
Chapter 2

A Portal Blueprint

This chapter provides you with the concepts, definitions, standards, and architec-
ture that form the basis on which all Java-based portal server software is built.

Many of these concepts, definitions, standards, and architectures hold equally true
for both WebSphere Application Server V5.x and WebSphere Portal server V5.x.

Concepts are basically good computing paradigms. Definitions are defined by the
IT industry at large. Standards are based on widely accepted Java standards, some
of which relate to portal servers. Architecture, though specific to WebSphere
Portal, is really dictated by a combination of the portal server’s software, the avail-
able hardware, and the goals of an enterprise.

J2EE Architecture in WebSphere Portal
This section introduces J2EE and gives you an overview of the J2EE runtime
environment, just to reinforce some of the concepts. Since WebSphere Portal is based
on Java, its architecture closely follows the J2EE architecture. As such, the
terminology and concepts will seem familiar to those who already know the Java
language.

If you are interested in simply using and working with WebSphere Portal, you 
may choose to skip this section. If, on the other hand, you want a more detailed



description of the Java-based standard, please refer to the information at the fol-
lowing Web sites:

Java 2 Platform, Enterprise Edition home page, http://java.sun.com/j2ee
IBM WebSphere Developer Domain, http://www.ibm.com/websphere/developer
Portlet API JSR #168, http://www.jcp.org/jsr/detail/168.jsp

What Is J2EE?
Java 2 Platform, Enterprise Edition defines the standard for developing multitier
enterprise applications. J2EE simplifies enterprise applications by basing them on
standardized, modular components; by providing a complete set of services to
those components; and by handling many details of application behavior
automatically, without complex programming.

These modular components are servlets, Java Server Pages (JSPs), and Enterprise
Java Beans (EJBs). The set of services is provided by the containers in which these
components operate, such as the Web server or the EJB container. As such, the
architecture shown in Figure 2.1 lets a client indirectly access back-end enterprise
applications while protecting enterprise-sensitive data.

J2EE comes with a standard application model and platform. It not only comes
with a reference implementation, but also a compatibility test suite for products
wanting to achieve J2EE certification.

Chapter 2––A Portal Blueprint18

Figure 2.1: General J2EE architecture.



Although the J2EE architecture in Figure 2.1 does not show it, we recommend
using the Model-View-Container (MVC) paradigm with respect to Portal. In that
regard, the Web Server really is the Web Container. This is explained in a later
section in this chapter.

J2EE Application Model

As mentioned, the J2EE programming model has four types of application
components:

Java application clients
Applets
Servlets and Java Server Pages (JSPs)
Enterprise Java Beans (EJBs)

Each application component executes in a well-defined container, which is an
execution environment within whose scope components run. Containers are built
on the Java 2 Platform, Standard Edition (J2SE), and provide the runtime support.
By having a container between the application component and the set of services,
J2EE can provide a federated view of the APIs for the application components.

The primary component in a portal server application is the portlet. A portlet is a
reusable component that provides access to Web-based content, applications, and
other resources. Since a portlet is really an extension of a servlet, portlets run in
the Web container, along with servlets and JSPs.

Table 2.1 lists the application components and the containers in which they run.
The table also refers to JAR, WAR, and EAR files. These file types stand for “Java
Archive,” “Web Archive,” and “Enterprise Archive,” respectively. They are
covered in detail later in this chapter.

J2EE Architecture in WebSphere Portal 19

Table 2.1: Application Components and Containers

Application Components J2EE Containers Container Notes

Application client Application Client
container

Packed as JAR files. Not required to
manage transactions.

Applets Applet container Communicate over HTTP in a browser; can
also use serialized objects.



Figure 2.2 shows the J2EE containers and the data flow from a portal server
perspective. It shows the four kinds of containers that provide all the required 
services for the components they support, namely the Applet container, Application
Client container, Web container, and EJB container. The components and containers
are the same, with the additional component, a portlet, shown residing in the Web
container.

Chapter 2––A Portal Blueprint20

Table 2.1: Application Components and Containers (continued)

Application Components J2EE Containers Container Notes

Portlets,servlets,JSPs Web container Create portlet/servlet instances, load and
unload portlet/servlet, create and manage
request and response objects. Packaged
as WAR files.

