
 

 

3 
Overview: 

Understanding 
the Toolbox 

In this chapter, we will review the different components of SQL Server 
Integration Services (SSIS). Our intent here is to go over the main components of 
SSIS, to give you a basis for understanding and working with the SSIS database-
access solution. We won’t explore the SSIS components in depth, as there is a lot 
to learn and understand about some of them. Once you get an overall idea of 
what these components are, it will be easier for you to pick up the deeper 
concepts later. 

First, we will cover the most important components that you should understand 
to use SSIS and build your own SSIS-based solution. These are the Solution 
Explorer, the different views of a package, the SSIS Toolbox, properties, and 
variables. Next, we will step you through some of the most commonly used 
elements or tasks from the SSIS Toolbox component, which are used to create an 
SSIS workflow. Additionally, we will cover the basic uses of parameters and 
configuration files and how to create them. We will go into further details about 
configurations in chapter 13. Being familiar with the core components will help 
you understand the later chapters as we step through some code. 

  



34   •   Extract, Transform, and Load with SQL Server Integration Services  

Note If you are having a difficulty finding the Business Intelligence template, make sure that you have installed the SQL Server Data Tools for Visual Studio (SSDT), as mentioned in chapter 2. 
Getting Started 

Before we get started with SSIS, a quick explanation of the components is in 
order. A solution is like your main directory, which contains multiple sub-
directories. A solution is designated with an .sln extension filename. Within a 
solution, the project is your main sub-directory and is designated with a .dtproj 
extension filename. A project is further split into multiple components: packages, 
connection managers, and so on. You can create multiple projects in a solution, 
and when you first create your new SSIS project, a new package will be created 
and presented to you by default. Packages are designated with a .dtsx extension 
filename. You can add as many packages as you’d like to your project. 

Fire up Visual Studios if you haven’t already done so, and let’s create our first 
SSIS project! Let's start by creating a new project by selecting File > New > 
Project..., as shown in Figure 3.1. 

 

Figure 3.1: Creating a new project 



Chapter 3:  Overview: Understanding the Toolbox   •   35 

This will display the wizard shown in Figure 3.2. 

 

Figure 3.2: Naming the project and its save location 

We will call our new Integration Services project FictitiousBrewingCompany. 

Once you have successfully created your new project, you will be at the landing 
page (Figure 3.3), where you can see most of the components. This is your 
design window and is where you will create your SSIS package workflow. 

 

Figure 3.3: Overview of a Project’s landing page after its initial creation 



36   •   Extract, Transform, and Load with SQL Server Integration Services  

Before we delve into the different components and tasks, let’s take a quick look 
at the importance of how you build your SSIS solution. How you build the 
solution depends on the type of deployment model you use for your project. 
These models also dictate the type of deployment utility that will be generated by 
the solution when it is built. 

Deployment Models and Utilities 

Every SSIS solution can be built on two types of deployment models: project 
deployment, which generates an .ispac file, and package deployment, which 
generates a manifest. 

Project Deployment 

This is a newer deployment model that was introduced with the version of SQL 
Server Integration Services in SQL Server 2012. By default, new projects are 
automatically generated using the project deployment model. With this 
deployment type, a user can deploy the whole project as a single entity via an 
.ispac file. You treat an .ispac file as a zipped folder. You can use any folder 
unzip program to extract files from the .ispac file and work on the extracted files 
using Visual Studio’s SSDT. 

Package Deployment 

This is the legacy deployment model of SSIS that allows a user to deploy 
packages individually on file systems and integration servers. In this model, a 
package is the entity to be deployed with its dependent files. A deployment utility 
called a manifest is created with this model. This model, in our view, is the best 
deployment model for SSIS packages as it gives a user more freedom when 
deploying such packages. We will talk about deployments in more detail in 
chapter 13. 

Why bring up deployment models this early? SSIS packages are built to be 
deployed right off the bat. Each deployment model has a subtly but noticeably 
different look and folder structure. So, it is easier to explain the components 
based on the deployment models. Throughout this chapter, we will be using the 
default model, project deployment, to explain the different components of an 
SSIS package.  



Chapter 3:  Overview: Understanding the Toolbox   •   37 

Then what about the package deployment model? Microsoft has done a great job 
of keeping the functionalities of both deployment models very similar, to avoid 
confusing their users. When we explain one component of the project 
deployment model, we will also mention its counterpart from the package 
deployment model, if there is one. 

At the end of this chapter, we will provide the steps to convert your project from 
the project deployment model to the package deployment model and vice versa. 
It is up to you to decide which model you prefer to use as the deployment model 
for your future builds. Now, let’s get started! 

Solution Explorer 

Solution Explorer allows a user to view and control the different parts of a 
solution. Depending on the type of project model you are working with, the 
Solution Explorer will be presented differently. For a project deployment model, 
it is split into four subfolders: Connection Managers, SSIS Packages, Package 
Parts, and Miscellaneous, as shown in Figure 3.4. 

