
5
Introduction to XML Development

The Extensible Markup Language (XML) has been around long enough now
that the majority of users are probably familiar with it. It is a platform-
independent language that can be used to transmit both information and data.
Rational Application Developer provides a complete set of visual tools to help
you develop XML applications. XML is so versatile that it can be used any-
where—you can use it in a Web project, with a relational database, with an
EJB, etc. In this chapter, you learn how to create XML and use it in your
applications.

Rational Application Developer provides a number of XML authoring tools.
Figure 5-1 shows the list of available XML wizards.

To create an XML file, you use the XML File Creation wizard and the XML
editor. When you use the XML File Creation wizard, you will be asked whether
you want to create the XML file from a Document Type Definition (DTD) file,
from an XML Schema (XSD) file, or from scratch, as shown in Figure 5-2. Both
the DTD and XSD files define the vocabularies and describe the proper syntax
of building an XML document.

161

If you have a DTD or an XSD defined for your XML document, the XML
parser can parse and validate the XML document against the definition.
Furthermore, when different parties exchange XML data, definitions like these

CHAPTER 5: Introduction to XML Development

162

Figure 5-1: List of XML wizards.

Figure 5-2: The XML File Creation wizard.

enable each party to validate the incoming and outgoing XML files. This helps
ensure data integrity and minimizes any miscommunications.

DTD has a longer history than XSD. The following is a sample of a DTD docu-
ment defined internally within an XML document, where the DTD document
starts with !DOCTYPE and each element is defined with !ELEMENT:

There are some disadvantages of using DTD documents. A DTD document
is written in a different syntax than the XML document itself. In addition,
DTD has a limited capability for specifying data types. As a result, the XML
Schema was created to be an improvement over DTD.

The first improvement is that XSD is written in XML format. It provides
numerous enhanced data types and also allows user-defined data types. XSD is
object-oriented, so it supports data-type inheritance, restrictions, and patterns.
Rational Application Developer provides the support to create XSD files
graphically or textually. Figure 5-3 is an XSD file in the Graph view.

Introduction to XML Development

163

<?xml version=“1.0”?>
<!DOCTYPE address [

<!ELEMENT address (street, city, country)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT country (#PCDATA)>

]>
<address>

<street>123 Ave</street>
<city>Toronto</city>
<country>Canada</country>

</address>

The following is a sample of an XML Schema document:

CHAPTER 5: Introduction to XML Development

164

Figure 5-3: XML Schema in the Graph view.

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.ibm.com”
xmlns:Address=“http://www.ibm.com”>

<element name=“Address”>
<complexType>

<sequence>
<element name=“Street” type=“string” />
<element name=“City” type=“string” />
<element name=“Country” type=“string” />
</sequence>

</complexType>
</element>

</schema>

This document has an element named Address and a sequence of elements
named Street, City, and Country. As you can see, an XSD is in XML format.
Tutorial 1 describes the syntax of XSD in more detail. The editor will produce
compilation errors if an XML document does not conform to the DTD or XSD
specified in the creation of the XML document.

After you have created XML documents, you will need to access them program-
matically. One common way to read and manipulate XML documents is to use
the DOM and SAX parsers, which you will see in tutorial 2. Another way is to
use Service Data Objects (SDO). As mentioned in chapter 4, SDO is a data pro-
gramming architecture that unifies the data program across any datasources. It
provides robust APIs for querying and updating data, and consists of two major
components: data graphs and data objects. Data objects are the generic represen-
tations of the data. Data graphs are envelops for data objects. Tutorial 5 demon-
strates how SDO data objects can be created to manipulate XML documents.

In addition to creating DTD, XSD, and XML documents, Rational Application
Developer also provides wizards to create Extensible Stylesheet Language
Transformations (XSLT). In the XSLT editor, you can easily create an XPath
expression using the XPath Expression Builder, as shown in Figure 5-4.

Introduction to XML Development

165

Figure 5-4: The XSLT editor and XPath Expression Builder.

In tutorial 3, you will create an XSL style sheet using the XSL editor. Later,
you will use the Java API for XML Processing (JAXP) to dynamically trans-
form an XML document into another format using the XSL style sheet.

Rational Application Developer has support for translating database data into
XML directly and vice versa. The support is called SQLToXML and
XMLToSQL. You can generate an XST template from a database connection,
which enables you to directly translate database data into XML. In addition,
you can export an XML document directly into a database as a way to insert,
update, or delete data. Tutorial 4 demonstrates this feature.

To summarize, this chapter includes the following tutorials to explore some of
the XML tools in Rational Application Developer:

■ Tutorial 1: Creating XSD and XML Files

■ Tutorial 2: Using JAXP

■ Tutorial 3: Using Extensible Stylesheet Language Transformations
(XSLT)

■ Tutorial 4: Using XML with SQL
■ Tutorial 5: Using SDO with XML

Tutorial 1: Creating XSD and XML Files
This tutorial demonstrates how to create XML Schema (XSD) and XML docu-
ments using Rational Application Developer. You will create an XSD that describes
the syntax of an address book. Later, you will create an XML document that con-
forms to the schema you created. Through the creations of these documents, you
will examine the different constructs available in the XSD and XML language.

Before we begin, let’s take a look at the following simple XSD example:

CHAPTER 5: Introduction to XML Development

166

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.ibm.com”
xmlns:Address=“http://www.ibm.com”>

<element name=“Address”>
<complexType>

This XSD example describes an Address element that contains a sequence of
String elements: Street, City, and Country.

There are two kinds of type definitions in XSD: simpleType and complexType.
These type definitions could be named or anonymous. In this example, the
complexType definition is anonymous. The Address element is a global element
definition associated with a regular XSD built-in type, either a simpleType or a
complexType.

Some examples of the regular XSD built-in data types are string, decimal,
boolean, integer, date, and time. A simpleType allows you to control the values
of an element by placing a restriction on a built-in data type. This restriction is
called a facet.

A complexType element definition allows child elements or attributes to be
defined. It can contain many other elements. The <Address> element in the
example is a complexType.

If you created an XML document conforming to this XML Schema, it might
look similar to the following:

Tutorial 1: Creating XSD and XML Files

167

<sequence>
<element name=“Street” type=“string” />
<element name=“City” type=“string” />
<element name=“Country” type=“string” />
</sequence>

</complexType>
</element>

</schema>

<?xml version=“1.0” encoding=“UTF-8”?>
<Address:Address xmlns:Address=“http://www.ibm.com”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.ibm.com Address.xsd “>

<Street>8200 Warden Ave.</Street>
<City>Markham</City>
<Country>Canada</Country>

</Address:Address>

Namespace

When defining an XSD, you need to assign it to a namespace. In the above
example, the XSD is in the namespace named http://www.ibm.com. That is
called the targetNamespace. Furthermore, an XML schema can reference other
schemas, so elements defined in those schemas can be used or referenced.

One of the namespaces that all the schemas need to refer to is the w3.org XML
Schema. This defines the basic vocabularies for XSD and is sometimes referred
to as “the XML schema for Schemas.” Keywords such as <schema>, <element>,
and <complexType> are from the w3.org XML Schema. The namespace for the
w3.org XML Schema is http://www.w3.org/2001/XMLSchema.

Since an XSD file can have references to multiple namespaces, it is possible to
have two schemas that have elements with the same name. To distinguish
between these elements, you can define a prefix for each namespace. For exam-
ple, xmlns:Address=“http://www.ibm.com” has a prefix of Address that refers
to the namespace http://www.ibm.com. You can also define a default namespace
for your XSD. For example, the default namespace for the above example is the
w3.org XML Schema. When referring to the elements defined in the default
namespace, you can directly use the element name without any prefix.

Now, let’s begin the tutorial. In this tutorial, you create an XSD file and an
XML file in a Java project. Later, you will extend the XSD using some of the
more advanced XML Schema constructs.

Step 1: Create a New XML Project

Create a new Java Project named Ch5XMLProject and a folder named xml.
XML and XSD files can be stored in any type of project.

1. From the workbench, select File => New => Project. Click Next.
2. Select Java => Java Project. Click Next.
3. Enter Ch5XMLProject as the project name and click Finish.
4. Right-click Ch5XMLProject and select New => Folder.
5. Enter xml as the folder name. Click Finish.

CHAPTER 5: Introduction to XML Development

168

Step 2: Create an XML Schema (XSD)

Create an XSD file named ContactInfo.xsd:

1. Right-click the Ch5XMLProject/xml and click New => Other. Check
the Show All Wizards check box.

2. Select XML => XML Schema. Click Next.

3. Enter ContactInfo.xsd as the file name. Click Finish.

4. To modify the pre-filled namespaces, go to the Properties view.
In the General tab, change the target namespace to
http://www.addresscontact.com, as shown in Figure 5-5.

5. In the Outline view, right-click ContactInfo.xsd and select Add
Complex Type. This will automatically create a <complexType>
element, as shown in Figure 5-6. Click NewComplexType and you
will be at the zoomed-in Graph view of the complexType node.

6. In the Graph view, modify the name to AddressType.

7. Right-click AddressType and select Add Sequence.

8. Right-click the Sequence node and select Add Element. Change the
name of the element to Street.

9. Repeat step 8 to add the other two elements, City and Country. The
result is shown in Figure 5-7.

Tutorial 1: Creating XSD and XML Files

169

Figure 5-5: The Properties view of ContactInfo.xsd.

If you look at the code in the Source view, you should see the following:

CHAPTER 5: Introduction to XML Development

170

Figure 5-6: The Add Complex
Type menu.

Figure 5-7: The AddressType
element.

<complexType name=“AddressType”>
<sequence>

<element name=“Street” type=“string” />
<element name=“City” type=“string” />
<element name=“Country” type=“string” />

</sequence>
</complexType>

Create another complexType named PersonalInfoType:

1. Right-click ContactInfo.xsd in the Outline view and select Add
ComplexType.

2. Right-click PersonalInfoType and select Add All.

3. Right-click the All node and select Add Element. Modify the name to
Address.

4. In the Properties view, change the type by clicking the Browse button.
Select the User-defined complexType radio box and click
tns:AddressType, as shown in Figure 5-8. Click OK.

Figure 5-9 shows the resulting PersonalInfoType complexType. If you
expand on the Address element, you should see the definition of the
AddressType.

You should see the following in the Source view:

Tutorial 1: Creating XSD and XML Files

171

Figure 5-8: Selecting
tns:AddressType.

Figure 5-9: PersonalInfoType in the Graph view.

1. In the Outline view, right-click ContactInfo.xsd and click Add Global
Element. Change its name to PersonalInfo.

2. In the Properties view, browse the type to select tns:PersonalInfoType. As
you can see in Figure 5-10, it is a user-defined complex type.

3. To format the document, right-click in the editor (in the Source view)
and click Format => Document.

4. Save the file.

The final XSD, shown in Figure 5-11, should look like this in the Source view:

CHAPTER 5: Introduction to XML Development

172

<complexType name=“PersonalInfoType”>
<all><element name=“Address” type=“tns:AddressType” />
</all>
</complexType>

Figure 5-10: Selecting
tns:PersonalInfoType.

