
Chapter 1

Creating your first Web service 
and Web application

Chapter Contents

Introducing Web service terminology

Installing WebSphere Application Server and Rational Developer 

Setting up a Web project

Creating a Web service

Creating a Web application

Time Required

2 hours

Files Required

The /solutions/chap01/samples/StockQuote.java file

Web services are network-accessible programs that use a standardized messaging
protocol to communicate with other programs that want to use their functions.

1



2

Web services reside on application servers, such as WebSphere Application
Server, which can be on the Internet, on your company’s private intranet, or on
your own computer. The functions that Web services provide can be general-
purpose, such as looking up the weather forecast for a particular city, or applica-
tion-specific, such as creating an order for an e-commerce application. Web
services are also self-describing; that is, they include special descriptions of the
functions that they provide and how to access those functions. Application pro-
grammers use these descriptions to find (discover) and use the services.

Web applications also reside on application servers. These applications consist of
one or more Web pages that users access through a Web browser. They typically
contain a combination of static and dynamic content, such as text, images, and
programs that run on the server or in the user’s Web browser. Web applications
can use Web services that reside on the same server, or on any server in the net-
work that the Web application has access to. Unless you tell them, users at a
Web browser aren’t aware that the work might be distributed across multiple
servers.

Notice that we haven’t said anything about what programming language a Web
service is written in, or what operating system it’s running on. That’s because it
doesn’t matter. The Web service just needs to be available on the network that
the application is using, and the service and the application need to use the cor-
rect protocol to communicate with one another. The application can be written in
a different programming language than the service, and run on a different 
operating system.

In this chapter, you’ll create a simple Web service and Web application that hap-
pen to be written in the same programming language (Java) and happen to run
on the same machine (yours). In later chapters, however, you’ll use publicly
available Web services on the Internet, where you don’t know what language the
Web service is written in or what operating system it’s running on.

Web services and applications communicate with each other using messages in
a specific, standardized format. An application builds a message request such

CHAPTER 1: Creating your first Web service and Web application



as “give me the weather forecast for Atlantic, NC,” and sends it to the server
where the Web service resides. That server calls the Web service to process the
request. When the Web service returns the result (such as “warm and sunny”),
the server builds a message response and sends it back to the application. At
first glance, this probably sounds very complicated—building messages and
sending them where they need to go. As you’ll see in this book, however,
Rational Developer and WebSphere handle most of the work for you, so 
you can just concentrate on developing your Web service functions and
application logic.

Introducing Web service terminology
Before jumping into building Web services and Web applications, you need to
understand some of the terminology you’ll see when you use Rational Developer
and WebSphere. Like most modern technologies, Web services are an alphabet
soup of technical jargon, and the acronyms can make your head spin if you’re
not careful. At this point, we’ll look at two of the main building blocks for Web
services: SOAP and WSDL.

SOAP
SOAP is the protocol that defines the format of messages used to communicate
with Web services. SOAP messages are XML-formatted text strings that consist
of an envelope with a message body and an
optional header. The header is used to pass
control information, and the body contains
the actual request or response message con-
tent. SOAP messages typically travel over an
HTTP transport, the standard network 
protocol for Web applications, which is what
you’ll use in this book. You’ll rarely need to
look at the actual content of SOAP
messages, since Rational Developer and
WebSphere handle all this for you. When
you learn about more advanced features later

3

Introducing Web service terminology

An acronym that isn’t

SOAP is an “acronym” that doesn’t actu-
ally stand for anything. It originally meant
“Simple Object Access Protocol,” but
since the protocol works with text mes-
sages rather than objects, that meaning
fell by the wayside. Some people are
starting to refer to SOAP as “Service-
Oriented Architecture Protocol,” but
that’s not the official definition, at least
not as of this writing.



4

in this book, you’ll look at SOAP messages in more detail and consider some of
the options you can set to control how SOAP messages are built. 

WSDL
Web Services Description Language (WSDL) is the XML vocabulary that describes
Web services. WSDL is stored in standard text files with a .wsdl extension,
typically on the same application server where the Web service itself is deployed.

As a Web service developer, you use WSDL to describe the functions that your
Web service provides and how other programs can access those functions. For other
programmers to use your Web service, you have to give them access to two things:

Your Web service program
The WSDL file that describes your Web service

From the WSDL, other programmers know the URL to use to invoke your Web
service, the specific format of requests that your Web service handles, parame-
ters that need to be supplied to each request, the format of responses, and so on.
Basically, the WSDL provides all the rules that a program needs to follow to use
your Web service.

As a Web application developer, you use the WSDL for a particular Web service
to create the code that locates, builds messages for, and invokes the Web service.
Typically, all this logic is placed in a client proxy, which represents the Web
service in your client application. You just call the proxy, and it handles all the
details of finding and invoking the Web service.

Luckily, you don’t have to be fluent in WSDL to create or work with Web serv-
ices, because Rational Developer handles it all for you. When you use the Web
Service wizard to create a new Web service, the wizard creates the correspon-
ding WSDL file. And when you want to use a Web service in a Web application,
you just point the Web Service wizard to the WSDL file, and the wizard creates
the client proxy to locate and invoke the service.