 

Figure 3.4: Solution Explorer 



38   •   Extract, Transform, and Load with SQL Server Integration Services  

The Connection Managers folder is used to hold connections for your project 
data. It can be shared across your project packages so that you don’t have to 
create multiple instances of the same connection. To add a new connection 
manager, right-click the folder and select the New Connection Manager… 
option. This will open a wizard that will step you through your connection 
creation. There are several types of connections that can be used for your 
project—for example, Flat File, Database, and Excel. A connection manager is 
designated by the .conmgr extension. The package deployment model, on the 
other hand, has a Data Sources folder. This folder strictly holds connections to 
your data and no other connection type. 

The SSIS Packages folder is used to hold all the packages of your project. To add 
a new package, right-click the folder and select the New SSIS Package option. 
This will create and display the new package for you with the default name 
(package.dtsx). A number will be appended to the package name if you already 
have another package in your project with its default name. To add an existing 
package, right-click the folder and select the Add Existing Package option, then 
follow the steps provided by the wizard. A package is designated by the .dtsx 
extension. This folder is also called SSIS Packages in the package deployment 
model. 

The Package Parts folder is used to hold prebuilt tasks that can be referenced by 
any packages. A package part is reusable code, which is a set of controls that can 
contain multiple tasks and/or containers. Package parts can have their own 
connection managers, variables, properties, and logging but cannot have event 
handlers, parameters, or nested packages. A package part is designated with a 
.dtsxp extension. One important thing to note about package parts is that you can 
only have one container or task per part. This folder is also called Package Parts 
in the package deployment model. 

The Miscellaneous folder holds a file that is neither a package nor a data source. 
This could include your configuration file(s) of your project package(s). This 
folder is also called Miscellaneous in the package deployment model. 

  



Chapter 3:  Overview: Understanding the Toolbox   •   39 

Package Views 

An SSIS package is divided into multiple views, which include the Control 
Flow, Data Flow, Parameters, Event Handlers, and Package Explorer views 
(Figure 3.5). These views let you work with the different functionalities of a 
package. The views are fixed, tabbed windows that cannot be removed from the 
design window. Additionally, you cannot add any other tabbed windows as a new 
view. There are two additional views that are only visible either during execution 
or once a package has completed execution: Progress view and Execution Results 
view. 

 

Figure 3.5: Package views 

Control Flow is the main view of a package where much of work is 
implemented. It contains different elements that you can use to build your 
package workflow. These elements consist of: 

• Containers that provide a structural support for other elements 

• Tasks that provide a functional support 

• Constraints that act as connectors/constraints between elements in the 
flow controlling their execution during runtime 

The Data Flow view is used to control the data transformation elements of the 
package. Components of this view contain: 

• Sources, which are used to pull data for manipulation 

• Destinations, which are used to store data after manipulations or before 
further processing 

• Transformers, which can be used individually and do not require an 
actual data flow 

• Other common functions that are used for conversions and other tasks 



40   •   Extract, Transform, and Load with SQL Server Integration Services  

The Parameters view is used to add, update, or delete parameters related to the 
project. This view is visible for both types of deployment models but is disabled 
for the package deployment model. 

The Event Handlers view is used to capture events raised during the package’s 
runtime. They can use the same elements that are available for the Control Flow 
view. Twelve different events can be captured and processed during package 
runtime. 

The Package Explorer view lets you indirectly access a breakdown of the 
different views of your SSIS package. 

The Progress view is a hidden tab and is visible only when a user enters the 
Debug mode. You can enter Debug mode by pressing F5. This will start to 
execute your package, and you can watch the output in this view. 

The Execution Results view is only visible once a package has completed 
execution. This view will show the overall steps of the package execution. 

SSIS Toolbox 

The SSIS Toolbox (Figure 3.6) holds the different elements used to construct an 
SSIS package workflow. The Toolbox displays components in a categorized 
form and will display only those tools available for the view you are in. You 
cannot create your own categories, but you can move tools around and maximize 
and minimize categories for ease of use. If you choose, you can install additional 
third-party tools in the Toolbox. Once they are installed, you can right-click 
inside the Toolbox and click the Refresh Toolbox option to see your newly 
installed tools. 

  



Chapter 3:  Overview: Understanding the Toolbox   •   41 

 

Figure 3.6: SSIS Toolbox 

By default, the Toolbox is displayed automatically either when a new package is 
created or when you open an existing package. If you have a difficulty finding 
the toolbox, you can simply click the SSIS Toolbox button located at the top 
right of the design window, as shown in Figure 3.7. 

 
Figure 3.7: SSIS Toolbox access button 

Properties 

When you first create your SSIS package, you can set up the different properties 
of the package and its components using the Properties window (Figure 3.8, page 
42). In the default form, the Properties window is in a categorized and alphabetic 
state. You also can view the properties fully alphabetically without any 
categorization. In a categorized form, the Properties window is split into 
following categories: Checkpoints, Execution, Forced Execution Value, 
Identification, Misc, Security, Transactions, and Version. 