EJBs EJB container Packaged as EAR files. Provide threading,
transaction support, and data storage 
management.

Figure 2.2: J2EE application model.



In addition to providing support for EJBs, servlets, and JSPs, the J2EE specifica-
tion defines a number of standard services for use by J2EE components. Services
provide integration with existing systems, including JDBC for database connectiv-
ity, Java Messaging Service (JMS), JavaMail, Java Authentication and
Authorization Service (JAAS), Java API for XML Processing (JAXP), Java IDL,
and Java Transaction Architecture (JTA). These services not only help Java and
Web clients communicate with back-end legacy systems, they also can be
configured to handle reliable and secure business transactions.

Figure 2.3 takes a step back, to look at the entire Java platform. You can see how
the various components and services fit along with the Java 2 SDK (Software
Development Kit).

You get a simplified architecture, based on standard components, services, and
clients, that takes advantage of Java’s write-once-run-anywhere technology. This
architecture offers scalability to meet the computing demands of even the largest
configuration. It also offers a unified, flexible security model, which is critical to
many enterprises.

This passing reference to Java 2 SDK does not do justice to the revolutionary 
Java platform introduced by Sun, Inc. Suffice to say that it is a stable, secure, 
and feature-complete development and deployment environment that provides
software developers a cross-platform compatible and rapid application develop-
ment platform. More information on J2SE can be obtained from
http://java.sun.com/j2se.

J2EE Architecture in WebSphere Portal 21

Figure 2.3: J2SE component and service model.



J2EE Platform Roles
The J2EE platform defines six distinct roles for use during the application
development lifecycle:

Product provider
Tool provider
Application component provider
Application assembler
Application deployer
System administrator

Product providers and tool providers have a product focus. Application component
providers and application assemblers focus on the application. Application
deployers and system administrators focus on the runtime. 

If you mapped the J2EE roles to the tasks in the portal world, you would have the
following categories:

Product provider
Tool provider
Portlet application assembler
Portlet deployer
Portal Administrator

The roles are similar, but not identical, because in the portal world, they help
identify the tasks that need to be performed by the people working on a Java
application, namely the portal. There is no role corresponding to Application
component provider because portals integrate existing applications. Roles are
analogous to privileges within the portal. Users are grouped together. Then,
individual users or groups are assigned certain privileges via Access Control 
Lists (ACLs).

J2EE Compliance
WebSphere Application Server V5.x is fully J2EE certified. Since WebSphere
Application Server serves as the engine or the platform for WebSphere Portal
server, which is an application within the application server, all the benefits of
J2EE compliance are available for Portal Server. WebSphere V5.0 also provides
Web Services support, Connector Architecture, and JMS/XA interface to IBM MQ

Chapter 2––A Portal Blueprint22



Series. The Connector Architecture and Java Messaging Support (JMS) are useful
in middleware space. Web Services helps with creating and accessing portlets on
remote systems and communicating with components running on non-Java systems
like .Net.

Table 2.2 lists the various API levels supported by the base version of WebSphere
Application Server V5.x. The basic tenet of the Portlet API is that it will be based
on the Servlet specification. It is also envisioned that the Developer API will be
similar to the Servlet API. In reality, the Portlet API will be something of a subset
of the Servlet API.

MVC Paradigm and Architecture
The programming model for portlets, servlets, and JSPs is based on the model-
view-controller (MVC) model. In the MVC model, the data itself (the model), the
presentation of the data (the view), and the logic manipulating the data (the con-
troller) are designed to be independent. If the view needs to change, the business
logic and the data are not affected. If the data interface changes, the controller can
be updated without affecting the view.

MVC Paradigm and Architecture 23

Table 2.2: WebSphere Portal and J2EE Compliance

J2EE Items APIs WebSphere Portal V5.1

Components Portlet*
Servlet
JSP
EJB

JSR168
2.2
1.1
1.1

Services JDBC
JTA/JTS
JNDI
JAF
XML4J
XSL

2.0
1.1
1.2.1
1.0
3.1.1
2.0

Communication RMI/IIOP
JMS
JavaMail

1.0
1.0.1
1.1

*The Portlet API submitted as Java Specification Request (JSR) 168 has been accepted as a stan-
dard. More information can be obtained at http://www.jcp.org/jsr/detail/168.jsp.