CHAPTER 1: Creating your first Web service and Web application



What you’ll build
Now that you’ve got the basics, let’s get started with a real example. You’ll play
two roles in this chapter. First, you’ll be a Web service developer, using Rational
Developer to create a Web service that returns the last trading price for a 
particular stock symbol. Then, you’ll be a Web application developer, using your
Web service to build a Web application that shows the last trading prices for a
list of stocks. Figure 1.1 shows an example of the application you’ll build.

Installing WebSphere Application Server and Rational
Developer
To follow along with the steps in this book, you need to install IBM WebSphere
Application Server 6.0. You also need to install either IBM Rational Web
Developer 6.0 or IBM Rational Application Developer 6.0. Application
Developer contains all the same functions you’ll find in Web Developer 
(and much more), so you can follow the instructions with either product. For
simplicity, we refer to the tools as Rational Developer in this book, but you can
use the one you prefer. The screenshots in this book were taken from Web
Developer, however, so if you’re using Application Developer, you might see
more features than in the screenshots.

5

Installing WebSphere Application Server and Rational Developer

Figure 1.1: The MyStocks application in action.



6

You can install WebSphere Application Server and Rational Developer 
separately on your machine, or if you prefer, you can install WebSphere Express
6.0, which includes both WebSphere Application Server and Rational Web
Developer. If you don’t already have a copy of WebSphere Express 6.0, you can
download a trial version at www-106.ibm.com/developerworks/websphere/ 
downloads/EXPRESSsupport.html. See the appendix for installation instructions.
After installing Rational Developer, make sure you use the Rational Product
Updater to install the latest product updates. You’ll need Rational Developer
6.0.0.1 or later for the samples in this book.

Note: Make sure you install both WebSphere Application Server and
Rational Developer on your machine. Rational Developer includes a
WebSphere Test Environment that you’ll use to test Web services and
Web applications, but you’ll also need a stand-alone WebSphere
Application Server to set up your “production” server in the next chap-
ter and to deploy Web services to it.

Setting up a Web project
Before you can create your first Web service, you need to do some set-up work
in Rational Developer to enable the Workbench capabilities for Web services
development, and to specify where your Web service will be saved.

Rational Developer is organized into a variety of perspectives, which are just
different ways of looking at a development project based on your role on the
development team. In this book, you’ll mainly use the Web perspective, and
within the Web perspective, your Web services and applications will be 
organized into projects and folders, according to their content, such as package
folders for Java classes. You can switch perspectives whenever you need to.
Within a particular perspective, you’ll also see a variety of different editors and
views that are applicable to the work done within that perspective. Don’t
worry—we’ll explain how each of these works as we go along.

CHAPTER 1: Creating your first Web service and Web application



Starting Rational Developer
1. To start Rational Developer, click Start Programs IBM Rational

Rational Software Development Platform. When you start Rational
Developer the first time, a window appears asking which directory you
want to use for your workspace (the place where Rational Developer
saves your work), as shown in Figure 1.2.

2. Leave the workspace name set to the default, and if you prefer to not be
asked about it each time you launch Rational Developer in future, check
the Use this as the default and do not ask again check box. 

3. Click OK. After a few seconds, the Rational Developer Welcome page
appears. On the Welcome page, you can click the various icons to see an
overview of the Rational Software Development Platform, what’s new in 
the current version, or to go directly to tutorials and samples to learn how
to use the tool. We’ll skip the Welcome information for now, but you 
can always come back to it by selecting Help Welcome in the
Workbench menu.

4. Click the X on the Welcome pane tab to close it. The Workbench
appears, as shown in Figure 1.3. The Workbench initially opens in the
Web perspective, which is the perspective you want for working with
Web services and Web applications.

7

Setting up a Web project

Figure 1.2: The Workspace Launcher window.



8

Application Developer users 
If the Workbench opens in a perspective other than Web, click the Open a
perspective icon in the toolbar tab along the top right of the Workbench, and
select Web from the list of perspectives. If you don’t see Web in the list, click
Other…, select Web in the Select Perspective window, and click OK. If Web still
isn’t present in the Select Perspective window, check the Show all check box.

Notice that the Workbench is divided into several toolbars and work areas. Let’s
take a minute to get familiar with the layout before we proceed.

First, the toolbar that appears along the top right tab shows an icon for each
perspective that’s currently open, such as the Web perspective that currently
appears in the Workbench. You can have multiple perspectives open at any given
time; to switch from one to another, just select its icon. You can also customize
this portion of the toolbar, such as moving it to the left edge of the window or not
showing text descriptions with each icon. To customize, right-click anywhere in
the toolbar tab, and select the option you want from the pop-up menu.

CHAPTER 1: Creating your first Web service and Web application

Open a
perspective

Web 
perspective

Figure 1.3: The Rational Developer Workbench.



Next, along the top of the Workbench are the pull-down menus and a toolbar for
common actions for working within a particular perspective. The menus and
toolbar are tailored to the functions available in a given perspective and the 
editors that are being used, so you’ll see these items change as you switch from
one perspective to another and as you work with different editors. The toolbar
contains a subset of the actions available from the pull-down menus, and you
can customize it to add, reorganize, or remove toolbar actions to suit your 
preferences.

