
 A bit of wisdom: “Blessed are those who find
wisdom, those who gain understanding She is
more precious than rubies” (Prov. 3:13, 15)

6
Ruby and IBM i

I remember when I first tripped across Ruby. I was looking for an open source report-
writing tool and discovered DataVision (datavision.sourceforge.net). It was pretty cool
for its time (I was using it in early 2003), but my stumbling block was the need to use
Ruby to script some of the output. At the time, I thought I was a pretty hot programmer,
but my background in RPG III, RPG/400, and BASIC left me ill-prepared for an object-
oriented (OO) scripting language like Ruby. I set DataVision aside, and it seems to
have faded into the open source diaspora, collecting dust in the vast wasteland that is
SourceForge.

But like your Uncle Fred, Ruby has been around a lot longer than you think (some think
maybe Fred has been around too long), and it has continued to grow and mature. Ruby
got its start in 1993 in response to Yukihiro Matsumoto’s need for a “better” scripting
language. We’re always looking for better, aren’t we? And we can always do better!
So more power to Matz (as he is called) for stepping out into the great unknown of
programming language development. His goal for that “better” language was to keep
it simple and easy (yeah, right, every language seeks that holy grail), so he threw Lisp,
SmallTalk, Python, and a bit of Perl into the pot, and the result was Ruby. Lisp brings the
simplicity, SmallTalk provides the object-oriented-ness, and Python and Perl sharpen the

40  •  Open Source Starter Guide for IBM i Developers

focus of the language on utility. Matz described Ruby as “a scripting language that was
more powerful than Perl, and more object-oriented than Python.” He achieved his goal,
and eventually the language made its way out of Japan and into the big, wide world of
open source around the turn of the century.

The goal of this chapter on Ruby and IBM i is to first ground you in the Ruby language.
That won’t be easy because Ruby is probably about as different from RPG as an apple is
from an orange. They are both fruits, but one must be peeled before eating and they taste
very different. We are going to first “peel” Ruby so you can understand how it works.
That means a grounding in OO principles. Then we can move on to basic language
syntax, access to PASE resources, DB2 for IBM i database access, and then calling RPG
programs from Ruby. That’s quite a bit to cover. Ready? Let’s go!

Every programmer wants to achieve the greatest amount of work in the least amount time
and have fun doing it. At least, I hope that’s what you’re after. The programming world
rotates on productivity, and that’s what Ruby is designed for. It frees you to produce
useful solutions that are easy to write and maintain. Give that some thought for a minute,
and then let’s take a common construct like a collection of “stuff.” An array is basically
a listing or grouping of separate but similar things. Very often, you want to access those
items individually, and usually you want to do it sequentially. So iterating through these
items is something you often do. It would seem logical that a container of these items
would “know” what is in “itself” and be able to list those items. Being able to tell the
container “list these items” would be a handy feature of the container. Something like
this:

My tool bench has these items: hammer, saw, old underwear (yeah—rags), screwdriver,
empty cans, vise, pliers. What if the tool bench itself could enumerate and access those
items? Maybe something like an each function? So, for each item on the bench, what
exactly would the function do? Whatever you told it to do! So we’d end up with a
few functions that we often do for the tool bench “collection.” Enumerate each item
and maybe use a find function (useful for my tool bench). Functions built around that
container would maybe look like bench.each and bench.find, where you’d have an
operator on the object itself. Ruby ends up looking just like that in many cases because it
operates on the principle of least surprise (or astonishment, in this case), which results in
a tidy acronym of POLA. In a POLA world, what you expect to see is what you do see.

  Chapter  6:  Ruby and IBM i  •  41

In the IBM i world, that is not always the way languages and/or commands work.
Sometimes it is a POLA opposite. Anyone who made the transition from the S/38 to the
AS/400 had to rethink some commands. In many cases, AS/400 commands operated
on POLA principles, but not always. And then, once you were in RPG, things were not
always so predictable. Take a look at a bit of fun RPG II code:

 C RCODE COMP '0' 20

 C *IN20 IFEQ '1'

 C EXFMTSCREEN2

 C AGAIN COMP 'Y' 22

 C 22 GOTO BEGIN

 C 20N22 GOTO END

It isn’t immediately apparent just what this code does, and it’s probably unfair to compare
a procedural language to an OO one. I will say that free-format RPG is much more
coherent to me, and is easier to transition to, than the RPG II above. Then again, RPG
II is more readable than assembly language (which I was completely spared from ever
having to learn). Bottom line: the principle behind Ruby is POLA, and it does a pretty
good job. In fact, it does such a good job that initial forays into the language can be
disorienting.