The overall portal architecture is shown in Figure 2.4. In keeping with the J2EE
architecture, separation is present between the presentation or view layer (the Page
Aggregator), the controller layer (the Web container, where the portlets reside), 
and the model layer (the J2EE API, which really deals with integrating with the
back-end systems).

In the MVC model, the portlet receives a request from a Web client, accesses the
data through a set of reusable components (beans or EJBs), and invokes a JSP
component to display the results of the request. The sequence of events and data
flow is shown in Figure 2.5.

Chapter 2––A Portal Blueprint24

Figure 2.4: Overall portal architecture.



Packaging J2EE Applications
Earlier in this chapter, we mentioned Java Archive (JAR) files. J2EE components,
like servlets and portlets, are packaged into modules. Modules are then packaged
into applications, and applications are then deployed. Each module and application
contains a J2EE Deployment Descriptor (DD), and is packaged up as an archive
file. A DD basically lists the contents of an archive file and contains the entire file
structure. Software development and assembly tools use Deployment Descriptors
to validate a package.

Figure 2.6 shows the file structure of a J2EE enterprise application. It is commonly
known as an Enterprise Archive (EAR) file. The arrows in Figure 2.6 show what is
contained at each level. An EAR file can contain one or more JAR files, and/or
one or more Web applications. Web applications are packaged as Web Archive
(WAR) files. These files show up in the UNIX and Windows file systems with the
file extensions .ear, .jar, and .war.

Packaging J2EE Applications 25

Figure 2.5: Portlet execution cycle.



In the case of a portal application, one or more portlets (possibly JSPs), and/or
servlets and accompanying image files make up the application. These portal
applications or portlets are packaged up as a WAR file. The Deployment
Descriptor for the portlet application is in a file called web.xml. Table 2.3 lists 
the contents of a sample WAR file.

Chapter 2––A Portal Blueprint26

Figure 2.6: J2EE Application Archive file structure.

Table 2.3: Sample Portlet WAR File Contents

File Description

/PORTLET.war/META-INF/MANIFEST.MF Standard JAR file manifest

/PORTLET.war/WEB-INF/web.xml Web application descriptor is a mandatory
item in a J2EE Web archive. It provides the
application server with information about the
Web resources in the application.



The Portlet Application Programming Interface (API) is explained in detail in
Chapter 5. That chapter shows how to code portlets, build portlet applications,
construct Deployment Descriptors, and package it all.

Topologies
“Topology,” in the context of this chapter, refers to the mapping of software com-
ponents to available computer hardware. Other than cost, the primary factors that
affect topology are:

Performance
Availability
Security
Maintainability

WebSphere Portal is another application running within WebSphere Application
Server, so all the things to watch out for and the numerous benefits about the vari-
ous WebSphere Application Server topologies apply. The topologies presented in
this section should look very similar to the WebSphere Application Server V5.1
topologies. WebSphere Portal topologies typically involve tier 2. These come in
one-node, two-node, and three-node configurations. Tier 2 is where the Web
container, with the portlets, logically resides.

Topologies 27

Table 2.3: Sample Portlet WAR File Contents (continued)

/PORTLET.war/WEB-INF/portlet.xml The portlet deployment descriptor provides
the portal server with information about 
the portlet resources in the application,
including configuration, support
characteristics, and localized titles.

/PORTLET.war/WEB-INF/lib Directory containing required JAR files

/PORTLET.war/WEB-INF/classes/MYPORTLET.class Portlet class file

/PORTLET.war/PORTLET/MYJSP.jsp JSP file or files

/PORTLET.war/images/MYIMAGE.gif Image file



Note: WebSphere Portal V5.1 needs WebSphere Application Server V5.1 to
run on the same machine.