Finally, the work areas within the Workbench are also tailored to the functions
available in a given perspective and the editors and views being used. In the
Web perspective, you use the Project Explorer to navigate the various folders
and files in your Web projects. When you open a particular file, the editor for
that file type appears in the center of the Workbench. For example, the Java
Editor appears when you are working with Java source files, and the Page
Designer appears when you are working with Web pages. Any associated views
are shown in the other work areas. 

Enabling Workbench capabilities
The Workbench comes with the capabilities enabled that a Web developer would
be most likely to use, such as working with Java programs and designing Web
pages. This simplifies the default options you see in wizards and pop-up menus,
so your Workbench isn’t cluttered with a lot of options that you don’t typically
use. When you need to use more advanced functions (for example, when you
work with Web services or databases), additional capabilities are enabled 
automatically. You can also manually enable capabilities by setting your
Workbench preferences, as follows: 

1. Select Window Preferences in the Workbench menu.

2. In the Preferences window that appears, the list in the left pane shows
the default set of categories for which you can set preferences. Click the
plus sign next to Workbench to expand the list of Workbench prefer-
ences, and select Capabilities.

9

Setting up a Web project



10

3. In the right pane, you see all the possible Workbench capabilities, with the
basic set for Web developers already checked. When you select a particular
capability in the right pane, its description appears below the list. Select
Web Service Developer to see its description, and then click the plus sign
next to Web Service Developer to see the capabilities contained in this role.
To enable Web services capabilities, check the Web Service Developer
check box, so the window looks like Figure 1.4. Checking this check box
enables both Core Database Development and Web Services Development,
so you’re already set for the work you’ll do with databases in chapter 5.

4. As you can see in Figure 1.4, capabilities are grouped by role, such as
Web Developer (advanced) and Web Service Developer. Capabilities

CHAPTER 1: Creating your first Web service and Web application

Figure 1.4: Setting Workbench capabilities.



that apply to multiple roles, such as Web Services Development, are 
duplicated under the various roles. When you check the Web Services
Development check box for one role, you enable the capability for all
roles. Click OK.

Tip: Once you enable the Web services capability in the Workbench,
you can then set your preferences for working with Web services.
Select Window Preferences again, and this time you’ll see Web
services as one of the categories for which you can set preferences.
We’ll use the default preferences in this book, but you might find that
you’ll want to customize some of the preferences when you develop
your own Web services.

Creating the project
Next, you’ll use the Web perspective to create a new Web project that will 
contain your Web service. You’ll create the project as a Dynamic Web project,
one that contains dynamic content, such as the Java code for your Web service.
You’ll also specify an EAR project (called an Enterprise Application), which is
used for deploying and testing the Web project on an application server.

1. To create the project, right-click Dynamic Web Projects in the Project
Explorer, and select New Dynamic Web Project from the pop-up menu.

2. Enter a project name of StockQuote. Notice that the project location is
set to the default for your workspace (the directory specified when you
first started Rational Developer). 

3. For your first Web project, you’ll take a closer look at some of the
options that will be used to create it. Click Show Advanced, so the win-
dow looks like Figure 1.5. For the Web projects you create in this book,
you’ll take the defaults. That means your Web services and applications
will use WebSphere Application Server v6.0 as their target server, your
Web projects will be packaged in their own separate EAR projects, and
the context root (that is, the value used to generate URLs for Web com-
ponents within the project) will use the same name as your Web project.

11

Setting up a Web project



12

4. Click Finish.

In the Project Explorer, click the plus signs to expand the content of the folders
for Dynamic Web projects and Enterprise Applications. Your StockQuote project
appears as an entry under Dynamic Web Projects, and its associated
StockQuoteEAR project appears as an entry under Enterprise Applications, as
shown in Figure 1.6.

CHAPTER 1: Creating your first Web service and Web application

Figure 1.5: Creating a Dynamic Web project.



Rational Developer automatically
created a default folder structure
for your projects and placed 
several control files in the folders.
The project structure is set up
according to the specifications for
packaging J2EE applications. A
Web project, where you place the
actual content for your Web serv-
ices and applications, uses the
standard structure for Web
Archive (WAR) files, also called a
Web module. An Enterprise project
uses the standard structure for
Enterprise Archive (EAR) files.
When you create a Dynamic Web
project, Rational Developer 
associates the Web project with an
Enterprise project, and places the
Web project’s WAR file in the
Enterprise project’s EAR file,
which is then deployed to an
application server. 

Multiple Web projects can be associated with a particular Enterprise project. You
do that to combine related Web modules into a single, larger J2EE application.
Luckily, you don’t have to remember all the details for WAR and EAR files,
because Rational Developer does the packaging for you. You just place your
Java source files in Java packages within the JavaSource folder in the Java
Resources folder, and you place the content for your Web pages in the
WebContent folder. Rational Developer automatically updates the necessary con-
figuration and deployment information for you.

13

Setting up a Web project

Figure 1.6: The Project Explorer.