Moving to a predictable environment from an unpredictable one can be just as
disorienting as the opposite approach. When I moved to Salt Lake City from Chicago,
the grid-style layout of the streets in Salt Lake left me dumbfounded until I adapted to
the Salt Lake way of navigating. After 20 years, you could plop me down anywhere in
the Salt Lake valley and I could find my way home. Moving from that rigid structure to
the rambling roads of San Antonio, I had to turn on my GPS to find my way to the next
block. Plop me down a few miles from home in San Antonio, and I’d be lost without a
GPS. But I have learned new rules and now regularly ignore my GPS and I am fine (“Oh,
look, what is an ocean doing so close to San Antonio?”). Bottom line: you can learn this
stuff. Ruby operates on POLA. POLA is good!

So, with that brief primer and the established principle of POLA, let’s take a look at some
Ruby basics just to get started.

42  •  Open Source Starter Guide for IBM i Developers

Installation
You will most likely want to have some kind of command line into the world of Ruby, so
we have a couple of ways we can go. If you are a Windows, Linux, or Mac person, you
can find pretty much all you need at the https://www.ruby-lang.org site. Even if you plan
to install PowerRuby on IBM i (which you will find here: https://powerruby.com), you’ll
probably still want to have something local so you don’t have to lug that Power Systems
box around with you. One of the cool features of open source on IBM i is that, except
for RPG-based projects, you can write, compile, test, and deploy projects wherever
you want initially. When you’re ready, you can deploy to IBM i and test again in that
environment. Basically, you can write code whenever and wherever you want. I find that
very productive (and a little invasive in my life).

I won’t go into details on how to install Ruby. There are plenty of tutorials on how to
do that (and they are simple), so go ahead and install Ruby on both your development
workstation and IBM i (if you have that freedom). The following examples will run
anywhere.

IDEs and irb
We haven’t talked about IDEs for Ruby. Frankly, an IDE for Ruby would be like an IDE
for CL: I guess it would be cool for syntax checking, but it’s overkill for basically a text
editor. In fact, that’s really all you need: a text editor. Notepad, Notepad++, WordPad,
LaunchPad (I just made that up)—any kind of pad will do (like back in the 1960s). I use
the Sublime Text editor for a couple of reasons: it’s cheap, and I can run the code directly
within the editor. There are others, so find one that fits like that comfy 10-year-old shirt
you keep in the back of your closet and keep it easy. No reason to get hung up on text
editor versus IDE wars.

You have another option for testing small snippets of code or just trying a few lines
to get the hang of something: a REPL. Rather than some alter-ego clone, a REPL is a
read-eval-print loop terminal, and it can really come in handy when you are just getting
started. You usually get a REPL by just invoking the executable. In Ruby, you use the irb
(Interactive RuBy) command. It will look like Figure 6.1 if you are a Windows user and
have installed Ruby.

  Chapter  6:  Ruby and IBM i  •  43

Figure 6.1: The Ruby irb command

There isn’t any console support in the CMD window in Windows, so you’ll see that
message on the startup of irb.

Here’s a really simple “Hello World” example (dang, I really didn’t want to go there, but
we always start with a “Hello World” example), as shown in Figure 6.2.

Figure 6.2: Hello World example

The command entry point here is after the line number 001:0 and the greater-than sign
(>). And what’s with the =>nil? Well, we asked Ruby to output the string “Hello World”
(that is what puts does), and the puts command returns nothing, nada, zilch. Hence, to be
different and a little British, it returns “nil.” Nothing to worry about.

We could just keep slamming out commands in irb, but it can get a bit tedious if we are
trying to write a complete script. You can end a line with a semicolon (;) to indicate that
there is more to come, or if you are in a do block, you can code your little heart out until
you end it. But a text editor will make things easier in the long run.