The following abbreviations are used in the topology diagrams:

WAS – WebSphere Application Server

PZN – Personalization Server

WPS – WebSphere Portal server

BPC – Business Process Container

LDAP – Lightweight Directory Access Protocol

JSP – Java Server Page

EJB – Enterprise Java Bean

DB – Database

LIMWC – Lotus Instant Messaging and Web Conferencing (formerly
Sametime)

LWWCM – Lotus Workplace Web Content Management

LTW – Lotus Team Workplace (formerly QuickPlace)

The topology diagrams depict the middle tier hosting the application server with a
“shadow” box. This suggests that more than one application server could be run-
ning on the same machine. In fact, the additional server or servers might be
identical copies of the original server, known as clones.

One-Node Configuration
Figure 2.7 shows the simplest configuration. All software components are installed
on a very powerful multi-CPU machine, with at least 2 GB of memory and a mini-
mum of 6 GB of storage. Please refer to the WebSphere Portal server performance
tuning guide from IBM for not only memory and disk requirements but for key
tuning parameters.

Chapter 2––A Portal Blueprint28



This one-node configuration works well as a development or test environment, it
would not be robust enough for a mission-critical production environment. 
This hardware setup is easy to configure, and it does provide for software process
isolation.

Although you get full utilization of the machine’s computing power in this config-
uration, the application server, database server, and directory server will be com-
peting for CPU and memory. Therefore, in a production environment, we highly
recommended that you separate the middle tier (the application server) from the
backend servers. This helps in system scaling and management and can be used to
set up a failover configuration.

Most enterprises will already have a database server and/or a LDAP directory
server. A portal server would be an addition to this environment. That would sug-
gest having the database server separate from the application and portal servers.
Putting not only the LDAP server on a separate node but even running the data-
base on a separate server is highly recommended.

Note: If your configuration uses Domino Server, we suggest that you install
the Domino components on a separate machine. It is a good idea to separate
the old Sametime (LIMWC) and QuickPlace (LTW) servers.

Figure 2.8 shows a variation of the basic “everything-on-one-node” configuration.
In this example, all of the Domino components are on one or more physical
machines, separate from the other servers. Isolating the Domino components
provides the following benefits:

Topologies 29

Figure 2.7: WebSphere Portal configuration on one node.



The components are more easily managed.

Provides for independent maintenance cycles and OS patch levels.

Components like Lotus Team Workplace (LTW), formerly known as
QuickPlace; Lotus Instant Messaging and Web Conferencing (LIMWC),
formerly known as Sametime; and Lotus Workplace Web Content
Management (LWWCM), which replaces the old Web Content Publisher, do
not have to compete for the same resources as the core portal processes.

This is the “one-node variant” configuration, which is not to be mistaken for
highly available or high performance configuration. The machine (or machines)
hosting the Domino components simply denote parts of the portal topology that
reside on a different machine. The database, denoted as DB, comprises the
WebSphere Portal server database (WPS DB), the WebSphere Member
Management database (WMMDB), Personalization (PZN)-related databases
(FDBKDB and LMDB), and the Document Manager DB (JCRDB).

Two-Node Configuration
When properly designed, the two-node configuration really means separating out
the back-end database server (tier 3), to run on a physically separate machine.
Since Portal Server has to use an LDAP server for security purposes, the database

Chapter 2––A Portal Blueprint30

Figure 2.8: WebSphere Portal configuration on a one-node variant.



server could co-host the LDAP server too, as shown in Figure 2.9. In large produc-
tion environments, as stated before, we recommend running the LDAP Server on
its own separate node.

This is a better configuration because all database-related activity is confined to
one or more machines in tier 3. Tiers 1 and 2, made up of the Web server, the
application server, and the portal server, all exist on one machine. When any
LDAP access is needed, or when back-end database access is required, the network
hops from node 1 to node 2. Otherwise, simple servlet processing and the
presentation of the JSPs are all taken care of on the “local” node.

Separating the database server from the application and portal servers represents a
recommended best practice for the following reasons:

Separating WebSphere Application Server and WebSphere Portal Server from
the database server helps performance under heavy loads. Otherwise, full uti-
lization of computing resources could become an issue; as resources get
scarce, a degradation of performance might occur.

With the database server separated, those components of tier 2 that are related
mainly to the application server can use their cloning facility. WebSphere
Application Server could be vertically or horizontally cloned without affecting
the database server. This helps improve performance and assists with failover.