14

Creating a Web service
For your first Web service, you’ll use Rational Developer to turn a Java class into
a Web service. The Java class you’ll use is our version of the StockQuoteService
sample that’s supplied with Rational Developer. Our code is in the solutions
folder on the CD included with this book. You’ll create a new Java package in
your Web project, import the Java source file into the Workbench, and then use
the Web Service wizard to turn the Java class into a Web service.

Importing the Java source
To create a new Java package in your Web project and import the Java source
file, follow these steps:

1. In the Project Explorer, right-click the JavaSource folder in the Java
Resources folder for the StockQuote project, and select New 
Package from the pop-up menu.

2. Enter samples for the package name, as shown in Figure 1.7.

3. Click Finish.

4. In the Project Explorer, right-click the samples package that you just 
created, and select Import… from the pop-up menu.

CHAPTER 1: Creating your first Web service and Web application

Figure 1.7: Entering the package name.



5. Choose File system as the import source, and click Next.

6. Click the Browse… button next to the From Directory field, and browse
to the /solutions/chap01/samples folder on the CD included with this
book. 

7. Click OK. 

8. Select StockQuote.java as the file to import, and make sure that Create
selected folders only is selected, as shown in Figure 1.8.

9. Click Finish. 

15

Creating a Web service

Figure 1.8: Importing the Java source code for StockQuote.java



16

We’ll take a quick look at the code you just imported before proceeding. In 
the Project Explorer, expand the content of the samples package, right-click
StockQuote.java, and select Open from the pop-up menu (or just double-click
StockQuote.java). The Java Editor opens with the source code shown in 
Listing 1.1.

CHAPTER 1: Creating your first Web service and Web application

package samples;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.Reader;

import java.io.StreamTokenizer;

import java.net.URL;

/**

* Java class that gets a stock price quote given a symbol.

*/

public class StockQuote 

{

/**

* Gets the price for a stock.

* 

* @param the String stock symbol, e.g. “IBM”

* @return the stock price

*/

public float getQuote(String symbol) throws Exception {

URL url = new URL(BASE_URL + symbol);

// get the quote as a comma separated value string, as in this example:

// “IBM”,80.85,“11/6/2002”,“2:20pm”,-0.68,80.80,81.500,80.10,5697700

InputStream is = url.openStream();

Reader reader = new InputStreamReader(is);

StreamTokenizer st = new StreamTokenizer(reader);  

// get the symbol string token, e.g. IBM

st.nextToken();

String outSymbol = st.sval;

if (!symbol.equalsIgnoreCase(outSymbol)) {

throw new Exception(“Wrong symbol received: ” + outSymbol);

}  

Listing 1.1: The source code for the StockQuote sample, part 1 of 2.



As you can see, the StockQuote class is fairly simple. The caller passes a stock
symbol to the getQuote(String) method. This method uses the stock symbol to
build a URL to get the price information from the finance.yahoo.comWeb site.
The method then extracts the last trading price from the string returned by the
Web site, and returns that value to the caller. When you’re finished looking at
the source code, close the Java Editor.

Tip: The StockQuote sample uses the comma-separated value (CSV)
interface provided by the finance.yahoo.com Web site. The format of
the string returned by the Web site is subject to change, so if you have
problems running the code, check help.yahoo.com/help/us/fin/quote
/quote-05.html to see if the interface has changed, and update the
sample accordingly. 

Using the Web Service wizard
Next, you’ll use the Web Service wizard to turn the StockQuote class into a Web
service. As part of the wizard’s processing, it deploys the Web service to your
WebSphere Test Environment, so you’ll start the server before running the 
wizard. If you forget to start the server before running the wizard, that’s OK,
because the wizard will start the server for you—we just like to do things in an
orderly process to keep track of when the server’s started, so that we remember
to stop it when we’re done.

17

Creating a Web service

// skip the comma token and get the price number token, e.g. 80.85

st.nextToken();

st.nextToken();

float price = (float) st.nval;  

reader.close();

return price;

}

private String BASE_URL = 

“http://finance.yahoo.com/d/quotes.csv?f=sl1d1t1c1ohgv&e=.csv&s=”;

}

Listing 1.1: The source code for the StockQuote sample, part 2 of 2.



18

1. Click the Servers tab in the Workbench, and select WebSphere
Application Server v6.0. This server is the WebSphere Test
Environment that you’ll use to run your Web services and applications. 

2. Right-click WebSphere Application Server v6.0, and select Start from
the pop-up menu. After a few moments, you’ll see the server’s status
change to “Starting” and then “Started.” 

Tip: To see the server’s message log, click the Console tab. This shows
all the detailed start-up messages, as well as runtime messages when
your Web service and applications are deployed to the server and run.
The log file itself is called SystemOut.log, and you’ll find it in the 
runtimes/base_v6/profiles/default/logs/server1 folder under the
folder where you installed Rational Developer (for example,
C:/Rational60).

3. To create your Web service, right-click StockQuote.java in the Project
Explorer, and select Web Services Create Web service from the 
pop-up menu. 

4. The Web service’s Options window appears. Make sure the Web service
type is set to Java bean Web Service, the Start Web service in Web
project check box is checked, and the Create folders when necessary
check box is checked, as shown in Figure 1.9. (These should all be the
default settings, unless you’ve changed your preferences.) 

