (Reference 3),
which recommend the MVC pattern, or if you’ve used an MVC-based frame-
work, transforming your Web application into a portlet application should be a
doable effort. You’ve still done only the first step with this, because your
transformed portlet application most likely doesn’t leverage the full power the
portlet programming model provides. Using the complete data model will take
some effort, but it will make your portlet application faster and easier to use.

CREATING PORTLETS

21



MORE ABOUT TOOLS

Having mentioned tools above, let’s take a quick look at the tools we’ll be using
for most of the portlets in this book. As Java programmers, we’ve mainly focused
on building portlets in the traditional manner — that is, extending the
PortletAdaptor or GenericPortlet class and filling in the code for the various
methods (e.g., doView) that are provided. Among the different authors we take a
few different approaches, but we developed most of the code, concepts, and
images for this book using Rational Application Developer (RAD). Like any tech-
nology, these tools are rapidly evolving, and keeping up with the latest versions
can be painful. For basic portlet programming, RAD is sufficient to create almost
any portlet we discuss in this book. You may need some additional tools for some
chapters, such as when we cover the Portlet Factory and WorkPlace Forms.

You can learn more about Rational Application Developer at the following loca-
tion: http://www.ibm.com/software/awdtools/developer/application/index.html.

Required Skills

We’ve kept this first chapter brief so you can get started writing portlets right
away! However, before we move on, some prerequisites will prove helpful in your
portal development endeavor. Although we focus on using building portlets using
available APIs and design and development best practices, you’ll need a basic
understanding of several topics to fully appreciate the information provided:

• a solid knowledge of Java and an understanding of server-side Java
programming, such as servlets and JSPs

• familiarity with Web protocols, such HTTP

• a basic understanding of Extensible Markup Language (XML) to help
understand Extensible Stylesheet Language Transformation (XSLT) and
read deployment descriptor files

• basic familiarity with WebSphere Portal concepts, such as how to install
portlets and set access control lists (ACLs)

• With this solid background and the information you’ll learn from this
book, you’ll be writing portlets in no time.

CHAPTER 1: Portals and Portlets: The Basics

22



SUMMARY

In this chapter, we covered the details of portals and portlets. First, we explained
what a portal is and showed different applications of portals. The main point
here is that portals are an integration point that integrates other applications into
one consistent end-user application so users can work more in a desktop manner.

Next, we covered the role portlets play in the portal environment, noting that
ssssthey are the central UI components that are rendered by the portal and that
allow developers to extend the portal. We covered how portlets currently fit into
existing J2EE architectures, why servlets aren’t enough to provide portal compo-
nents, and how portlets may be even more tightly integrated in future versions of
J2EE. If portlets become part of J2EE, this will be a major achievement that will
put portlets on par with servlets and enable them to leverage the complete J2EE
infrastructure seamlessly.

Now that we’ve laid down some of the groundwork, let’s get real in the next
chapter by developing a real portlet in Chapter 2.

REFERENCES

1. Abdelnur, A., and S. Hepper. JSR 168: The Java Portlet Specification.
http://jcp.org/en/jsr/detail?id=168.

2. Java 2 Platform Enterprise Edition 1.4 Specification.
http://www.jcp.org/en/jsr/detail?id=151.

3. Designing Enterprise Applications with the J2EE Platform, 2nd Ed. Sun
Developer Network, 2002. http://java.sun.com/blueprints/guidelines/-
designing_enterprise_applications_2e/index.html.

4. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

SUMMARY

23