A REPL is cool because you can immediately see the results of your programming, but if
you have several lines of code, it can get a little tedious, as you can see in Figure 6.3.

44  •  Open Source Starter Guide for IBM i Developers

Figure 6.3: Code in a REPL

It might just be easier to stuff the whole thing into a text file. That way, if you fat-finger
a couple of lines, you won’t have to laboriously retrieve and edit each line at a time. You
can hack the file and be done with it.

Figure 6.4 shows a snippet of code I knocked out in UltraEdit (I could have used any
other editor). It does what I just tediously typed out in irb (except you didn’t see all the
correcting going on).

Figure 6.4: The same code in an editor

Going to the command line and typing ruby and the filename will run the script:

bash-4.2$ ruby sayhello.rb

Hello you

Hello me

Hello everybody

Hello world

  Chapter  6:  Ruby and IBM i  •  45

But, Ruby really doesn’t give a rip about the .rb file extension. You can run Ruby against
any file that has valid Ruby commands in it, like this:

bash-4.2$ ruby hello.pete

Hello you

Hello me

Hello everybody

Hello world!

The convention is to use .rb at the end because, in most cases, you have associated the .rb
extension with the Ruby binary (in Windows) and a shebang (#!) directive to point to the
correct executable (in PASE), and that combination will “know” how to run the script:

#!/usr/bin/env ruby

puts "Hello you"

puts "Hello me"

puts "Hello everybody"

puts "Hello world"

But really, as long as you point Ruby to a file with valid syntax, no problemo! Ruby will
parse and execute the script.

What if your syntax is problematic? Then what? Let’s make a very subtle (and common)
mistake and see what happens. First, the file contents:

puts "Hello you"

puts "Hello me"

Puts "Hello everybody"

puts "Hello world"

Then run it:

46  •  Open Source Starter Guide for IBM i Developers

bash-4.2$ ruby sayhello.rb

Hello you

Hello me

sayhello.rb:3:in '<main>': undefined method 'Puts' for main:Object (No-

MethodError)

What the heck? Undefined method 'Puts'? We have been “putting” all day. What’s up?
Well, Ruby is case-sensitive. Welcome to that world! A host of languages are sensitive to
case, and Ruby is one of them. In this case, our script happily executed each line until it
got to line three, which had 'Puts' instead of 'puts', and Ruby barfed. Some text editors that
have syntax checking can catch this kind of thing (which is a good thing). Distinguishing
between 'Puts' and 'puts' is pretty easy, but most text editors, even with highlighting and
syntax checking, won’t always give you the correct feedback all the time.

Getting tired of that Windows command window? Well, on the IBM i, we can do
something pretty similar. You could start by going to the 5250 command line and starting
QSH or QSHELL, but STRQSH, QSH, and QSHELL start a PASE (UNIX)-like environment
shell that really wasn’t designed to run AIX programs (so don’t bother). You could also run
QP2TERM, which is a shell that is a more AIX (PASE)-friendly environment. Figures 6.5
and 6.6 offer a quick look at some of the results of using the two shells and invoking Ruby.

Figure 6.5: QSHELL invoking Ruby

Yikes! Probably not a good idea to continue.

Figure 6.6: QP2TERM invoking Ruby

  Chapter  6:  Ruby and IBM i  •  47

That’s more like it!

If we copy a Ruby script file over to the IFS and run it, we get the same results as we did
in Windows, as shown in Figure 6.7.

Figure 6.7: Running Ruby from the IFS

An easier way, IMHO, is to use a TTY terminal emulator like PuTTY and use Secure
Shell (SSH) to connect to your IBM i. You'’ll have all of the functionality of QP2TERM
without the overhead of also running a 5250 emulator (although TTY is basically a
terminal emulator).

I use PuTTY for my access to PASE, but there are plenty of free alternatives. Figure 6.8
shows what the script in Figure 6.7 looks like in PuTTY (and BASH).

Figure 6.8: Using PuTTy and BASH

Boringly similar to all the other scripts and REPL examples we have looked at, isn’t it?