Note: The Web Service wizard has many options to control how a Web
service is created, to test and publish the Web service, and to generate
and test the client proxy that applications call when they want to use the
service. You’ll see many of the other options later in this book. For now,
you’re just creating the Web service using Rational Developer’s
defaults. That means your Web service will be set up to run in the
WebSphere Application Server v6.0 runtime environment, which is the
default runtime environment for Rational Developer.

CHAPTER 1: Creating your first Web service and Web application



5. Click Finish.

After a few seconds the wizard completes. Let’s take a closer look at what it just
did for you. First, notice that several new files and folders have been added to
the StockQuote project, as shown in Figure 1.10. 

19

Creating a Web service

Figure 1.9: The Web service’s Options window.



20

What you see are the control
files that WebSphere
Application Server needs to
process your StockQuote class
as a Web service, so that, when
an application sends a message
to invoke the Web service, the
server knows what to do. The
control files include the 
information that applications
need to discover and use the
Web service—namely, the
StockQuote.wsdl file in the
WebContent/WEB-INF/wsdl
folder. The WSDL file
describes the operations that the
Web service provides and the
URL that applications use to
access the Web service. You’ll
use this file in the next section
to create a client proxy (that is,
the code that your application
calls in order to use the Web
service).

Note that there’s also a second copy of the WSDL file in the
WebContent/wsdl/samples folder. This copy is used by tools such as the Web
Services Explorer and Web Service Discovery Dialog, both of which you’ll use
later in this book. (We’ll examine the WSDL file in more detail in the next 
chapter. However, if you want to take a peek now, feel free. Just right-click the
file name, and select Open With WSDL Editor from the pop-up menu.
You’ll see all the control information that describes your StockQuote Web 
service and its getQuote operation.)

CHAPTER 1: Creating your first Web service and Web application

Figure 1.10: Project Explorer after running the Web
Service wizard.



In addition to creating all the necessary control files, the wizard also deployed
your Web service to the WebSphere Test Environment. To see that, either 
click the Console tab or browse the messages in the server’s SystemOut.log 
file. That file is in the runtimes/base_v6/profiles/default/logs/server1 folder
under the folder where you installed Rational Developer (for example,
C:/Rational60).

Your Web service is now ready to use. In the next section, you’ll change roles
from being a Web service developer, to being a Web application developer. In
that role, you’ll create a Web application to test your Web service.

Creating a Web application
The Web application you’ll create to test your Web service is a JavaServer Page
(JSP). It contains an HTML table with your favorite stock symbols and their last
trading prices. You’ll create the application in a new Web project using Rational
Developer’s Page Designer and the Web Service wizard. Then, you’ll run the
JSP in the WebSphere Test Environment (the same server where your Web serv-
ice is currently deployed).

21

Creating a Web application

What’s a JSP?

A JavaServer Page (JSP) is a dynamic Web page that contains a combination of static HTML ele-
ments and Java code. A JSP file is saved as a standard text file with a .jsp extension. A JSP is com-
piled and run on an application server when a user requests the page from a Web browser, and the
resulting output is returned to the user.

Some of the elements you’ll commonly see in JSP files are beans, scriptlets, and expressions.
Beans are instances of Java classes that you reference within the JSP. Scriptlets are Java code
executed at the point they appear in the JSP file. Expressions are Java functions that return string
values, which are inserted into the resulting Web page at the point they appear in the JSP file.



22

Setting up the JSP

1. Create a new Dynamic Web project named StockQuoteClient by 
right-clicking Dynamic Web Projects in the Project Explorer and 
selecting New Dynamic Web Project from the pop-up menu. Enter
StockQuoteClient as the Web project name, accept the defaults in the
advanced options, and click Finish. Note that you could have specified
the existing StockQuoteEAR project as the EAR project name for your
new Web project—that would have placed both the Web service and the
Web application in the same EAR file. You’re not doing that, because in
the next chapter, you’ll deploy just the Web service (and not the Web
application) to your “production” application server.

2. In the Project Explorer, right-click the WebContent folder for the
StockQuoteClient project, and select New JSP File from the pop-up
menu. 

Tip: Make sure you select the WebContent folder in the StockQuote
Client project, and not in the StockQuote project. Also, note that instead
of using the pop-up menu, you can create a new JSP file by selecting the
folder and clicking the Create a JSP File icon in the Web perspective’s
toolbar. Rational Developer gives you several ways to accomplish com-
mon tasks, so you can choose the method you prefer.

3. Enter MyStocks.jsp for the JSP file name, so the window looks like
Figure 1.11.

CHAPTER 1: Creating your first Web service and Web application

Create a
JSP File



4. Click Finish. 

The MyStocks.jsp file opens in the Page Designer, as shown in Figure 1.12. 
(If you see HTML source code instead of the design surface, click the 
Design tab.)

23

Creating a Web application

Figure 1.11: Creating a JSP file.



24

Tip: To see the HTML and JSP source for your Web page, click the
Source tab in the Page Designer. To see a preview of what the HTML
elements in your Web page will look like in a Web browser, click the
Preview tab. The Preview tab won’t show you what the final JSP 
elements will look like, however, because it’s not actually running in a
real application server. 