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”
targetNamespace=“http://www.addresscontact.com”
xmlns:tns=“http://www.addresscontact.com”>

<complexType name=“AddressType”>
<sequence>

<element name=“Street” type=“string”></element>
<element name=“City” type=“string”></element>

Step 3: Generate an XML File

The XML tools in Rational Application Developer allow you to create an XML
from an XSD, and vice-versa. In this step, you generate an XML file named
ContactInfo.xml that uses the XSD file created in the previous step.

1. In the Navigator view, right-click ContactInfo.xsd and click Generate
=> XML File. Click Next.

2. Enter ContactInfo.xml as the file name. Click Next.

3. Click Finish. Notice that the generated XML file has all the required
elements filled out:

Tutorial 1: Creating XSD and XML Files

173

<element name=“Country” type=“string”></element>
</sequence>

</complexType>

<complexType name=“PersonalInfoType”>
<all>

<element name=“Address” type=“tns:AddressType”>
</element>

</all>
</complexType>

<element name=“PersonalInfo”
type=“tns:PersonalInfoType”></element>
</schema>

Figure 5-11: The final XSD in the Graph view.

Step 4: Expand the XML Schema

You created a simple XSD file in step 2 that contains one global element named
PersonalInfo, which is of PersonalInfoType. In this step, you further expand the
XSD to include other XSD types.

Add a <simpleType> definition named NameType:

1. In the ContactInfo.xsd editor (Outline view), right-click
ContactInfo.xsd and click Add Simple Type.

2. In the Properties view, change the name to NameType.

3. Select atomic from the Variety drop-down box, as shown in Figure 5-12.

The following code is generated:

CHAPTER 5: Introduction to XML Development

174

Figure 5-12: A simpleType General page.

<simpleType name=“NameType”>
<restriction base=“string”></restriction>

</simpleType>>

<?xml version=“1.0” encoding=“UTF-8”?>
<tns:PersonalInfo xmlns:tns=“http://www.addresscontact.com”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.addresscontact.com ontactInfo.xsd ”>

<Address>
<Street>Street</Street>
<City>City</City>
<Country>Country</Country>

</Address>
</tns:PersonalInfo>

The next simpleType definition you need to create, named GenderType, has a
pattern restriction that only allows a value of either Male or Female.

1. Right-click ContactInfo.xsd and click Add Simple Type. In the
Properties view, change the name to GenderType. Select atomic from
the Variety drop-down box.

2. Switch to the Advanced page and select the Patterns tab.

3. Click Add and enter Male|Female in the Current regular expression
text field, as shown in Figure 5-13. Click Next to test the expression.
Click Finish.

The code for GenderType is as follows:

Create a simpleType named AgeGroupType, for which the acceptable values are
19 or under, 20-29, 30-39, and 40 or over:

1. Right-click ContactInfo.xsd and click Add Simple Type. In the Properties
view, change the name to AgeGroupType. Select Atomic as the variety.

2. Switch to the Enumerations page and click Add. Enter 19 or under,
20-29, 30-39, and 40 or over as shown in Figure 5-14. Click OK.

Tutorial 1: Creating XSD and XML Files

175

Figure 5-13: The GenderType simpleType Advanced page.

<simpleType name=“GenderType”>
<restriction base=“string”>

<pattern value=“Male|Female” />
</restriction>

</simpleType>

The code for the AgeGroupType enumerations is as follows:

Create a simpleType named PhoneType whose only valid value is ddd-ddd-
dddd where d is a digit. Each digit must be between zero and nine.

1. Right-click ContactInfo.xsd and click Add Simple Type. Enter
PhoneType as the name. Select Atomic as the variety.

2. In the Advanced page’s Pattern tab, add a new pattern and enter [0-9]
{3}-[0-9]{3}-[0-9]{4} as the regular expression. Click Next to test it.

3. Enter 111 in the Sample Text field. You will see an error message
saying that the sample text does not match the expression.

4. Enter 905-123-4567 in the Sample Text field. You should see no error
message. Click Finish.

The code for this simpleType is shown here:

CHAPTER 5: Introduction to XML Development

176

<simpleType name=“AgeGroupType”>
<restriction base=“string”>

<enumeration value=“19 or under” />
<enumeration value=“20-29” />
<enumeration value=“30-39” />
<enumeration value=“40 or over” />

</restriction>
</simpleType>

<simpleType name=“PhoneType”>
<restriction base=“string”>

<pattern value=“[0-9]{3}-[0-9]{3}-[0-9]{4}” />
</restriction>

</simpleType>

Figure 5-14: AgeGroupType enumerations.

Create a simpleType named EmailType:

1. Right-click ContactInfo.xsd and click Add Simple Type. EmailType
has a pattern restriction. The only valid value is an email address, which
can contain any number of characters or digits followed by the “at” sign
(@). To specify this kind of pattern, you can use the plus sign to indicate
one or more characters. For example, if you add a plus sign after [a-zA-
Z0-9], it means the value must contain one or more uppercase, lower-
case, or numeric characters. The pattern [a-zA-Z]{3} means that the value
must contain three characters, which can be either uppercase or lower-
case. Use the same procedure as the previous step to create the simple
type, and add a pattern restriction for an email address, like this:

2. Modify the PersonalInfoType in the Source view to include the newly
created types, as follows:

The <all> tag means that any XML element of PersonalInfoType must
contain all of these elements—Address, Name, Gender, AgeGroup,
Phone, and Email. Unlike the <sequence> tag, the <all> tag does not
require the elements to be in sequence. Alternatively, you could add
these elements graphically in the Graph view.

3. Save the file.

Tutorial 1: Creating XSD and XML Files

177

<simpleType name=“EmailType”>
<restriction base=“string”>

<pattern value=“[a-zA-Z0-9]+@[a-zA-Z0-9]+.[a-zA-Z]{3}” />
</restriction>

</simpleType>

<complexType name=“PersonalInfoType”>

<all>

<element name=“Address”

type=”tns:AddressType”></element>

<element name=“Name” type=“tns:NameType” />

<element name=“Gender” type=“tns:GenderType” />

<element name=“AgeGroup” type=“tns:AgeGroupType” />

<element name=“Phone” type=“tns:PhoneType” />

<element name=“Email” type=“tns:EmailType” />

</all>

</complexType>

Here is the complete ContactInfo.xsd file, shown graphically in Figure 5-15:

CHAPTER 5: Introduction to XML Development

178

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”
targetNamespace=“http://www.addresscontact.com”
xmlns:tns=“http://www.addresscontact.com”>

<complexType name=“AddressType”>
<sequence>

<element name=“Street” type=“string”></element>
<element name=“City” type=“string”></element>
<element name=“Country” type=“string”></element>

</sequence>
</complexType>

<complexType name=“PersonalInfoType”>
<all>

<element name=“Address” type=“tns:AddressType”></element>
<element name=“Name” type=“tns:NameType” />
<element name=“Gender” type=“tns:GenderType” />
<element name=“AgeGroup” type=“tns:AgeGroupType” />
<element name=“Phone” type=“tns:PhoneType” />
<element name=“Email” type=“tns:EmailType” />

</all>
</complexType>

<element name=“PersonalInfo”
type=“tns:PersonalInfoType”></element>

<simpleType name=“NameType”>
<restriction base=“string”></restriction>

</simpleType>

<simpleType name=“GenderType”>
<restriction base=“string”>

<pattern value=“Male|Female”></pattern>
</restriction>

</simpleType>

<simpleType name=“AgeGroupType”>
<restriction base=“string”>

<enumeration value=“19 or under”></enumeration>
<enumeration value=“20-29”></enumeration>
<enumeration value=“30-39”></enumeration>
<enumeration value=“40 or over”></enumeration>

</restriction>
</simpleType>

<simpleType name=“PhoneType”>
<restriction base=“string”>

<pattern value=“[0-9]{3}-[0-9]{3}-[0-9]{4}”></pattern>

Tutorial 1: Creating XSD and XML Files

179

</restriction>
</simpleType>

<simpleType name=“EmailType”>
<restriction base=“string”>

<pattern value=“[a-zA-Z0-9]+@[a-zA-Z0-9]+.[a-zA-Z]{3}” />
</restriction>

</simpleType>

</schema>

Figure 5-15: The final Contactinfo.xsd in the Graph view.

Step 5: Generate the XML File

1. In the Navigator view, delete the ContactInfo.xml file you previously
generated.

2. Right-click ContactInfo.xsd and click Generate => XML File. Click Next.

3. Enter ContactInfo.xml as the file name. Click Next.

4. Click Finish. Right-click the XML file and select Run Validation. You
might notice that there are validation errors on the Gender, Phone, and
Email elements. This is because the values do not obey the restriction facet.

5. Modify the value in the Gender element to Female.

6. Modify the value in the Phone element to 333-333-3333.

7. Modify the value in the Email element to abc@ibm.com.

8. Save the file. It should have no more validation errors, and should look
like this:

The simpleType facets in XML Schema are extremely powerful, especially
when used with patterns and restrictions. They enable you to virtually create
any kind of data types. Rational Application Developer provides additional sup-
port to validate the XML document against the XML Schema. Table 5-1
summarizes the different types of XSD elements and pattern facets.

CHAPTER 5: Introduction to XML Development

180

<?xml version=“1.0” encoding=“UTF-8”?>
<tns:PersonalInfo xmlns:tns=“http://www.addresscontact.com”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.addresscontact.com
ContactInfo.xsd”>

<Address>
<Street>Street</Street>
<City>City</City>
<Country>Country</Country>

</Address>
<Name>Name</Name>
<Gender>Female</Gender>
<AgeGroup>19 or under</AgeGroup>
<Phone>333-333-3333</Phone>
<Email>abc@ibm.com</Email>

</tns:PersonalInfo>

Tutorial 1: Creating XSD and XML Files

181

Table 5-1: Common SimpleType Facets and Pattern Facets

XSD Example XML Example and
Explanation

Enumeration The valid values for the “food” element are
Pizza, Pasta, and Wings.

FractionDigits This specifies the maximum number of
decimal places that are allowed. For exam-
ple, 23.1234 would not be a valid value.

TotalDigits This specifies the maximum number of
total digits to be two. For example, 2.3 or
23 would both be valid.

Length This specifies the exact length of the element.

maxLength and minLength maxLength specifies the maximum length of
the value. minLength specifies the minimum
length.

whiteSpace The whiteSpace restriction can have three
values:
1) “preserve”—Preserve all the white

space.
2) “replace”—Replace all the white space

with spaces.
3) “collapse”—Replace all white space with

spaces, remove all leading and trailing
spaces, and collapse multiple spaces.