So that’s a very basic first step toward using a REPL like irb and executing scripts at the
command line. So far, it’s pretty easy.

48  •  Open Source Starter Guide for IBM i Developers

Next, we need to take a look at a few more programming constructs before stepping back
to examine classes and modules.

Most of the Ruby language constructs follow a predictable pattern that we, as
programmers, are familiar with. It is the implementation of those constructs that can
make the “getting started” step a bumpy ride. So let’s get on the horse and ride!

Language Basics
I don’t plan to spend a lot of time in the minutiae of the Ruby language. The goal of this
book is to give you enough to go on to get started. Proficiency won’t be the end result.
And although Ruby is based on POLA, there is enough “surprise!” in the way things work
that it is worthwhile to go over some of the basic things and at least point out where I got
either derailed or stumped. Sometimes, Grasshopper, all you need is a little enlightenment!

Variables
Unlike RPG and more like JavaScript (if you are familiar with it), Ruby is a dynamically
typed language. That is, you don’t have to declare a type when you declare a variable.

You could assign a variable this way:

the_meaning_of_life = 42

If you do, Ruby will see the variable as a number (Fixnum class, actually). Later, you
could assign the same variable to a different type:

the_meaning_of_life = 'Money, fame and fortune'

Ruby won’t even blink. If you happened to capitalize the first character of the variable,
Ruby will define it as a constant. And, although you can change the value of a constant,
Ruby will complain about it with a warning about the change.

bash-4.2$ irb

irb(main):001:0> the_meaning_of_life = 42
Continued

  Chapter  6:  Ruby and IBM i  •  49

=> 42

irb(main):002:0> the_meaning_of_life = 'Money, fame and fortune'

=> "Money, fame and fortune"

Note no complaint about the change.....

irb(main):003:0> The_meaning_of_life = 42

=> 42

irb(main):004:0> The_meaning_of_life = 'Money, fame and fortune'

(irb):4: warning: already initialized constant The_meaning_of_life

(irb):3: warning: previous definition of The_meaning_of_life was here

=> "Money, fame and fortune"

Scope
We also have variables that can be of local, global, class, or instance scope.

Local scope is pretty much what you would expect, and global variables are pretty much
the same in Ruby as in other languages. Each variable will have a scope that it is declared
in based on its location in the code.

You probably have not come across class and instance variables either because, well,
RPG isn’t object-oriented, so the concepts of classes and instances of classes are not part
of your nomenclature in RPG. From chapter 5, you should have a rough idea of what a
class and an instance of a class would be. Very quickly, in most cases a class represents
a template or a “mold” of what an object should look like from the standpoint of the
design of variables and function. It’s a prototype of what the object would look like if
you created one. So a class variable would be a variable that would hold a value across
instances of that class. This could come in handy if you are creating many instances of a
class and want an aggregate count or total across all instances of that class. An instance
variable would be, ahem, a variable that is unique to only that instance of the class. No
mystery. But the declaration of each of the variables has some convention to it:

 z Local variables: start with a lowercase letter or an underscore “_”
 z Global variables: start with a $ sign
 z Class variables: start with a double “at” sign: @@
 z Instance variables: start with a single “at” sign: @

50  •  Open Source Starter Guide for IBM i Developers

The best way to demonstrate how each of these works is to demonstrate them (!).

Start with a global that will persist for the session

$aGlobalVariable = 5

Then create a class to demonstrate class and instance differences

class Demo

class Variable

@@classVariable = 0

 ## We need to initialize the variable or else it will be nil when

 ## we add it to itself in the add_me method. Initialization will

 ## happen when we invoke "New" on the class to create the

 ## instance

 def initialize()

 @instanceVariable = 0

 end

 ## a simple function to output these variables

 def add_me()

 @@classVariable += 1 # increment the class variable

 @instanceVariable += 1 # increment the instance variable

 output_class_var()

 puts "Global total is now #$aGlobalVariable"

 puts "My instance variable is now #@instanceVariable"

 puts " "

 end

 def add_me_twice()

 ## Run this guy to see what happens to a global variable

 $aGlobalVariable+=1

 add_me

 end
Continued