Using the Page Designer
You use the Page Designer much like any other graphical editor. To add or
change text in the Web page, just type on the design surface. To change the
attributes for a particular text string, select the text on the design surface, and
then set the value you want in the Properties view. The Properties view appears
at the bottom of the Workbench, and its layout changes based on the element
that’s currently selected on the design surface. 

To add more complex elements to the Web page, such as tables, images, forms,
or JSP logic, select the element you want in the Palette (Figure 1.13), drop it on

CHAPTER 1: Creating your first Web service and Web application

Figure 1.12: A new JSP file in the Page Designer.



the design surface, and set its attributes in the Properties view. The Palette 
contains all the commonly used elements for Web pages, organized into related
groups called drawers. You click the name of a drawer to open it.

Tip: The Properties view should already appear in
the Workbench (click the Properties tab to see it),
and the Palette should automatically appear in the
Workbench when you open a file with the Page
Designer. To see a view that isn’t already open, use
Window Show View.

Now, you’ll use the Page Designer to create the static
content for your Web application:

1. Select Place content here. on the design 
surface, and change the text to My Stock List. 

2. In the Properties view, select Heading 1 as the
Paragraph value for the text.

3. Click HTML Tags in the Palette to open the
drawer for HTML elements.

4. Select a Table in the Palette’s HTML drawer,
and drop it on the design surface below the
heading. When prompted to enter the number of table rows and
columns, leave the columns set to 2, and set the rows to the number of
stocks you want to display plus one for the table header, as shown in
Figure 1.14. You can set some table properties here, or if you prefer, you
can set the properties after the table has been dropped on the design sur-
face, by editing the values in the Properties view.

25

Creating a Web application

Figure 1.13: The HTML
drawer in the Palette.

Table



26

5. Click OK. The design surface should look something like Figure 1.15.

6. Next, you’ll set the values for the table header. In the design surface,
enter Stock symbol for the text in the first table cell (the first row and
first column). The first cell should already be selected; if not, just click
in it to select it. 

CHAPTER 1: Creating your first Web service and Web application

Figure 1.14: The Insert Table window.

Figure 1.15: Adding an HTML table to the design surface.



7. In the Properties view, select Header as the cell type. 

8. Select the next cell in the design surface (the first row and second 
column). Enter Price for the text in this cell, and in the Properties view,
select Header as the cell type.

9. Enter text values for the stock symbols you want to include in the table,
so the design surface looks something like Figure 1.16.

The static content for your Web application is now complete.

Creating a client proxy for the Web service
In this section, you’ll use the Web Service wizard to create a client proxy for
your StockQuote Web service, that is, the code that a Web application uses to
call the Web service. To create the client proxy for your Web service, you could
browse to the WSDL file in your StockQuote project and launch the Web
Service wizard from the file in that project, but we’ll show you a more 
convenient way to access the Web services in your Workbench.

1. Scroll down in the Project Explorer until you see the Web Services
folder, and expand the content of the folder. Notice that the folder 

27

Creating a Web application

Figure 1.16: Setting the static text for the HTML table.



28

contains sub-folders for Services and Clients. Within the Services folder
are all the Web services in your Workbench (currently just your
StockQuote Web service), and within the Clients folder are all the Web
service client proxies in your Workbench (none currently, but that will
change in a moment). 

2. Right-click StockQuoteService in the Services folder, and select
Generate Client from the pop-up menu. The Web Service Client
Options window appears, as shown in Figure 1.17.

3. Make sure the client proxy type is set to Java proxy and the Create
folders when necessary check box is checked, and click Next. The Web

CHAPTER 1: Creating your first Web service and Web application

Figure 1.17: The Web Service Client Options window.



Service Selection page appears for you to select the WSDL file from
which you want to create a client proxy, as shown in Figure 1.18. 

4. The URI is already set to the WSDL file for your StockQuote Web 
service, so just click Next. The Client Environment Configuration page
appears, to let you select the runtime environment for the client (that is,
the runtime environment where your JSP runs). Make sure the Web 
service runtime is set to IBM WebSphere, the server is set to
WebSphere Application Server v6.0, and the J2EE version is set to
1.4. Also, make sure StockQuoteClient is selected as the Client project
(the project where the wizard will place the client proxy), so the window
looks like Figure 1.19.

29

Creating a Web application

Figure 1.18: The Web Service Selection page. 



30

5. Click Finish. 

6. When prompted to enable overwriting for the web.xml file, click Yes.
This lets the wizard add the necessary control information for packaging
your Web application. That’s it—your client proxy has been created.

Note: We’ll skip this last step for the rest of the client proxies that you
create in this book, by having you check the Overwrite files without
warning check box on the first page of the wizard. For this first client
proxy, we wanted you to see all the steps that take place. 

CHAPTER 1: Creating your first Web service and Web application

Figure 1.19: The Client Environment Configuration page.



Before proceeding, let’s take a closer look at what the wizard just did for you.
Expand the contents of the JavaSource folder in the StockQuoteClient project’s
Java Resources folder. You’ll see that it now contains a “samples” package with
six Java source files. These files are the client proxy code that the wizard 
generated for you from the WSDL file using the default client runtime, that is,
the WebSphere Application Server v6.0 runtime environment. If you had 
chosen a different client runtime, the generated code would look somewhat 
different, but the concept would still be the same—these are the classes that your 
application uses to access the Web service. 