<element name= “Price”>
<simpleType>

<restriction base=“decimal”>
<fractionDigits value=“2”/>

</restriction>
</simpleType>
</element>

<Price>2.34</Price>

<element name=“Price”>
<simpleType>

<restriction base=“decimal”>
<totalDigits value=“2”/>

</restriction>
</simpleType>
</element>

<Price>2.3</Price>

<simpleType>
<restriction base=“string”>
<whiteSpace value=“collapse”/>

</restriction>
</simpleType>

<element name=“Food”>
<simpleType>

<restriction base=“string”>
<enumeration value=“Pizza” />
<enumeration value=“Pasta” />
<enumeration value=“Wings” />
</restriction>

</simpleType>
</element>

<Food>Wings</Food>

Tutorial 2: Using the Java API for XML Processing (JAXP)
In the previous tutorial, we examined the XML Schema editor in Rational
Application Developer v6 and used the XSD file created to generate an XML doc-
ument. To read and manipulate XML documents, you need to use XML parsers.
Rational Application Developer includes a parser that is based on the Xerces open-
source project on Apache. There are over a dozen XML parser implementations
available from various vendors, and Xerces is one of the common ones.

Two standards of Application Programming Interfaces (APIs) can process an
XML document in Java: Simple API for XML (SAX) and Document Object
Model (DOM). The SAX API is event-driven. It provides a DefaultHandler han-
dler class that your XML application can implement. Once implemented, the
XML application will act as a listener, listening to events that are sent by the
SAX parser. Examples of these events are startElement() indicating the begin-
ning of an element, endElement() indicating the end of an element, and
startDocument() indicating the beginning of an XML document.

Unlike the SAX API, the DOM API can create and read XML documents. It
creates an in-memory tree representation of the XML document. You can
manipulate the Document object by invoking methods on it. The DOM API

CHAPTER 5: Introduction to XML Development

182

Table 5-1: Common SimpleType Facets and Pattern Facets (continued)

Pattern Example Explanation

[a-zA-Z0-9] A valid value is one lowercase letter,
uppercase letter, or any digit.

[0-9][a-z] A valid value requires a digit to be followed
by a lowercase letter.

[xyz] A valid value is x, y, or z.

([a-z])* A valid value can contain any length of
lowercase letters.

([a-z][A-Z])+ A valid value requires at least one occurrence
of one lowercase letter, followed by an upper-
case letter.

[a-z]{8} A valid value contains exactly eight lower-
case letters.

loads the XML document into memory, so it is more memory-intensive than the
SAX API. However, it allows applications to have access to the complete XML
document and provides tree-based APIs for easy manipulation.

As mentioned previously, many different XML parser implementations are pro-
vided by various vendors. Each of these implementations can be a bit different
to work with. Therefore, code written for a particular parser might not be
portable to another parser. The solution to that is Java API for XML Processing
(JAXP). JAXP provides vendor–implementation-independent interfaces for
using XML parsers. It contains a set of high-level interfaces that can work with
any parser implementation. Using it, you can easily swap the underlying vendor
implementation by changing the setting of certain properties.

Rational Application Developer v6 supports JAXP 1.2.4, which has Xerces as
the default implementation. You can configure JAXP to use different parsers by
performing one of the three actions listed below:

■ Modify the javax.xml.parsers.DocumentBuilderFactory system property.
■ Modify the lib/jaxp.properties file.
■ Modify the METAINF/services/javax.xml.parsers.

DocumentBuilderFactory file.

JAXP 1.2.4 supports DOM Level 2. In DOM 2, you cannot directly save a
DOM tree into an output stream or a file. However, a workaround is available,
as you will see later in this tutorial. This problem should be solved in DOM
Level 3 with the Load and Save functionality.

In this tutorial, you will create a Java application that uses the SAX parser, and
modify an existing XML document using the DOM parser. Before following the
steps below, if you have not already created the project from the first tutorial,
create a new Java project named Ch5XMLProject.

Step 1: Create a New Package

Create a Java package named xmlparsers in Ch5XMLProject.

1. In the Java perspective, right-click Ch5XMLProject and click New =>
Package.

2. Enter xmlparsers as the package name. Click Finish.

Tutorial 2: Using the Java API for XML Processing (JAXP)

183

Step 2: Create a New XML and XSD File

Create a new XSD and XML file in the xmlparsers folder. You will parse this
XML file using JAXP in the next step.

1. Right-click the xmlparsers folder and click New => Other.

2. Expand XML => XML Schema. Click Next.

3. Enter PhoneBook.xsd as the file name. Click Finish.

4. Modify the XSD file (using the Source view) with the following code:

5. Save and close the XML Schema editor. This XSD describes an ele-
ment named PhoneBook and can contain an unbounded number of the
PhoneEntry element. Alternatively, you can create the XSD using the
Graph view, as shown in Figure 5-16.

CHAPTER 5: Introduction to XML Development

184

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.ibm.com/PhoneBook”
xmlns:tns=“http://www.ibm.com/PhoneBook”>

<element name=“PhoneBook”>
<complexType>

<sequence>
<element name=“PhoneEntry” maxOccurs=“unbounded”>

<complexType>
<sequence>

<element name=“Name” type=“string” />
<element name=“Phone” type=“string” />

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

6. In the Package Explorer view, right-click PhoneBook.xsd and click
Generate => XML File. Click Next, and then click Finish.

7. Modify the XML file with the following text to add more entries. Save
the file and close the editor.

Tutorial 2: Using the Java API for XML Processing (JAXP)

185

Figure 5-16: PhoneBook.xsd in the Graph view.

<?xml version=“1.0” encoding=“UTF-8”?>

<tns:PhoneBook xmlns:tns=“http://www.ibm.com/PhoneBook”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=“http://www.ibm.com/PhoneBook PhoneBook.xsd”>

<PhoneEntry>

<Name>Mary</Name>

<Phone>111-1111</Phone>

</PhoneEntry>

<PhoneEntry>

<Name>Jane</Name>

<Phone>555-5555</Phone>

</PhoneEntry>

<PhoneEntry>

<Name>John</Name>

<Phone>777-7777</Phone>

</PhoneEntry>

</tns:PhoneBook>

Step 3: Create a SAX Parser

1. In the Package Explorer view, right-click the xmlparsers folder and
click New => Class.

2. Enter MySAXDefaultHandler as the class name.

3. Browse for org.xml.sax.helpers.DefaultHandler as the superclass.
Click OK.

4. Select the check box public static void main (String[] args). Click
Finish.

5. Modify the class file with the following code, and save the file:

CHAPTER 5: Introduction to XML Development

186

package xmlparsers;

import java.io.File;

import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

public class MySAXDefaultHandler extends DefaultHandler {

static private Locator documentLocator;

public static void main(String[] args) {
run();

}
public static void run () {

DefaultHandler handler = new MySAXDefaultHandler();
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);
try {
// Parse the input
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(new File(“xmlparsers/PhoneBook.xml”), handler);
} catch (Throwable t) {
t.printStackTrace();
}

}

This Java application echoes the elements in the PhoneBook.xml file.
The Java application acting as a SAX handler would process the XML
element event. The Locator allows you to get the line position of the
XML file. You can also obtain the column position using the Locator.
You can use Organize Imports to fix any compilation errors. If you are
given a choice of different SAX parsers when doing Organize Imports,
select the one with javax.xml.parsers as the package name. For the
others, refer to the import statements for the correct packages.

6. Run the code as a Java application. Right-click
MySAXDefaultHandler and click Run => Java Application. The
output looks like Figure 5-17. The startElement() method is called
when an element start tag is encountered. The characters() method is
invoked when there are characters embedded between the start and end
element tags.

Tutorial 2: Using the Java API for XML Processing (JAXP)

187

public void setDocumentLocator(Locator locator) {
documentLocator = locator;

}

public void startDocument() throws SAXException {}
public void endDocument() throws SAXException {}

public void startElement(String namespaceURI, String lName,
String qName, Attributes attrs) throws SAXException {
int line = documentLocator.getLineNumber();
System.out.println(“line ” + line + “ <” + qName +“>”);

}

public void endElement(String namespaceURI, String sName,
String qName) throws SAXException {
int line = documentLocator.getLineNumber();
System.out.println(“line ” + line + “ </” + qName +“>”);

}

public void characters(char[] chars, int arg0, int arg1)
throws SAXException {
String result = new String(chars, arg0, arg1);
result = result.trim();
if (!result.equals(“”)) {

System.out.println(result);
}

}
}

Step 4: Create a DOM Parser

In this step, you parse the XML document using the DOM tree. Create a new
class named MyDOMParser:

1. Right-click the xmlparsers folder and click New => Class.

2. Enter MyDOMParser as the class name.

3. Select the public static void main (String[] args) check box. Click
Finish.

4. Modify the class file with the following code, and then save the file:

188

CHAPTER 5: Introduction to XML Development

Figure 5-17: Running MySAXDefaultHandler output.

Tutorial 2: Using the Java API for XML Processing (JAXP)

189

package xmlparsers;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.Text;

public class MyDOMParser {

public static void main(String[] args) {
try {
String filename = “xmlparsers/PhoneBook.xml”;
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
dbf.setValidating(false);

DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(filename);
Node root = doc.getDocumentElement();
Element phoneentry = doc.createElement(“PhoneEntry”);
Element name = doc.createElement(“Name”);
Text paul = doc.createTextNode(“Paul”);
Element phone = doc.createElement(“Phone”);
Text number = doc.createTextNode(“999-9999”);

root.appendChild(phoneentry);
phoneentry.appendChild(name);
name.appendChild(paul);
phoneentry.appendChild(phone);
phone.appendChild(number);

// Workaround for DOM 2 - write to a file or output stream
TransformerFactory factory =
TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer();
Source source = new DOMSource (doc);
DOMResult result = new DOMResult ();
StreamResult out_result = new StreamResult(System.out);
transformer.transform(source, out_result);

The application parses PhoneBook.xml into a Document object. It adds
a new element to the Document, and then prints the Document object to
System.out. As mentioned previously, DOM Level 2 does not support
directly serialization of the Document object. Therefore, a workaround
has been used to print the XML document you see in the last part of the
main() method.

5. Run the code as a Java application. Right-click MyDOMParser and
click Run => Java Application. The output of the program is shown
in Figure 5-18. Note that a new <PhoneEntry> has been added to the
XML document.

Both the SAX and DOM parsers are easy to use. Depending on your applica-
tion, you may choose to use one over another. A basic rule of thumb is that if
you have a large amount of information to parse and only need to store a small
amount of data, consider the SAX parser. However, if you need to manipulate
the XML document, the DOM parser might be more convenient.

In addition to using the DOM and SAX parsers, there is a new way to use SDO
to access XML document, which IBM is embracing. You will see more about
SDO and how to use it with XML in tutorial 5.

190

CHAPTER 5: Introduction to XML Development

} catch (Exception e) {
e.printStackTrace();

}
}

}

Figure 5-18: Running MyDOMParser.