42   •   Extract, Transform, and Load with SQL Server Integration Services  

 

Figure 3.8: Properties window in a categorized form 

• Checkpoints allow you to set up package-restart options. This property 
will restart the process from a specified point in the package instead of 
rerunning the whole package from the beginning. 

• Execution lets you set the runtime behavior of an SSIS package. 

• Forced Execution Value lets you force a value to be returned by the 
package. 

• Identification lets you define an identity of the package (e.g., creation 
date, name, ID). 

• Misc holds the properties of package configurations, element 
expressions, and package logging. 

• Security lets you password-protect your package. 

• Transactions lets you set the isolation level and transaction options for 
your package. 

• Version lets you set your package’s versioning. 

Variables 

As in any programming language, a variable is an object that holds a value 
provided to it, which can change at runtime. Within SSIS, there are two types of 
variables: system variables and user-defined variables. 



Chapter 3:  Overview: Understanding the Toolbox   •   43 

System variables are variables predefined by SSIS that represent certain 
properties of a solution—for example, PackageName, ErrorCode, or 
CreationTime. As a user, you cannot create system variables, but you can best 
use them for error handling, logging, or just informational purposes. The best use 
of system variables we have found is to use them for error handling. Chapter 11 
explains more about the use of this variable type. 

User-defined variables are the types of variables that you define when you create 
your package’s workflow. You can create as many user-defined variables as 
you’d like for a package. User-defined variables are distinguished with a simple 
box-like icon, as shown in Figure 3.9. 

 

Figure 3.9: A user-defined variable (AUserVariable) and a 
system variable (CancelEvent) 

Each variable type can be accessed by every element of a package workflow with 
one exception: variable scope. The scope is the accessibility of a variable within 
a package. Variables that are created with a package-level scope act as global 
variables that can be accessed by every element and in every view of a package. 
Variables created with specific scopes—container level, element level, or event 
level—can only be accessed by elements in that scope type. In SSIS, variables 
can play an integral role in the execution of a package. They can be used in many 
ways, as described in the following sections. 

Expression Builder 

At runtime, the Expression Builder evaluates and calculates the value of an 
expression to be used by other elements of a package. Expression Builder 
expressions are enclosed in double quotes (" "), and variables passed into the 
expression are required to be character strings. To use expressions in any of your 
tasks, you can use the task’s properties and create expressions there. 
Alternatively, you can open the task, click Expressions, then click the 
Expressions drop-down menu and click Ellipsis. Then select property and click 
its ellipsis. You will see a screen like that in Figure 3.10 (page 44). 



44   •   Extract, Transform, and Load with SQL Server Integration Services  

 

Figure 3.10: Expression Builder for an execute SQL task 

If a variable isn’t a string type variable, the Expression Builder will throw an 
“incompatible data type” exception when you evaluate it (see Figure 3.11). To 
avoid such exceptions, just cast your variable as a character string (DT_WSTR or 
DT_STR) within your expression, as shown in Figure 3.10. DT_WSTR is a Unicode 
character string, and DT_STR is a non-Unicode character string. 



Chapter 3:  Overview: Understanding the Toolbox   •   45 

 

Figure 3.11: Incompatible data type error 

Package Properties 

Specific properties can be set for the elements that can allow changing their 
behaviors during runtime. For example, you can set the Retain Same 
Connection property of a Connection Manager to True/False to allow the usage 
of runtime-created temp tables in a loop. 

Record Sets 

Data can be pulled into a variable of the Object data type that can be used by a 
for each loop to enumerate through a data set, as shown in Figure 3.12 (page 46). 



46   •   Extract, Transform, and Load with SQL Server Integration Services  

 

Figure 3.12: Record set destination: MemberObject variable of 
Object data type 

Parameters and Return Values 

SQL statements can be executed with input parameters and return values that can 
be stored during runtime for further use, as shown in Figure 3.13. 



Chapter 3:  Overview: Understanding the Toolbox   •   47 

 

Figure 3.13: Execute SQL task: calling a stored procedure with variables mapped 

Variables can also be used as expressions that can be evaluated during runtime or 
prior to runtime. This allows a user to, for example, store SQL statements that 
can be dynamically created during package runtime. To achieve this, you can 
change a variable’s EvaluateAsExpression property value to True. If variables 
are to be evaluated during runtime, you can change a variable’s 
DelayValidation property to True, as well. By default, every element’s 
DelayValidation property is set to False, and these elements will be evaluated 
prior to the package execution. This allows a package to catch validation errors 
before reaching those specific execution points. Setting the DelayValidation 
property to True will allow the package to skip initial validation and validate the 
element once the specific point in the package is reached where such element is 
used. 