Usually, database servers are already configured in a highly available (HA)
manner, so putting Portal Server on the same machine would represent a single
point of failure. Thus, separating the application server and the portal server
from the database server maintains the HA architecture.

Topologies 31

Figure 2.9: WebSphere Portal configuration on two nodes.



High availability of the database server goes hand in hand with backup and
restore. Enterprises usually have good backup and restore procedures in place
for their back-end data. Housing the portal server’s application data on the
database server ensures that the portal data is always backed up.

Database servers are generally optimized and well tuned. Again, housing
WebSphere Portal server’s data on the database server helps portal perform-
ance. Additionally, if a site makes extensive use of Personalization, that would
require the use of a shared database.

We are suggesting a “two-node variant” configuration, separating the Domino
components onto one or more machines, as shown in Figure 2.10. Separating the
components to run on different machines also makes performance tuning a lot
easier. If the enterprise site makes heavy use of the Web Content Management
component, we suggest running LWWCM with Domino Server and Domino
LDAP server on one machine and running the Lotus Team Workplace and Lotus
Instant Messaging and Web Conferencing servers on different machines.

Note: In a production scenario, it is recommended that the two products—
Lotus Team Workplace (LTW) and Lotus Instant Messaging and Web
Conferencing (LIMWC)—not be co-located on the same physical server
because of resource contention issues.

Chapter 2––A Portal Blueprint32

Figure 2.10: WebSphere Portal configuration on a two-node variant.



Tip: Although we do not discuss performance and capacity planning in this
book, the database server and LDAP server need their own capacity planning,
based on projected loads throughout the cluster and from other applications
using the database and LDAP as well.

Three-Node Configuration
Three-node configuration is the classic three-tier setup that was introduced with
the advent of application servers. In this scenario, tier 1 (the presentation tier), tier
2 (the business and application logic tier), and tier 3 (the back-end data store) are
all running on separate machines, as shown in Figure 2.11.

This separation is possible because of the WebSphere V5.x HTTP plug-in. The
HTTP plug-in behaves very much like a reverse proxy, but it is really using the
HTTP transport to communicate between the Web server and the application
server. The plug-in may also perform static content caching for certain HTTP
servers, such as IBM HTTP Server, on certain platforms. The HTTP plug-in sup-
ports the clustering of and workload management (WLM) on application servers.
During heavy loads, the Web server can send requests to multiple application-
server machines. The HTTP plug-in provides for both vertical and horizontal
scaling of the WebSphere environment.

The HTTP plug-in also supports data encryption between the HTTP server and the
application server, using HTTPS or HTTP over SSL. This makes the HTTP plug-in
suitable for environments with two firewalls, such as a demilitarized zone (DMZ),
where all network communication must be encrypted. Splitting the HTTP server is
useful for sites serving static content from the HTTP server, as opposed to the

Topologies 33

Figure 2.11: WebSphere Portal configuration on three nodes.



WebSphere Portal server doing that. The separation is also useful for sites performing
Secure Sockets Layer (SSL) encryption/decryption at the HTTP server, because any
form of encryption adds to the burden of the Central Processing Unit (CPU).

If you use the Domino Server, we suggest a “three-node variant” configuration,
separating the Domino components as shown in Figure 2.12.

Notes about the Configurations
Thus far, the topologies in Figures 2.7 through 2.12 show the middle tier
hosting the application server. The “shadow” box suggests that more than one
application server could be running on the same machine. In fact, the addi-
tional servers are identical copies, or clones, of the original server. At this
point, we have to introduce some WebSphere Application Server V5 concepts
involving the WebSphere Application Server Network Deployment (ND) prod-
uct. With ND, you can run multiple WAS instances and manage them together
as a single cell.

One deployment manager process runs for the cell, which provides a central point
of administrative control for all WAS instances. A cell’s deployment manager

Chapter 2––A Portal Blueprint34

Figure 2.12: WebSphere Portal configuration on a three-node 
variant.



communicates with all related node agents to propagate and synchronize configu-
ration information across the cell.