Tutorial 3: Using Extensible Stylesheet Language
Transformations (XSLT)
This tutorial introduces you to Extensible Stylesheet Language Transformations
(XSLT) and XPath expression. You will create an XSL style sheet with the
XSLT editor and use it to transform an XML document into a text document.
This tutorial also shows you how to dynamically transform an XML document
into HTML using a Java servlet, for display in a Web browser.

XSLT is a transformation language that uses a style sheet to describe how a
document can be transformed into a different format. XSLT uses XPath expres-
sions to select values from an input XML source, and performs processing to
produce a desired output.

XPath is a query language for locating nodes, values, and attributes in XML
documents. Using the following XML document as an example, the XPath
expression /tns:PhoneBook will select the ROOT element PhoneBook. The
XPath expression /tns:PhoneBook/PhoneEntry/Name will select all the
Name elements in all the PhoneEntry elements, returning three Name
elements.

XPath is extremely powerful. It can select virtually any elements. Table 5-2
lists some more advanced XPath expression examples.

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

191

<?xml version=“1.0” encoding=“UTF-8”?>
<tns:PhoneBook>

<PhoneEntry>
<Name>Mary</Name>
<Phone>111-1111</Phone>
<Age>30</Age>

</PhoneEntry>
<PhoneEntry>

<Name>Jane</Name>
<Phone>555-5555</Phone>
<Age>25</Age>

</PhoneEntry>
<PhoneEntry>

<Name>John</Name>
<Address> 123 John St.</Address>

</PhoneEntry>
</tns:PhoneBook>

Xpath expressions are used in XSL style sheets to select particular elements or
attributes to perform some actions. For example, in the code in Figure 5-19, the
line <xsl:value-of select=“Name” /> would select the value of the Name element.
The word “Name” inside the quotation marks is an XPath expression. As another
example, consider the line <xsl:for-each select=“tns:PhoneBook/PhoneEntry”> in
Figure 5-19. It means the style sheet will do something for each PhoneEntry ele-
ment inside the PhoneBook element.

CHAPTER 5: Introduction to XML Development

Table 5-2: Advanced XPath Expression Examples

XPath Expression Example Explanation

/tns:PhoneBook/PhoneEntry This XPath will return all PhoneEntry elements.

/tns:PhoneBook/PhoneEntry[Age>28] This will return all the PhoneEntry elements
where Age is greater than 28.

/tns:PhoneBook/PhoneEntry[Address] This will return all the PhoneEntry elements that
have an Address element.

/tns:PhoneBook[1] This will select the first child of the PhoneBook
element, which is the first PhoneEntry element.

//Name This will select any occurrences of the Name ele-
ment, regardless of the tree hierarchy. A single
slash is an absolute path. A double slash means
to select any elements that fulfill the criteria (i.e.,
Name), regardless of the tree level.

/tns:PhoneBook/PhoneEntry/* An asterisk (*) is a wildcard. This example will
select all the elements under the PhoneEntry:
Name, Phone, Age, and Address.

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet version=“1.0” xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”
xmlns:xalan=“http://xml.apache.org/xslt”
xmlns:tns=“http://www.ibm.com/PhoneBook”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.ibm.com/PhoneBook PhoneBook.xsd”>

<xsl:template match=“/”>
PhoneBook Directory
<xsl:for-each select=“tns:PhoneBook/PhoneEntry”>

Name: <xsl:value-of select=“Name” />
Phone: <xsl:value-of select=“Phone” />

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Figure 5-19: A simple XSL style sheet.

192

Figure 5-19 is an inlined XSL style sheet, meaning all the operations are
embedded in one template. A template is a set of rules that make up an XSL
style sheet. The corresponding tag is <xsl:template>:

The match attribute defines an XPath expression that will be used as a pattern, to
match for nodes in XML documents. If a match is found, the template will apply
the actions listed inside it. For example, in Figure 5-19, the match attribute is “/,”
which will match the root element. When the root element is found, the template
will apply the actions <xsl:for-each> and <xsl:value-of>. Since Figure 5-19 is an
inlined template, all the actions are performed in the root template. Alternatively,
the same XSL can be modeled using separate templates, as shown in the following
code, where PhoneEntry, Name, and Phone are in separate templates:

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

193

<xsl:template match=“Some XPath Expression”>
[actions]

</xsl:template>

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet version=“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”
xmlns:xalan=“http://xml.apache.org/xslt”
xmlns:tns=“http://www.ibm.com/PhoneBook”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.ibm.com/PhoneBook PhoneBook.xsd ”>

<xsl:template match=“/”>
PhoneBook Directory
<xsl:apply-templates></xsl:apply-templates>

</xsl:template>

<xsl:template match=“tns:PhoneBook/PhoneEntry”>
<xsl:apply-templates></xsl:apply-templates>

</xsl:template>

<xsl:template match=“tns:PhoneBook/PhoneEntry/Name”>
Name: <xsl:value-of select=“Name” />

</xsl:template>

<xsl:template match=“tns:PhoneBook/PhoneEntry/Phone”>
Phone: <xsl:value-of select=“Phone” />

</xsl:template>
</xsl:stylesheet>

As the XSL parser parses through the XML document, when it encounters the
root element, it will use the root template. In the root template, the parser is
instructed to visit each child under root and apply template rules to them. When
the parser gets to the PhoneEntry node, the same <xsl:apply-templates/>
instruction tells the parser to visit each child under the PhoneEntry node and
apply template rules to them. Finally, the parser will visit the Name and Phone
node. Each has its own template that would print out its element value.

In Rational Application Developer, XSL style sheet can be created and edited in
the XSL editor. Since XPath expressions are used in style sheets, the XSL editor
provides an XPath Expression Builder that has support for building XPath
expressions visually. In addition, you can preview the result of your XPath
expression, given an actual XML document. Rational Application Developer
also includes an XSL debugger that you can use to debug XSL style sheets.

After an XSL style sheet is created, you can test it quickly by running it as an
XSL transformation. Simply right-click an XML and the XSL style sheet, and
select Run => XSL Transformation. An XML document will be created as the
result; it usually has a name that starts with an underscore.

You can use JAXP to transform an XSL style sheet dynamically in Java
applications. APIs are available in JAXP to perform the transform. Figure 5-20
shows that XSL can be used to transform an XML document to produce another
document format, such as HTML, XML, or text.

In this tutorial, you perform the following tasks:

■ Create and test your XSL style sheet using the XSL transformation tools.
■ Create a Java application using JAXP that can dynamically transform

XSL style sheets.

194

CHAPTER 5: Introduction to XML Development

XML
XSLT Processor
(java applications)

HTML or XML or
 Text

XSL

Figure 5-20: XSLT transformations in Java applications.

■ Create a servlet that can dynamically transform an XML document into
HTML.

If you have not already created the project Ch5XMLProject, do so before going
on to the first step of this tutorial.

Step 1: Create a New Package

Create a package named xsl in Ch5XMLProject:

1. In the Java perspective, right-click Ch5XMLProject and click New =>
Package.

2. Enter xsl as the package name. Click Finish

Step 2: Copy or Create XSD and XML Files

If you have created the PhoneBook.xsd and PhoneBook.xml files in tutorial 2,
copy them from the xmlparser folder to the xsl folder and proceed to step 3. If
not, create the two files in the xsl folder, using the following procedure:

1. Right-click the xsl folder and click New => Other. Expand XML =>
XML Schema. Click Next. Enter PhoneBook.xsd as the file name.
Click Finish.

2. Modify the file with the following code, and save the file.:

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

195

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.ibm.com/PhoneBook”
xmlns:tns=“http://www.ibm.com/PhoneBook”>

<element name=“PhoneBook”>
<complexType>

<sequence>
<element name=“PhoneEntry” maxOccurs=“unbounded”>

<complexType>
<sequence>

<element name=“Name” type=“string” />
<element name=“Phone” type=“string” />

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

3. In the Package Explorer view, right-click PhoneBook.xsd and click
Generate => XML File. Click Next, and then Finish. Modify the
XML file with the following text to add more entries:

4. Save the file and close the editor.

Step 3: Create an XSL File

1. Right-click the xsl folder and click New => Other.

2. Expand XML => XSL. Click Next.

3. Enter TransformPhoneBook.xsl as the file name. Click Next.

4. Select Ch5XMLProject/xsl/PhoneBook.xml and click Finish.

5. Edit the namespace of the XSL editor. In the Outline view, right-
click xsl:stylesheet and select Edit Namespaces as shown in
Figure 5-21.

196

CHAPTER 5: Introduction to XML Development

<?xml version=“1.0” encoding=“UTF-8”?>

<tns:PhoneBook xmlns:tns=“http://www.ibm.com/PhoneBook”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=“http://www.ibm.com/PhoneBook PhoneBook.xsd”>

<PhoneEntry>

<Name>Mary</Name>

<Phone>111-1111</Phone>

</PhoneEntry>

<PhoneEntry>

<Name>Jane</Name>

<Phone>555-5555</Phone>

</PhoneEntry>

<PhoneEntry>

<Name>John</Name>

<Phone>777-7777</Phone>

</PhoneEntry>

</tns:PhoneBook>

6. Click Add to add a new namespace. Select the Specify New
Namespace radio box.

7. Enter tns as the prefix and http://www.ibm.com/PhoneBook, as the
namespace name. Click Browse to select the file
Ch5XMLProject/xsl/PhoneBook.xsd. This will enable you to access the
elements in PhoneBook.xsd where the namespace is
http://www.ibm.com/PhoneBook, as shown in Figure 5-22.

8. Click OK to finish the dialog box.

9. Click OK again to close the Edit Schema Information dialog box.

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

197

Figure 5-22: Namespaces for the style sheet.

Figure 5-21: The Edit Namespace pop-up
menu.

Step 4: Edit the XSL

1. In the Outline view, right-click xsl:stylesheet and select Add Child
=> xsl:template. This will add the <xsl:template> tag to the editor.

2. In the editor, remove the line <xsl:apply-templates></xsl:apply-tem-
plates>, since you will create all the actions inline.

3. Place the cursor in the xsl:template tag. In the Properties view, enter /
as the match:

4. Right-click the slash (/) node in the Outline view and select Add
Child => xsl:for-each. Once again, remove the line <xsl:apply-tem-
plates></xsl:apply-templates> in the editor.

5. Right-click the <xsl:for-each> tag in the editor and select XPath
Expression, as shown in Figure 5-23.

198

CHAPTER 5: Introduction to XML Development

<xsl:template match=“/”>
</xsl:template>

Figure 5-23: XPath Expression Builder from the pop-up menu.

6. Expand tns:PhoneBook in the Source Tree view of the XPath
Expression Builder and select the first PhoneEntry node. Drag
PhoneEntry node to the text area on top of the dialog box. Click
OK to close the XPath Expression Builder. The <xsl:for-each> tag
should look like the following:

7. In the Outline view, right-click xsl:for-each and select Add Child =>
xsl:value-of.

8. Right-click the <xsl:value-of> tag in the editor and select XPath
Expression.

9. Enter /tns:PhoneBook/PhoneEntry in the Evaluation Context field.
The <xsl:value-of> tag is inside a selection of PhoneEntry; therefore,
the evaluation context needs to be adjusted.