The client proxy code is very simple to use. First, you create an instance of the
proxy class that represents your Web service—that’s StockQuoteProxy for your
StockQuote Web service. Then, you call the proxy’s getQuote(String) method,
passing the stock symbol whose trading price you want. That’s it. The proxy
classes do all the work to locate your Web service, send the request message,
and return the response (the stock price) to you.

Using the client proxy in the Web application
Let’s go back to the Page Designer to add the JSP logic that uses the client
proxy to get the stock prices. Click anywhere on the design surface to return the
focus to the Page Designer, and then follow these steps:

1. Click JSP Tags in the Palette to open the drawer for JSP elements. 

2. You need an instance of the StockQuoteProxy class (or bean). Select a
Bean in the Palette, and drop it on the design surface somewhere before
the table. (Don’t worry if it doesn’t land on the right spot—you can 
move it later.)

3. In the Insert JSP Bean window that appears, enter proxy for the ID.
(This is the name you’ll use to reference the bean.) Enter
samples.StockQuoteProxy for the Class name, so the window looks
like Figure 1.20. 

31

Creating a Web application

Bean



32

Tip: If you don’t want to type in the full class name, you can use the
Browse… button to locate it. In the Class Selection window, enter the
first part of the class name, such as Stock. A list of all classes in the 
project’s build path that match that pattern are presented in a list, from
which you can select the class and package name you want to use.

4. Click OK. The design surface should now look something like 
Figure 1.21. 

CHAPTER 1: Creating your first Web service and Web application

Figure 1.20: Adding the StockQuoteProxy bean to the design 
surface.



Now that you have an instance of the StockQuoteProxy bean, you’ll add Java
code to call the proxy’s getQuote(String) method, which gets the price for each
stock symbol and inserts the resulting values into your Web page. 

Tip: If the bean landed somewhere else, such as within the table, use
the mouse to move it. You’ll be referencing this bean within the table
rows to get the stock prices, and the bean instance needs to be created
before it can be used.

5. Select an Expression in the Palette, and drop it on the design surface in
the table cell for the first stock price. In the Properties view, enter
String.valueOf(proxy.getQuote(“symbol”)) for the expression value,
where symbol is the stock symbol, such as String.valueOf(proxy.get
Quote(“CSCO”)) for the stock shown in the first row of our example.
This code calls the client proxy to get the last trading price for the stock
symbol specified, and then converts the float value returned by the
proxy to a String value.

33

Creating a Web application

Figure 1.21: The StockQuoteProxy bean added to the design surface.

Expression



34

6. Repeat the previous step for each stock symbol in the table. Your design
surface should now look something like Figure 1.22, and the Web page
source should look like Listing 1.2.

CHAPTER 1: Creating your first Web service and Web application

Figure 1.22: The design surface with all elements added.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

<HTML>
<HEAD>
<%@ page language=“java” contentType=“text/html; charset=ISO-
8859-1”%>

<META http-equiv=“Content-Type” content=“text/html; 
charset=ISO-8859-1”>

<META name=“GENERATOR” content=“IBM Software Development 
Platform”>

<META http-equiv=“Content-Style-Type” content=“text/css”>
<LINK href=“theme/Master.css” rel=“stylesheet” type=“text/css”>
<TITLE>MyStocks.jsp</TITLE>
</HEAD>
<BODY>
<H1>My Stock List</H1>
<jsp:useBean id=“proxy” 
class=“samples.StockQuoteProxy”></jsp:useBean>

Listing 1.2: The final source code for the MyStocks Web application, part 1 of 2.



7. To save your changes, right-click the design surface, and select Save
from the pop-up menu. If there are any errors in your Web page, they’ll
be listed in the Problems view at the bottom of the Workbench. Compare
your JSP file with Listing 1.2 to correct any errors.

Tip: As you make changes in the Workbench, you might notice mes-
sages at the bottom of the window about “Building Workspace” or
“Publishing EAR file” functions. These are background tasks that
Rational Developer is doing for you. You might sometimes see mes-
sages that your user operations are blocked by the background tasks.
This is normal, because some operations need the background tasks to
complete before they can proceed, such as getting the Workspace in
sync with work you’ve done. There might also be some cases when

35

Creating a Web application

<TABLE border=“1”>
<TBODY>

<TR>
<TH>Stock symbol</TH>
<TH>Price</TH>

</TR>
<TR>

<TD>CSCO</TD>
<TD><%=String.valueOf(proxy.getQuote(“CSCO”))%></TD>

</TR>
<TR>

<TD>FNM</TD>
<TD><%=String.valueOf(proxy.getQuote(“FNM”))%></TD>

</TR>
<TR>

<TD>IBM</TD>
<TD><%=String.valueOf(proxy.getQuote(“IBM”))%></TD>

</TR>
<TR>

<TD>INTC</TD>
<TD><%=String.valueOf(proxy.getQuote(“INTC”))%></TD>

</TR>
</TBODY>

</TABLE>
</BODY>
</HTML>

Listing 1.2: The final source code for the MyStocks Web application, part 2 of 2.