A cluster is a set of WAS instances within a cell that has the same applications
deployed on them. A WAS instance that is a member of a cluster is sometimes
referred to as a clone. When creating a cluster, one of the options is to create a
Replication Domain. This option is used for memory-to-memory replication for
sharing persistent session data across servers and for enabling dynamic caching of
servlets and JSPs. This method of providing session data failover is new in
WebSphere Application Server V5. 

A replicator is a WebSphere Application Server run-time component that handles
the transfer of internal WebSphere Application Server data. Replicators operate
within a running application server process. You must define replicators, as
needed, as part of the cluster management. 

WebSphere Portal Implications
WebSphere Portal uses replicators for dynamic caching and memory-to-memory
session replication. Enabling replication for dynamic caching in a WebSphere
Portal cluster environment is absolutely necessary to maintain data integrity
between various WebSphere Portal nodes in the cluster. Replication also helps
improve performance by generating data once and then replicating it to other
servers in the cluster. Therefore, a replication domain with at least one replicator
entry needs to exist for WebSphere Portal. 

Vertical cloning refers to situations in which the clones all run on the same
machine. Horizontal cloning, on the other hand, refers to situations in which
clones are created to run on another machine. WebSphere Application Server
supports both forms of cloning. It follows, therefore, that Portal Server also can
be cloned.

Cloning works well with the three-node configuration (when tier 1, tier 2, and tier
3 are all running on separate machines). For example, if you were to introduce one
vertical clone of the application server into Figure 2.12, the new layout would look
similar to that in Figure 2.13.

Topologies 35



Note: In production environments, WebSphere Portal server requires global
security to be set in WebSphere Application Server. That forces you to place
common JAR files in a shared directory when you implement cloning.

Vertical cloning provides application failover within the same physical machine. If
you have a very powerful multiway processor, vertical cloning allows you to make
maximum use of the computing resources of the machine. Also, if you are memory
constrained, it allows you to open multiple JVMs to take advantage of system
memory. However, use this approach only if you have the CPU capacity to support
multiple clones.

Horizontal cloning, that is, running the application server clone on a separate
machine, would make the layout look something like that in Figure 2.14. Cloning,
as such, mainly involves components in tier 2—the application server layer.
(Figure 2.13 shows Domino Server, whereas Figure 2.14 shows LDAP Server as it
relates to any of the common ones like Tivoli Directory Server or SunOne

Chapter 2––A Portal Blueprint36

Figure 2.13: WebSphere Portal configuration on a three-node variant,
with vertical cloning.



Directory Server or Novell eDirectory Server. It is not our intent to confuse the
reader, but to show you configurations using different software components.)

Horizontal cloning provides not only application failover, but also hardware
failover. The only requirement is that the application (in this case, Portal Server)
must be distributed across multiple machines.

Tip: Vertical and horizontal cloning within the same configuration is also
possible. However, it is beyond the scope of this book.

Figures 2.13 and 2.14 show Personalization components in both clones of a clus-
tered environment. We want to point out that WebSphere Portal provides two
property files that you can modify to customize the Personalization feature. These
files are not managed by the WebSphere Application Server deployment manager.
This means that if you make any changes to these files on a node in the cluster,
those changes are not transferred to other nodes when you perform a synchroniza-
tion of the cluster members. Instead you must manually copy the following
properties files to each node in the cluster: 

<WPS_HOME>/shared/app/config/services/PersonalizationService.properties 
<WPS_HOME>/shared/app/config/services/FeedbackService.properties 

Topologies 37

Figure 2.14: WebSphere Portal configuration with horizontal cloning.



On the topic of clustering, please refer to the excellent documentation that is
available in the WebSphere Portal online help facility.

Other Configurations
Later in this book, you will learn about components that are part of WebSphere Portal
Extend edition, like Search and Site Analyzer. If an enterprise is running these and
other WebSphere Portal software components, what is an appropriate configuration?
In other words, which software components can and should be co-located? 

Because WebSphere Portal server is an application in WebSphere Application
Server, the technical nuances that affect a complex WebSphere Application Server
configuration are relevant even for WebSphere Portal server. 