10. Expand tns:PhoneBook in the Source Tree view, and expand any one
of the PhoneEntry nodes. Select Name [Mary] and drag it to the text
area on top, as shown in Figure 5-24. Click OK to close the builder.
The <xsl:value-of> tag should look like this:

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

199

<xsl:for-each select=“tns:PhoneBook/PhoneEntry”>

Name: <xsl:value-of select=“Name”/>

11. Repeat steps 7 and 8 to create another <xsl:value-of> under <xsl:for-
each> for selecting Phone.

12. In the XPath Expression Builder, enter /tns:PhoneBook/PhoneEntry
in the Evaluation Context field. Expand tns:PhoneBook, and select
PhoneEntry. Select Phone [111-1111] and drag it to the text area on
top. Click OK. The <value-of> tag should look like this:

13. Add the bolded labels shown below in the editor, and save the file.
The final XSL file should looks like this:

200

CHAPTER 5: Introduction to XML Development

Figure 5-24: XPath Expression Builder for selecting the value of Name.

Phone: <xsl:value-of select=“Phone”/>

Step 5: Test the XSL Transformation

1. In the Navigator view, select both the PhoneBook.xml and
TransformPhoneBook.xsl files, right-click, and click Run => XSL
Transformation.

2. The XSL Transformation tool will apply the TransformPhoneBook.xsl
file to PhoneBook.xml, and put the results into a file named
_PhoneBook_transform.xml.

3. Open _PhoneBook_transform.xml with the XML editor. As you can see
in the following results, the XSLT will select the Name and Phone
values for each PhoneEntry element in the XML file:

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

201

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet version=“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”
xmlns:xalan=“http://xml.apache.org/xslt”
xmlns:tns=“http://www.ibm.com/PhoneBook”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.ibm.com/PhoneBook PhoneBook.xsd ”>

<xsl:template match=“/”>
PhoneBook Directory
<xsl:for-each select=“tns:PhoneBook/PhoneEntry”>

Name: <xsl:value-of select=“Name” />
Phone: <xsl:value-of select=“Phone” />

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

<?xml version=“1.0” encoding=“UTF-8”?>
PhoneBook Directory

Name: Mary
Phone: 111-1111
Name: Jane
Phone: 555-5555
Name: John
Phone: 777-7777

Step 6: Write an XSL Transformation Script Using JAXP

In the previous step, you tested the XSL transformation process using the built-
in tooling. This step demonstrates how to transform files dynamically.

1. In the Navigator view, right-click the xsl folder and click New => Class.

2. Enter MyXSLTransformer as the class name.

3. Select the public static void main (String[] args) check box. Click Finish.

4. Modify the class file with the following code, and then save the file
and close the editor:

5. Run the file as a Java application by right-clicking MyXSLTranform
and clicking Run => Java Application. The output shown below
should be in the Console view:

CHAPTER 5: Introduction to XML Development

202

package xsl;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

public class MyXSLTransformer {

public static void main(String[] args) {
try {

TransformerFactory factory =
TransformerFactory.newInstance();
StreamSource stylesheet =
new StreamSource (“xsl/TransformPhoneBook.xsl”);
Transformer transformer =
factory.newTransformer(stylesheet);
StreamSource source = new StreamSource
(“xsl/PhoneBook.xml”);
DOMResult result = new DOMResult ();
StreamResult out_result = new
StreamResult(System.out);
transformer.transform(source, out_result);

} catch (Exception e) {
e.printStackTrace();

}
}

}

Step 7: Transform XML Documents into HTML

As seen from the previous step, it is very simple to transform an XML
document with XSLT in Java applications. Similarly, it is also quite easy to
transform an XML document into HTML in a Java servlet.

1. Create an EAR and a Web project named Ch5XMLEAR and
Ch5XMLEARWeb, respectively.

2. Create a folder in the WebContent folder. In the Web perspective’s
Package Explorer view, right-click the Ch5XMLEARWeb/WebContent
folder and select New => Folder. Enter xsl as the name. Click Finish.

3. Copy these three files from Ch5XMLProject/xsl to this
/WebContent/xsl folder: PhoneBook.xml, PhoneBook.xsd, and
TransformPhoneBook.xsl.

4. Open TransformPhoneBook.xsl in the editor. Modify the code as follows,
to produce an HTML document instead of just a text document:

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

203

<?xml version=“1.0” encoding=“UTF-8”?>
PhoneBook Directory

Name: Mary
Phone: 111-1111
Name: Jane
Phone: 555-5555
Name: John
Phone: 777-7777

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet version=“1.0”

xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”
xmlns:xalan=“http://xml.apache.org/xslt”
xmlns:tns=“http://www.ibm.com/PhoneBook”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.ibm.com/PhoneBook

PhoneBook.xsd”>
<xsl:template match=“/”>
<html>

<h1>PhoneBook Directory</h1>

5. Right-click Ch5XMLEARWeb/Java Resources/JavaSource
folder and select New => Other. Select Web => Servlet. Click
Next.

6. Enter HTMLXSLTProcessor as the name and click Finish.

7. Modify the servlet as follows, and save it:

CHAPTER 5: Introduction to XML Development

204

<table cellpadding=“3” cellspacing=“1” width=“50%”>
<xsl:for-each select=“tns:PhoneBook/PhoneEntry”>
<tr>

<td bgcolor=“cccccc”>Name:</td>
<td bgcolor=“ff9999”>

<xsl:value-of select=“Name” />
</td>

</tr>
<tr>

<td bgcolor=“cccccc”>Phone:</td>
<td bgcolor=“ff9999”>

<xsl:value-of select=“Phone” />
</td>

</tr>
<tr><td colspan=“2”>
</td></tr>

</xsl:for-each>
</table>

</html>
</xsl:template>

</xsl:stylesheet>

package xsl;

import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;

import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

The servlet takes the PhoneBook.xml file as the XML source, and applies the
TransformPhoneBook.xsl to it. To run the servlet, right-click
HTMLXSLProcessor and select Run => Run on Server. You should see
Figure 5-25 loaded in the browser, where the XML document has been
transform to HTML contents.

Tutorial 3: Using Extensible Stylesheet Language Transformations (XSLT)

205

public class HTMLXSLTProcessor extends HttpServlet implements Servlet {

public HTMLXSLTProcessor() {

super();

}

protected void doGet(HttpServletRequest arg0,

HttpServletResponse arg1) throws ServletException, IOException {

performTask (arg0, arg1);

}

protected void doPost(HttpServletRequest arg0,

HttpServletResponse arg1) throws ServletException, IOException {

performTask (arg0, arg1);

}

protected void performTask(HttpServletRequest req,

HttpServletResponse resp){

try {

PrintWriter out = resp.getWriter();

InputStream xslStream =

getServletContext().getResourceAsStream

(“/xsl/TransformPhoneBook.xsl”);

InputStream xmlStream =

getServletContext().getResourceAsStream

(“/xsl/PhoneBook.xml”);

TransformerFactory factory = TransformerFactory.newInstance();

StreamSource stylesheet = new StreamSource (xslStream);

Transformer transformer = factory.newTransformer(stylesheet);

StreamSource source = new StreamSource (xmlStream);

DOMResult result = new DOMResult ();

StreamResult out_result = new StreamResult(out);

transformer.transform(source, out_result);

} catch (Exception e) {

e.printStackTrace();

}

}

}

Tutorial 4: Using XML with SQL
In this tutorial, we will look at a Rational Application Developer tool that pro-
vides the functionality to directly connect database data with XML. This tool,
SQLToXML, is able to translate XML into database data and vice versa.

The SQLToXML function works for all the databases supported by Rational
Application Developer. In this tutorial, you will generate an XST file from a
database schema. The XST file stores all the information required to use the
SQLToXML runtime and contains database configuration information. Then,
you will write a Java application that uses the SQLToXML runtime to dynamically
obtain database data in an XML format, using the generated template.

You will perform the following tasks in the tutorial:

■ Generate a DDL script from the XML Schema document to create tables
in the database.

■ Insert data from XML directly into a database.

CHAPTER 5: Introduction to XML Development

206

Figure 5-25: Transforming an XML document into HTML in a
servlet.

■ Create an XST template from a SELECT statement.

■ Use a Java program to call the XST template to get the database data
dynamically.

If you have not already created the Java project Ch5XMLProject, create it
before proceeding.

Step 1: Create a New Package

Create a package named xst in Ch5XMLProject:

1. In the Java perspective, right-click Ch5XMLProject and click New =>
Package.

2. Enter xst as the package name. Click Finish.

Step 2: Copy or Create XSD Files

If you have created the PhoneBook.xsd file in tutorial 2, copy it from the xmlparser
folder to the xst folder. If not, create the PhoneBook.xsd file in the xst folder:

Tutorial 4: Using XML with SQL

207

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.ibm.com/PhoneBook”
xmlns:tns=“http://www.ibm.com/PhoneBook”>

<element name=“PhoneBook”>
<complexType>

<sequence>
<element name=“PhoneEntry” maxOccurs=“unbounded”>

<complexType>
<sequence>

<element name=“Name” type=“string” />
<element name=“Phone” type=“string” />

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

Step 3: Create a Database Connection

Create a connection to the database of your choice. You can create a new
connection in the Database Explorer view in the Data perspective and follow
the wizard to connect to your database. Refer to tutorial 1 in chapter 4 for more
details. You will use this database connection later to create the table and insert
the data.

Step 4: Generate a DDL from the XSD and Create a Table

A DDL script is one that can be run on a database to perform database actions.
In this step, you generate a DDL from PhoneBook.xsd and run it against your
database to create the table.

1. In the Java perspective’s Package Explorer view, right-click
xst/PhoneBook.xsd and select Generate => DDL.

2. Select Ch5XMLProject/xst as the parent folder. Enter PhoneBook.sql
as the file name. Click Finish.

3. Open PhoneBook.sql in an editor. The DDL file created is only for
your reference. Notice that it has an INTEGER field for an ID, which
did not exist in the XSD originally.

4. Right-click PhoneBook.sql and select Deploy. Click Next twice, until
you get to the Database Connection page.

5. Select the Use Existing Connection check box, and select your
connection from the Existing Connection drop-down box. Click
Finish. This creates a table in the database.

6. Switch to the Data perspective, right-click your connection, and select
Refresh. You should see the PhoneBook table in the database connec-
tion, as shown in Figure 5-26.

CHAPTER 5: Introduction to XML Development

208

Step 5: Create Insert and Select Statements

Copy the table schema to a Ch5XMLProject project:

1. In the Database Explorer view, expand your connection and database
until you see the tables. Right-click the APP.PHONEBOOK table and
select Copy to Project.