36

your operation might not be blocked, but you’ll still want to wait for the
background task to complete, such as waiting for an EAR file to be 
published before running the Web application or Web service that’s
contained in it.

Running the Web application
To run your Web application, first make sure you have an active Internet 
connection, so that your Web service can access the finance.yahoo.comWeb site.
Also, make sure your WebSphere Test Environment is still started (both your
Web service and Web application run in this server). Right-click MyStocks.jsp
in the Project Explorer, and select Run Run on Server… from the pop-up
menu. When prompted to select a server to launch, make sure that WebSphere
Application Server v6.0 is selected, and click Finish. 

Tip: You can skip the Server Selection window when running Web
applications in this Web project in future by checking the Set server as
project default check box. 

Your Web application starts in a Web browser window, as shown in Figure 1.23.

CHAPTER 1: Creating your first Web service and Web application

Figure 1.23: MyStocks.jsp running in a Web browser window.



Notice that Rational Developer uses the standard URL format for your Web page,
which is http://host:port/context-root/alias. The URL prefix, http://localhost:9080,
directs the Web browser to your WebSphere Application Server that’s listening on
port 9080 for HTTP requests. The context root is the value you specified when you
created the Web project (StockQuoteClient, the same name as the Web project).
Since you created the JSP file in the WebContent folder, the alias portion of the
URL is just the name of your JSP file (MyStocks.jsp).

Tip: If you’re running within an intranet that uses a firewall to access
the Internet, you might need to specify a proxy server in your Work-
bench preferences in order to access the finance.yahoo.com Web site.
To specify a proxy server, select Window Preferences, and then
select Internet – Proxy Settings in the list of Preferences. Check the
Enable proxy check box and enter the proxy host name and port (the
same values you’d specify in a Web browser to access the Internet). If
the proxy is a SOCKS server, check the Use SOCKS check box. If 
necessary, also enter authentication values for the proxy.

Importing the solution files
If you ran into any problems following the instructions in this chapter, import
the solution files in the /solutions/chap01 subdirectory on the CD included with
this book. There are two solution files, one for the Web service and another for
the Web application. Follow these steps to import them:

1. Right-click Enterprise Applications in the Project Explorer, and select
Import… EAR file from the pop-up menu to import the solution file
for the Web service. 

2. Click the Browse… button, and browse to the /solutions/chap01 folder
on the CD. Select Chap01StockQuoteEAR.ear, and click Open, so the
Import window looks like Figure 1.24. (The project name will be 
automatically filled in.)

37

Creating a Web application



38

3. Click Finish. If you are prompted to switch to the J2EE perspective,
click No. (To avoid this prompt in future, check the Remember my 
decision check box.) Two new projects appear in the Project Explorer:
Chap01StockQuote in the Dynamic Web Projects folder and
Chap01StockQuoteEAR in the Enterprise Applications folder, 
corresponding to your own StockQuote and StockQuoteEAR projects.

4. Repeat steps 1-3 to import the Chap01StockQuoteClientEAR.ear solu-
tion file for the Web application. 

5. To deploy the imported projects to your WebSphere Test Environment,
click the Servers tab. Right-click WebSphere Application Server v6.0,
and select Add and remove projects… from the pop-up menu. 

6. Click Add All to move the new projects to the list of Configured 
projects, so the window looks like Figure 1.25.

CHAPTER 1: Creating your first Web service and Web application

Figure 1.24: Importing the solution file for the StockQuote Web service.



7. Click Finish.

Tip: You can also use the Add and Remove Projects wizard to uninstall
applications from the WebSphere Test Environment, by removing the
associated EAR file from the list of configured projects.

8. To run the Web application, right-click MyStocks.jsp in the WebContent
folder of the Chap01StockQuoteClient project, and select Run Run
on Server… from the pop-up menu. When prompted to select a server
to launch, make sure that WebSphere Application Server v6.0 is
selected, and click Finish.

39

Creating a Web application

Figure 1.25: Adding the imported projects to the server configuration.



40

Stopping the WebSphere Test Environment
The WebSphere Test Environment doesn’t automatically stop when you exit
Rational Developer, so to free up resources on your computer, you should try 
to remember to stop the server when you no longer need it for testing. Follow
these steps:

1. Click the Servers tab. 

2. Right-click WebSphere Application Server v6.0 in the Servers view,
and select Stop from the pop-up menu. 

3. If prompted with a message saying that the server is not responding,
click OK to terminate the server. The server’s status changes from
“Started” to “Stopped.” 

In review
In this chapter, you learned some of the basic terminology and concepts related
to Web services. You used Rational Developer to create a simple Web service
and a Web application that uses the Web service, and then you ran the Web 
service and application with the WebSphere Application Server (Rational
Developer’s built-in Test Environment). In the next chapter, you’ll create another
WebSphere Application Server to act as your production server, deploy your
Web service to the new server, and then publish it to make it available for other
programmers to discover and use. 

References
IBM WebSphere Express Trial Program:
www-106.ibm.com/developerworks/websphere/downloads/EXPRESSsupport.html 

CHAPTER 1: Creating your first Web service and Web application