In a WebSphere Portal Extend configuration that includes Extended Search Server
and the Site Analyzer there will be at least four extra servers. Our intent is not to
sell you more hardware by having Lotus Team Workplace (LTW), Lotus Instant
Messaging and Web Conferencing (LIMWC), and Lotus Workplace Web Content
Management (LWWCM) on three different machines with Domino servers. It is to
drive home the point that most of these software packages can be isolated and run
as “independent” components. Some software components like Lotus Team
Workplace and Lotus Instant Messaging and Web Conferencing, must be on differ-
ent machines because those products compete for similar resources and resource
conflicts could occur. You also have the option of co-hosting software packages
and even running them on different operating systems (OSs) within the same
configuration.

Installing and configuring a complex configuration that has multiple WebSphere
Portal clones on multiple nodes along with Web Content Manager and all the
Lotus components plus Site Analyzer, requires a lot of planning and takes time to
set up. More important, it also requires careful management from the perspective
of keeping things synchronized and within the confines of enterprise security. 

Some companies prefer to separate intranet users from internet users by having ded-
icated servers that serve up totally independent content. Other companies have com-
mon content, and they maintain the separation via users, groups, and virtual hosts.
The latter scenario is becoming more common with enterprises, especially given the
ability to create virtual portals, which is covered in one of the later chapters.

Chapter 2––A Portal Blueprint38



Process Portals
All the topology diagrams thus far depicted a box named BPC that seems to span
both WebSphere Application Server and WebSphere Portal Server. This is the
Business Process Choreographer component that is part of WebSphere Business
Integration Server Foundation (WBISF) V5.1. WBISF is one of the new compo-
nents in WebSphere Portal V5.1. The intent was to indicate that the Business
Process Container (BPC) can be configured either on WebSphere_Portal server or
on the default server1 of WebSphere Application Server, which would be our
recommendation.

No drastic changes are necessary in the topologies, because WBISF is an integral
part of WebSphere Application Server and requires it to run. The recommendation
is to configure the Business Process Container on a server other than on
WebSphere_Portal so that the portal server is not overloaded. With that said,
Figure 2.15 shows how the one-node configuration would look. It is important to
note that Personalization (PZN) and WebSphere Global Security play an important
role in Process Portals. 

Topologies 39

Figure 2.15: A Process Portal configuration in a one-node variant
topology.



So what is a process portal? It is a corporate portal that is designed to present the
right tasks to the right people at the appropriate time through a consistent and easy-
to-use personalized interface. It benefits enterprises that have business processes. 

Business processes can be noninterruptible or interruptible. Typically, interruptible
processes are long processes that might require human intervention, such as a loan
approval process or a parts ordering process or vacation approval. Processes like
these that have human tasks can be presented via a portal. Thus, a process portal
makes use of the underlying process workflow, along with the personalization
engine and overall security infrastructure, to present the appropriate task to the
user when he is signed into the portal. Process portals are discussed in Chapter 8.

In designing a topology for a process portal, the architect might like to maintain a
separation of the different layers, especially the presentation layer and the process
layer. An example topology is shown in Figure 2.16. Such a design also allows you
to tune the portal machine (Machine 2) in a way different from the process
machine (Machine 3).

Another subtle change appears in Figure 2.16, wherein we replaced Domino LDAP
with a generic LDAP Server. That was to indicate the fact that Domino Server can
work with other LDAP Servers like IBM Tivoli Directory Server (TDS). 

Chapter 2––A Portal Blueprint40

Figure 2.16: A process portal configuration that maintains separation of
layers.



Separating the middle tier in such a way would also help in product upgrades. It is
conceivable that the business processes are meant only for employees—that is, the
process portal might be surfaced in an intranet portal, whereas the portal machine
could be serving up content meant for both, intranet and Internet portals. As enter-
prises become more knowledgeable and familiar with process portals, we are quite
sure that architects will find better ways to design them. 

Door Closings
No matter which topology you choose, avoid last-minute surprises by configuring
your test or staging system to look exactly like your proposed production system.
For example, even if everything works fine on a single-node configuration, when
some of the software components are configured to run on different machines, you
have to make sure things are deployed properly and that inter-machine
communications are not a bottleneck.

With the newest kind of portal, Process Portals, a few more components are intro-
duced into the configuration, but they still follow the MVC paradigm, and the
topologies do not drastically change.

Door Closings 41