2. Click Browse and select Ch5XMLProject. Click OK.

3. Click Finish. Click Yes when asked to create the folder and schema.

Create an Insert statement named Insert1:

1. In the Data Definition view, right-click the Statement folder and select
New => Insert Statement, as shown in Figure 5-27.

Tutorial 4: Using XML with SQL

209

Figure 5-26: The PhoneBook table in the database connection.

Figure 5-27: The PhoneBook table in Ch5XMLProject.

2. Enter Insert1 as the name. Click OK.

3. Right-click in the Table pane in the editor and select Add Table. Select
APP.PHONEBOOK as the table name and click OK.

4. Select all the check boxes inside the table.

5. Enter 1 as the value of the PHONEBOOKID column.

6. Enter Mary as the value of the NAME column.

7. Enter 333-3333 as the value of the PHONE column.

8. Save the file.

9. Right-click Insert1 and select Execute. This inserts one row into the
table, as shown in Figure 5-28.

CHAPTER 5: Introduction to XML Development

210

Figure 5-28: The Insert1 statement.

Create a Select statement named Select1:

1. In the Data Definition view, right-click the Statement folder and select
New => Select Statement.

2. Enter Select1 as the name. Click OK.

3. Right-click in the Table pane in the editor and select Add Table. Select
APP.PHONEBOOK as the table name and click OK.

4. Select all the check boxes inside the table.

5. Save the file.

Step 6: Generate the XST Template

1. In the Data Definition view, right-click Select1 statement and click
Generate New XML.

2. Browse to /Ch5XMLProject/xst as the output folder. Click Finish.

The wizard will generate XST, HTML, XSD, XML, and XSL files, as
shown in Figure 5-29. The Select1.xst template file contains database con-
figuration information that is required to use the SQLToXML runtime. Since
the XST file is generated using the Select1 statement, that statement is also
embedded in the XST file. The XSD file describes the database schema in
XML Schema terms. The XML file is a sample of the database content. The
XSL file is a sample XSL transformation file that can transform XML data
into HTML. The HTML file is the sample output that was created when the
sample XSL file transformed the XML file. The database would use the
XST file as a data mapping to convert to an XML file, which you can then
use with the XSL to transform into HTML.

Tutorial 4: Using XML with SQL

211

Step 7: Generate Database Data Directly from XML

This step exports XML data directly into the PhoneBook table in the
database.

1. Open Select1.xml in the editor and modify it as follows, to add more
entries:

2. Right-click Select1.xml and select Generate => Database data.

3. Select the Use Existing Connection check box, and select your
connection from the Existing Connection drop-down box. Click Next.

4. Click Finish. The XML data is written to the database.

CHAPTER 5: Introduction to XML Development

212

Figure 5-29: The generated
XST template.

<?xml version=“1.0” encoding=“UTF-8”?>

<SQLResult xmlns=“http://www.ibm.com/PHONEBOOK”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

Xsi:schemaLocation=“http://www.ibm.com/PHONEBOOK
	Select1.xsd”>

<PHONEBOOK>

<PHONEBOOKID>2</PHONEBOOKID>

<NAME>Jane</NAME>

<PHONE>555-5555</PHONE>

</PHONEBOOK>

<PHONEBOOK>

<PHONEBOOKID>3</PHONEBOOKID>

<NAME>John</NAME>

<PHONE>777-7777</PHONE>

</PHONEBOOK>

</SQLResult>

5. If you want to see the data, you can sample contents via the database
connection. Right-click the APP.PHONEBOOK table in the Database
Explorer view and select Sample contents. You should see three rows
in the result, as shown in Figure 5-30.

Step 8: Create an SQLToXML Java Application

In the previous step, you exported XML data directory to the database. In this
step, you do the opposite: get XML data from database. This will be done
dynamically in a Java application, without writing any JDBC code.

1. Right-click the xst folder and click New => Class.

2. Enter RunXST as the class name.

3. Select the public static void main (String[] args) check box. Click Finish.

4. Modify the class file with the following code:

Tutorial 4: Using XML with SQL

213

Figure 5-30: Sample contents of APP.PHONEBOOK table.

package xst;

import com.ibm.etools.sqltoxml.*;
import java.io.*;

public class RunXST {

public static void main(String[] args) {
try {

com.ibm.etools.sqltoxml.QueryProperties qp
= new QueryProperties();

qp.load(“xst/Select1.xst”);

SQLToXML sql2xml = new SQLToXML(qp);
sql2xml.setXSDFile(“xst/Select1.xsd”);
PrintWriter outWriter = new PrintWriter(System.out);
sql2xml.setXMLWriter(outWriter);
sql2xml.execute();

5. Save the file and close the editor. This application will use the
SQLToXML runtime to obtain the data from the database and display it
in System.out as XML. It uses Select1.xsd as the XSL Schema.

Modify the Java build path:

1. Right-click Ch5XMLProject and select Properties. Select Java Build
Path.

2. Click Add External Jars and browse to the following file:

3. Also add the JDBC driver of your database to the Java build path. Use
Table 5-3 to select the JDBC JAR files for your database.

CHAPTER 5: Introduction to XML Development

214

} catch (Exception e) {
e.printStackTrace();

}
}

}

<SDP_install>\6.0\rwd\eclipse\plugins\com.ibm.etools.
sqltoxml_6.0.0\sqlxml.jar

Table 5-3: JDBC Drivers Summary

DB2 C:\Program Files\IBM\SQLLIB\java\db2jcc.jar
C:\Program
Files\IBM\SQLLIB\java\db2jcc_license_cisuz.jar

Cloudscape C:\IBM\Rational\SDP\6.0\runtimes\base_v6\-
cloudscape\lib\db2j.jar

Oracle C:\oracle\ora91\jdbc\lib\classes12.jar

SQL Server C:\Program Files\Microsoft SQL Server 2000
Driver for JDBC\lib\msbase.jar
C:\Program Files\Microsoft SQL Server 2000
Driver for JDBC\lib\mssqlserver.jar
C:\Program Files\Microsoft SQL Server 2000
Driver for JDBC\lib\msutil.jar
You can download the JDBC drivers for SQL
Server from Microsoft ‘s Web site.

Sybase C:\jConnect-5_5\devclasses\jconn2d.jar

4. Right-click RunXST.java and click Run => Java Application. The
output looks like the following:

This program gets the database content as XML dynamically, without writing
any JDBC or XML code. It writes the XML output to the output stream using
the setXMLWriter() method. Alternatively, you can write the output to an XML
file by setting the file through the setXMLFile() method. However, these two
methods are mutually exclusive; you can either write to an output stream or to
a file, but not both.

The SQLToXML runtime can generate an XSL file that transforms the XML
output into HTML tables. Use setXSLFile() to set the output location of the
XSL file. However, the XSL must be applied externally. The SQLToXML
runtime does not perform the transform implicitly. You can also use the
setParameter() method to supply an input parameter for those queries that
require it.

Tutorial 4: Using XML with SQL

215

<?xml version=“1.0” encoding=“UTF-8”?>
<SQLResult xmlns=“http://www.ibm.com/PHONEBOOK”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.ibm.com/PHONEBOOK
	
Select1.xsd”>

<PHONEBOOK>
<PHONEBOOKID>1</PHONEBOOKID>
<NAME>Mary</NAME>
<PHONE>333-3333</PHONE>

</PHONEBOOK>
<PHONEBOOK>

<PHONEBOOKID>2</PHONEBOOKID>
<NAME>Jane</NAME>
<PHONE>555-5555</PHONE>

</PHONEBOOK>
<PHONEBOOK>

<PHONEBOOKID>3</PHONEBOOKID>
<NAME>John</NAME>
<PHONE>777-7777</PHONE>

</PHONEBOOK>
</SQLResult>

Tutorial 5: Using SDO with XML
The Service Data Objects (SDO) architecture is a framework that unifies data
programming. The current SDO specification level is at version 1.0.

As mentioned earlier, the two main concepts in SDO are the data graph and the
data object. A data object is a generic representation of the business data pro-
vided by the Data Mediator Service (DMS). A DMS can load data from differ-
ent datastores, including EJB files, XML files, relational databases, Web
services, Java Connector Architecture (JCA), and JMS messages. A data graph
contains a data object, along with a change summary that keeps track of the
changes made to the data object. A data graph also contains the schema that
describes the data object.

A DMS populates a data graph and data object from a datastore. The DMS
loads a data graph from the datastore, and saves it back to the datastore. For
example, a JDBC DMS can load a data graph from a relational database, and
save the data graph back to the database. An XML mediator can load a data
graph from an XML file, and save it back to the XML file. In this tutorial, you
will look at the latter example, loading a data graph from an XML file and
saving it back.

The APIs in the SDO architecture include those for the data graph,
data object, and change summary. A data graph is represented by
commonj.sdo.DataGraph, while a data object is represented by
commonj.sdo.DataObject.

SDOs are commonly used in a disconnected fashion, as shown in Figure 5-31.
A client submits a request to the DMS for a data graph. The DMS constructs a
data graph from the datastore, and it is responsible for loading and saving the
data graph. Upon receiving the data graph from the DMS, the client can modify
the data object inside the data graph, and the changes are tracked in the change
summary. In addition, the client can choose to serialize or deserialize the data
graph. SDO provides the API for accessing data within a data object and serial-
izing data graphs. The DMS is only connected to the datastore while loading
and saving data graphs. The rest of the time it can be disconnected from the
datastore.

CHAPTER 5: Introduction to XML Development

216

One of the major advantages of using SDO is that it is technology-independent.
Since SDO unifies data programming and the abstraction of data, all you need
to know is the SDO API to access any data from any datastores. Furthermore,
SDO incorporates a number of J2EE patterns and best practices, which makes it
easy to incorporate SDO into your applications. For more information, see
http://www-106.ibm.com/developerworks/java/library/j-sdo/, “Introduction to
Service Data Objects.”

SDO APIs

An SDO data object can consist of primitive types, sequence, or another data
object. A data graph class has these APIs:

After you obtain a data graph from the DMS, you can invoke the
getRootObject() method to obtain the root data object, or invoke the
getChangeSummary() method to obtain the change summary. Once you have
the data object, you can navigate it using either getters or setters. Here are some
of the APIs provided for navigating data objects:

Tutorial 5: Using SDO with XML

217

Datastore
(EJB, JDBC, XML,
Web Service, etc.)

Data Mediator
Service ClientData

Graph
Load

Save Modify

Obtain

Figure 5-31: The disconnected architecture of SDO.

abstract public DataObject getRootObject();
abstract public DataObject createRootObject (String arg, String arg);
abstract public DataObject createRootOjbect (Type arg);
abstract public ChangeSummary getChangeSummary();
abstract public Type getType (String arg, String arg);

The contents inside a data object can be accessed using a getter with an XPath
expression as a parameter. The rest of this tutorial assumes you are familiar
with XPath expressions, which were introduced in tutorial 3 of this chapter.
Let’s say you obtained a data graph from some DMS on the following
XML file:

CHAPTER 5: Introduction to XML Development

218

boolean getBoolean(String xpath);
byte getByte(String xpath);
char getChar(String xpath);
double getDouble(String xpath);
float getFloat(String xpath);
int getInt(String xpath);
long getLong(String xpath);
short getShort(String xpath);
byte[] getBytes(String xpath);
BigDecimal getBigDecimal(String xpath);
BigInteger getBigInteger(String xpath);
DataObject getDataObject(String xpath);
Date getDate(String xpath);
String getString(String xpath);
List getList(String xpath);
Sequence getSequence(String xpath);

<?xml version=“1.0” encoding=“UTF-8”?>
<tns:PhoneBook xmlns:tns=“http://www.ibm.com/PhoneBook”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://www.ibm.com/PhoneBook

PhoneBook.xsd”>
<PhoneEntry>

<Name>Mary</Name>
<Phone>111-1111</Phone>

</PhoneEntry>
<PhoneEntry>

<Name>Jane</Name>
<Phone>555-5555</Phone>

</PhoneEntry>
<PhoneEntry>

<Name>John</Name>
<Phone>777-7777</Phone>

</PhoneEntry>
</tns:PhoneBook>

The root data object can be obtained from the data graph by calling
getRootObject(). The root object is a PhoneBook type. To get the first PhoneEntry
data object, you can use the XPath expression PhoneEntry.0, as shown here:

Since the SDO supports the XPath expression 1.0 specification, more complex
XPath expressions can be used. For example, let’s say you want to get the
PhoneEntry data object, given that the name is John. You can use the XPath
expression PhoneEntry[Name=‘John’], as shown in this code snippet:

Besides accessing existing data objects, new data objects can also be added to
the root object. For example, the following code would add a new PhoneEntry
to the PhoneBook.

SDO and the Eclipse Modeling Framework (EMF)

The SDO implementation used in this tutorial is actually implemented using the
Eclipse Modeling Framework (EMF). The SDO/EMF implementation is an Eclipse
open-source project. EMF is a Java-based framework that can be used to define
models. It supports automatic model generation from Java interfaces, XML schemas,
and UML diagrams. You can get more information about EMF from the Eclipse.org
Web site, which includes the reference “The Eclipse Modeling Framework (EMF)
Overview” at http://download.eclipse.org/tools/emf/scripts/docs.php?doc=
references/overview/EMF.html.

When a DMS creates a data graph from a datastore, it needs to organize the
data in a common format, where both the DMS and the client can interpret

Tutorial 5: Using SDO with XML

219

phonebook.getDataObject(“PhoneEntry.0”);

phonebook.getDataObject(“PhoneEntry[Name=‘John’]”);

DataObject newPhoneEntry =
phonebook.createDataObject(“PhoneEntry”);
newPhoneEntry.setString(“Name”, “Kitty”);
newPhoneEntry.setString(“Phone”, “999-9999”);

it. The common format is implemented as an EMF model, and it is
different depending on the datastore. The DMS is responsible for creating
the model that is used to create the data object and data graph. The model
is used when the data objects are being transversed and created. For
example, a DMS for an XML datastore would create a model from an
XML schema and use it later to generate the data object and data graph.
Rational Application Developer provides a tool that can generate models
from an XML schema. It can be used to create and manipulate data objects
and data graphs.

To create an EMF model from an XML schema, simply right-click the
schema file and click Generate => Java => SDO Generator. This will
create an EMF model, as well as utility classes that can help you load
and save data objects to and from XML files. For the following XML
schema, several EMF model classes will be generated, as shown in
Figure 5-32.

CHAPTER 5: Introduction to XML Development

220

<?xml version=“1.0” encoding=“UTF-8”?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema”
targetNamespace=“http://www.ibm.com/PhoneBook”
mlns:tns=“http://www.ibm.com/PhoneBook”>

<element name=“PhoneBook”>
<complexType>

<sequence>
<element name=“PhoneEntry” maxOccurs=“unbounded”>

<complexType>
<sequence>

<element name=“Name” type=“string” />
<element name=“Phone” type=“string” />

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema

Three packages are created when you create SDO from the XSD file. The
com.ibm.phone.book and com.ibm.phone.book.impl packages store the EMF
model that represents the PhoneBook.xsd schema. The com.ibm.phone.book.util
package provides a sample utility class to load and save data objects. The sam-
ple utility class provided does not deal with the data graph. However, you can
further modify the utility class to load and save the data graph.

When you load an XML document with the BookResourceUtil class, you get a
DocumentRoot object, which contains a PhoneBookTypeImp object. The
PhoneBookTypeImpl object is inherited indirectly from the DataObject class.

SDO is very versatile. You can use it not only with XML, but with any other
datastore, provided there is a DMS for the datastore. The rest of this tutorial
demonstrates how to use SDO with XML. Before going on, if you do not
already have a Java project named Ch5XMLProject, create one.

Step 1: Create a New Package

Create a package named sdo in Ch5XMLProject:

1. In the Java perspective, right-click Ch5XMLProject and click
New => Package.

2. Enter sdo as the package name. Click Finish.

Tutorial 5: Using SDO with XML

221

Figure 5-32: Generated EMF
model for PhoneBook.xsd.

Step 2: Copy XSD and XML Files

If you created the PhoneBook.xsd and PhoneBook.xml files in tutorial 2,
copy them from the xmlparser folder to the sdo folder. If not, follow step 2 in
tutorial 2 to create the two files in the sdo folder.

Step 3: Use the SDO Generator

1. Right-click sdo/PhoneBook.xsd and click Generate => Java. The
Generate Java dialog box opens.

2. Select SDO Generator from the Generator list, and make sure
Ch5XMLProject is selected as the container. Click Finish.

After the generator has finished, you should see three new packages under the
Ch5XMLProject: com.ibm.phone.book, com.ibm.phone.book.impl, and
com.ibm.phone.book.util.

Step 4: Load SDO from XML

In this step, you try to load the XML into a SDO, using the created utility class.

1. Right-click Ch5XMLProject and click New => Class.

2. Enter sdo as the package name and SDOTest as the class name. Make
sure the public static void main (String[] args) check box is selected.
Click Finish.

3. Modify the SDOTest class as follows and save it. This code loads the
XML file using the BookResourceUtil class and obtains a
PhoneBookTypeImpl data object from the DocumentRoot:

CHAPTER 5: Introduction to XML Development

222

package sdo;

import com.ibm.phone.book.DocumentRoot;
import com.ibm.phone.book.impl.PhoneBookTypeImpl;
import com.ibm.phone.book.util.BookResourceUtil;

public class SDOTest {

public static void main(String[] args) {
try {

4. Run the application by right-clicking SDOTest in the Package Explorer
view and clicking Run => Java Application. You should see the
following result in the console:

Step 5: Navigate the SDO

The PhoneBookTypeImpl data object was loaded in the previous step. In this
step, you navigate the SDO.

1. Add the bolded code in the try/catch block below to the SDOTest class,
and save it:

Tutorial 5: Using SDO with XML

223

DocumentRoot root =
BookResourceUtil.getInstance().load(“sdo/PhoneBook.xml”);
System.out.println (“root = ” + root);

if (root.getPhoneBook() instanceof PhoneBookTypeImpl) {
PhoneBookTypeImpl phonebook =
(PhoneBookTypeImpl) root.getPhoneBook();
System.out.println (“phonebook = ” + phonebook);

}

}catch (Exception e) {
e.printStackTrace();

}
}

}

root = com.ibm.phone.book.impl.DocumentRootImpl@58a1ce1c (mixed:
[book:phoneBook=com.ibm.phone.book.impl.PhoneBookTypeImpl@524a4e1c])
phonebook = com.ibm.phone.book.impl.PhoneBookTypeImpl@524a4e1c

DocumentRoot root =
BookResourceUtil.getInstance().load(“sdo/PhoneBook.xml”);
System.out.println(“root = ” + root);
if (root.getPhoneBook() instanceof PhoneBookTypeImpl) {

PhoneBookTypeImpl phonebook =
(PhoneBookTypeImpl) root.getPhoneBook();
System.out.println(“phonebook = ” + phonebook);

This code looks up the first PhoneEntry data object using the XPath
expression PhoneEntry.0. After obtaining a data object, you can get its
type, which is PhoneEntryImpl in this case. In addition, you can get the
content by using the XPath expression Name and Phone to get the val-
ues of the name and phone elements.

2. Run this application again. You will see the name and phone number of
the first PhoneEntry element:

Step 6: Look Up Another SDO Using XPath

As mentioned previously, you can use XPath expressions to look up SDOs.
This step looks up the PhoneEntry data object where the name is equal to
John.

1. Add the following code at the end of the if block in the SDOTest class,
and save it. This will look up a PhoneEntry data object where the name
is John.

CHAPTER 5: Introduction to XML Development

224

DataObject obj = phonebook.getDataObject(“PhoneEntry.0”);
Type type = obj.getType();
String typename = type.getName();
String name = obj.getString(“Name”);
String phone = obj.getString(“Phone”);

System.out.println(“obj = ” + obj + “\ntypename = ” +
typename + “\nname = ” + name + “\nphone = ” + phone);
}

root = com.ibm.phone.book.impl.DocumentRootImpl@5a2ac823
(mixed:
[book:phoneBook=com.ibm.phone.book.impl.PhoneBookTypeImpl@543f8
823])
phonebook = com.ibm.phone.book.impl.PhoneBookTypeImpl@543f8823
obj = com.ibm.phone.book.impl.PhoneEntryTypeImpl@5532c823
(name: Mary, phone: 111-1111)
typename = PhoneEntryType
name = Mary
phone = 111-1111

2. Run the application to see that John’s phone number is 777-7777.

Step 7: Update the SDO

In this step, you update the SDO and save it back to an XML file. Add
the following code at the end of the if block in the SDOTest class, and
save it:

This code updates the name of the first PhoneEntry data object and updates the
name to Smith. In addition, it adds a new PhoneEntry data object to the
PhoneBook data object with, Bob as the name and 222-2222 as the phone.
Furthermore, the code saves the updated SDO back to an XML file named
text.xml.

After you run the application, you should refresh the sdo package:

1. Right-click the sdo package and click Refresh.

2. You should see the text.xml file inside the sdo package. Open it in the
XML editor. It should look like the file below:

Tutorial 5: Using SDO with XML

225

// Get a data object with a condition
DataObject johnObj =
phonebook.getDataObject(“PhoneEntry[Name=‘John’]”);
phone = johnObj.getString(“Phone”);
System.out.println (“John’s phone = ” + phone);

// Update the Name of the PhoneEntry object
obj.setString(“Name”, “Smith”);

// Add a node
DataObject newPhoneEntry =
phonebook.createDataObject(“PhoneEntry”);
newPhoneEntry.setString(“Name”, “Bob”);
newPhoneEntry.setString(“Phone”, “222-2222”);

//Save back to a file
BookResourceUtil.getInstance().save(root, “sdo/test.xml”);

Notice that the name of the first PhoneEntry has been updated to Smith, and
also that a new entry was added, with Bob and 222-2222 as the name and
phone number, respectively. The complete SDOTest class should look like the
following:

CHAPTER 5: Introduction to XML Development

226

<?xml version=“1.0” encoding=“UTF-8”?>

<tns:PhoneBook xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

xmlns:tns=“http://www.ibm.com/PhoneBook”

xsi:schemaLocation=“http://www.ibm.com/PhoneBook PhoneBook.xsd”>

<PhoneEntry>

<Name>Smith</Name>

<Phone>111-1111</Phone>

</PhoneEntry>

<PhoneEntry>

<Name>Jane</Name>

<Phone>555-5555</Phone>

</PhoneEntry>

<PhoneEntry>

<Name>John</Name>

<Phone>777-7777</Phone>

</PhoneEntry>

<PhoneEntry>

<Name>Bob</Name>

<Phone>222-2222</Phone>

</PhoneEntry>

</tns:PhoneBook>

package sdo;

import com.ibm.phone.book.DocumentRoot;
import com.ibm.phone.book.impl.PhoneBookTypeImpl;
import com.ibm.phone.book.util.BookResourceUtil;
import commonj.sdo.DataObject;
import commonj.sdo.Type;

public class SDOTest {

public static void main(String[] args) {
try {

DocumentRoot root = BookResourceUtil.getInstance().load(
“sdo/PhoneBook.xml”);

System.out.println(“root = ” + root);
if (root.getPhoneBook() instanceof PhoneBookTypeImpl) {

PhoneBookTypeImpl phonebook = (PhoneBookTypeImpl) root
.getPhoneBook();

You might have noticed that we have not dealt with any data graphs up to this
point. The generated BookResourceUtil class acts as a simple DMS for XML,
which is sufficient for simple SDO manipulations. However, if you want to use
the data graph feature, you can extend the BookResourcUtil to return a data
graph instead of a data object when loading the XML file. The main feature of
the data graph is the change summary. As changes are made to the data objects
in the data graph, the change summary is updated, and you can access the
change summary to perform incremental updates to the back-end datastore. In
the case of XML, the back-end datastore is actually the XML file.

Tutorial 5: Using SDO with XML

227

System.out.println(“phonebook = ” + phonebook);

DataObject obj = phonebook.getDataObject(“PhoneEntry.0”);
Type type = obj.getType();
String typename = type.getName();
String name = obj.getString(“Name”);
String phone = obj.getString(“Phone”);

System.out.println(“obj = ” + obj + “\ntypename = ”
+ typename + “\nname = ” + name + “\nphone = ” + phone);

// Get a data object with a condition
DataObject johnObj =
phonebook.getDataObject(“PhoneEntry[Name=‘John’]”);
phone = johnObj.getString(“Phone”);
System.out.println (“John’s phone = ” + phone);

// Update the Name of the PhoneEntry object
obj.setString(“Name”, “Smith”);

// Add a node
DataObject newPhoneEntry =
phonebook.createDataObject(“PhoneEntry”);
newPhoneEntry.setString(“Name”, “Bob”);
newPhoneEntry.setString(“Phone”, “222-2222”);

//Save back to a file
BookResourceUtil.getInstance().save(root, “sdo/test.xml”);
}

} catch (Exception e) {
e.printStackTrace();

}
}

}

The save() method in the BookResourceUtil is normally sufficient for
updating the XML file, and there is no need to use the change summary for
incremental updates. However, in the case of other datastore types, you might
need to update the file incrementally using the change summary. The next
section of this tutorial shows you how to create a data graph from the XML
datastore and navigate the change summary.

Step 8: Extend the BookResourceUtil

Create a Java class named MyBookResourceUtil extending the
BookResourceUtil class:

1. Right-click the com.ibm.phone.book.util package in the Package
Explorer view, and click New => Class.

2. Enter MyBookResourceUtil as the name and browse to
BookResourceUtil as the superclass.

3. Make sure the static void main (String[] args) check box is cleared.
Click Finish.

4. Modify the file as follows, and save it:

CHAPTER 5: Introduction to XML Development

228

package com.ibm.phone.book.util;

import java.io.IOException;
import java.util.Iterator;
import java.util.List;

import org.eclipse.emf.common.util.URI;
import org.eclipse.emf.ecore.EObject;
import org.eclipse.emf.ecore.sdo.EDataGraph;
import org.eclipse.emf.ecore.sdo.SDOFactory;

import com.ibm.phone.book.DocumentRoot;
import commonj.sdo.ChangeSummary;
import commonj.sdo.DataGraph;
import commonj.sdo.DataObject;
import commonj.sdo.Property;

public class MyBookResourceUtil extends BookResourceUtil {

Tutorial 5: Using SDO with XML

229

private static MyBookResourceUtil instance;
public static MyBookResourceUtil getMyInstance() {

if (instance == null) {
instance = new MyBookResourceUtil();

}
return instance;

}

public DataGraph loadGraph(String filename) throws IOException {
DocumentRoot documentRoot = load(filename);
EDataGraph graph =
SDOFactory.eINSTANCE.createEDataGraph();

graph.setERootObject((EObject) documentRoot);
return (DataGraph) graph;

}

public void saveGraph(DataGraph graph, String filename)
throws IOException {

DataObject obj = graph.getRootObject();
if (obj instanceof DocumentRoot) {

DocumentRoot documentRoot = (DocumentRoot) obj;
save(documentRoot,filename);

}
}

public void update(DataGraph dataGraph) {
ChangeSummary changeSummary = dataGraph.getChangeSummary();

// Use SDO ChangeSummary’s getChangedDataObjects() method.
List changes = changeSummary.getChangedDataObjects();
Iterator it = changes.iterator();

while (it.hasNext()) {
DataObject changedObject = (DataObject) it.next();
if (changedObject instanceof PhoneEntryType){

System.out.println(“Update for ”
+ changedObject.getString(“name”));

}else if (changedObject instanceof PhoneBookType){
System.out.println(“Update for ” + changedObject);

}

Iterator settingIt =
changeSummary.getOldValues(changedObject).iterator();

while (settingIt.hasNext()) {
ChangeSummary.Setting changeSetting =
(ChangeSummary.Setting) settingIt.next();

Property changedProperty = changeSetting.getProperty();
Object oldValue = changeSetting.getValue();
Object newValue = changedObject.get(changedProperty);
System.out.println(“ (changed “ + changedProperty.getName()
+ “ from \”” + oldValue + “\“ to \”” + newValue + “\”)”);

}

}
}

The code has loadGraph(), saveGraph(), and update() methods. The
loadGraph() method returns a data graph, given an XML file. The saveGraph()
method saves a data graph to an XML file. The update() method accesses the
change summary and prints out the changes that were made to the data objects.

The loadGraph() and saveGraph() methods use the load() and save() methods
from the BookResourceUtil class. The loadGraph() method, after calling the
load() method from BookResrouceUtil, uses the following lines to create a data
graph and then set the root object as the DocumentRoot, before returning:

An EDataGraph is the EMF implementation of SDO, which is inherited from
the commonj.sdo.DataGraph. Similarly, a data graph is passed into the
saveGraph() method as a parameter. The method gets the DocumentRoot object
using the getRootObject() method, and invokes the parent save() method to
save to an XML file.

The update() method gets the change summary and the list of changes using
these lines:

The method then navigates the list of changes and prints it out in System.out.

CHAPTER 5: Introduction to XML Development

230

private BookResourceImpl getBookResourceImpl(DocumentRoot documentRoot)
{
BookResourceImpl resource =
(BookResourceImpl) ((EObject) documentRoot).eResource();

if (resource == null)
resource = (BookResourceImpl) (new BookResourceFactoryImpl())

.createResource(URI.createURI(“*.xml”));
return resource;

}
}

EDataGraph graph = SDOFactory.eINSTANCE.createEDataGraph();
graph.setERootObject((EObject) documentRoot);

ChangeSummary changeSummary = dataGraph.getChangeSummary();

// Use SDO ChangeSummary’s getChangedDataObjects() method.
List changes = changeSummary.getChangedDataObjects();

Step 9: Use the DataGraph

Create a Java class named DataGraphTest:

1. Right-click the sdo package in the Package Explorer view and click
New => Class.

2. Enter DataGraphTest as the name and make sure the static void main
(String[] args) check box is selected. Click Finish.

3. Modify the file as follows and save it:

Tutorial 5: Using SDO with XML

231

package sdo;
import com.ibm.phone.book.DocumentRoot;
import com.ibm.phone.book.impl.PhoneBookTypeImpl;
import com.ibm.phone.book.util.MyBookResourceUtil;
import commonj.sdo.ChangeSummary;
import commonj.sdo.DataGraph;
import commonj.sdo.DataObject;

public class DataGraphTest {

public static void main(String[] args) {
try {

DataGraph graph = MyBookResourceUtil.getMyInstance()
.loadGraph(“sdo/PhoneBook.xml”);

DataObject rootobj = graph.getRootObject();
if (rootobj instanceof DocumentRoot) {

DocumentRoot root = (DocumentRoot) rootobj;
PhoneBookTypeImpl phonebook =
(PhoneBookTypeImpl) root.getPhoneBook();
DataObject obj =
phonebook.getDataObject(“PhoneEntry.0”);

// Get the ChangeSummary
ChangeSummary summary = graph.getChangeSummary();
// Begin recording what has been changed
summary.beginLogging();

// Update the first phone entry
obj.setString(“Name”, “Smith”);
obj.setString(“Phone”, “123-4567”);

// Add a new phone entry
DataObject newPhoneEntry =
phonebook.createDataObject(“PhoneEntry”);
newPhoneEntry.setString(“Name”, “Bob”);
newPhoneEntry.setString(“Phone”, “222-2222”);

// End the recording
summary.endLogging();

Run the DataGraphTest application, and you will see the change summary in
Figure 5-33 in the console. In addition, if you refresh the sdo package, you
should see the datagraphtest.xml file with the updated changes. This change
summary captures any changes to the data objects between the two lines
summary.beginLoggin() and summary.endLogging(). Any changes made outside
of these two lines are not captured.

SDO is simple, convenient, and versatile. It can be used with any back-end
datastores and can be executed in a disconnected mode.

Summary
This chapter shows how XML, XSD, and XSLT can be created and used in
Rational Application Developer. In addition, SQL-to-XML support greatly
simplifies the process of getting XML data directly from a database. Furthermore,
Rational Application Developer provides an SDO Generator that generates the
model and utility classes. This makes using SDO with XML even easier.

CHAPTER 5: Introduction to XML Development

232

Figure 5-33: Running the DataGraphTest application.

MyBookResourceUtil.getMyInstance().update(graph);
MyBookResourceUtil.getMyInstance().saveGraph(graph,
“sdo/datagraphtest.xml”);

}

} catch(Exception e) {
e.printStackTrace();

}
}

}

