
Introduction

If you still write RPG code as you did 20 years ago, or if you have ILE RPG on your 
resume but don’t actually use or understand it, this book is for you. It will help you 
transition from the Original Programming Model (OPM) to a more modern, modular, 
and efficient ILE RPG.

With this book, each concept of ILE is made accessible. You will start by taking baby 
steps with small, easily understandable examples, and build to more complete and 
complex pieces of code. All the while, you will explore each component of modern 
RPG, learning how it fits with the other pieces to gain the full ILE RPG picture.

By its nature, this book is not an ILE quick-reference guide. Rather, it is a “slow-
reference guide.” It introduces new concepts with analogies to OPM whenever 
possible, explaining and expanding with realistic scenarios of increasing complexity 
(like inventory management programs, for instance).

A Brief Description of Our Journey
This book is divided into three parts:

 z Part One, “ILE Basics”—Chapter 1 explains each type of object you can have 
in ILE, which goes a bit further than the programs-only model you are used to 
in OPM. In chapter 2, you’ll learn how and when to create each type. The next 
stop is procedures, a fundamental concept discussed in chapter 3. Then things 



2  •  Evolve Your RPG Coding: Move from OPM to ILE ... and Beyond

start to get really interesting, with examples that consolidate the information 
of the previous chapters. The code samples continue in chapter 4, which shows 
you how to build and, most importantly, use your own functions. Chapter 5 is 
all about parameters. It might sound a bit silly to dedicate an entire chapter to 
parameters, but you’ll see that parameters play a key role in ILE. These five 
chapters provide a firm foundation upon which you can start coding in ILE.

 z Part Two, “Taking Advantage of ILE”—Chapter 6 starts with a crucial part 
of ILE: built-in functions, or BIFs. This chapter covers the most relevant 
BIFs—get ready, it’s a long chapter. Lots of examples are provided, many of 
which you can use or adapt to your coding environment’s reality. After that 
long stretch, chapter 7 takes you on an easier, lighter path, with tips on how 
to write and maintain more efficient code, from naming conventions to code 
organization.

 z At this point, you will be ready to take the next step toward modernization: 
it’s time to /FREE your code! Chapter 8 is about transitioning to free-format 
RPG, discussing why you should make the transition, how to do it, and some 
typical problems and their solutions. Again, examples are provided, with a few 
surprises. Chapter 9 covers the “new” ILE debugger (STRDBG), which replaces 
the Interactive Source Debugger (STRISDB). Chapter 10 introduces the latest 
and greatest news for RPG, covering the free-format features introduced with 
V7R1 TR7.

 z Chapter 11 is an extended introduction to SQL, covering the basics of both 
Data Manipulation Language (DML) and Data Definition Language (DDL). If 
you’re not familiar with these names, don’t worry; I explain all the necessary 
concepts, illustrated with simple examples. This chapter also introduces 
embedded SQL in RPG programs. You’ll learn different ways to use embedded 
SQL, including a few tips on when to employ it and the possible shortcomings 
and pitfalls of embedding SQL in RPG.

 z No chapter about SQL would be complete without discussing the unique 
possibilities that SQL offers to RPG programmers: you can easily make 
your RPG code (your fine-tuned business rules validation and enforcement 
code) available to the “outside world” by using SQL’s stored procedures and 
user-defined functions. This certainly opens up exciting possibilities toward 
modernization. In a way, it frees RPG from the confines of IBM i, or at least, 
from the confines of green screens.

 z Part Three, “Beyond ILE—Start Modernizing Your Applications”—Chapter 12 
starts by explaining why you should consider modernizing your applications, 



Introduction  •  3

how you can do so, and where you should start. Chapter 13 discusses database 
modernization, taking advantage of your newly acquired knowledge of SQL, 
particularly DML, to help you reform your applications. You’ll see that there 
is a considerable amount of RPG code related to data validations that can be 
replaced by DML constraints. Finally, chapter 14 is about user interface (UI) 
modernization and how to prepare your code for it. I’ll start by introducing a 
multi-tier model and then explain the model-view-controller (MVC) concept, 
discussing how you can apply it to your code, thus taking an important step 
toward more open, flexible, and modern application-building! This chapter ends 
with a discussion of the RPG Open Access (RPG OA) licensed program, which 
IBM is now giving away for free, and a discussion of some UI modernization 
tools that make good use of RPG OA.

By the end of the journey, you’ll be a better programmer. You’ll have new tools, new 
approaches, and most importantly, new ideas, to solve those problems big and small 
that are the life of an RPG programmer.

From Old Problematic Monoliths to Innovative, 
Lightweight, Efficient Programs
The Original Program Model (OPM), or do-it-all-in-one-program model, has been 
around for a long, long time. It has served its purpose for many years, but is now 
rather limited and inefficient. It leads to problematic monoliths of code—huge 
programs that have to handle the screen interaction, database operations, and report 
generation. Even if the code is well-structured and commented, it can get very messy 
because the program is huge. The worst part is, if you have a similar situation in 
another program (the same business rule or database operation, for instance), you 
probably have the same code repeated in two (or more) programs.

ILE helps with that. It provides a lighter way to build programs by allowing the 
reuse of code, instead of its repetition. By using different “repositories” of code, 
ILE allows you to write code only once and reuse it in a simple way, as often as you 
want. The shared code between programs exists separately from the programs, and 
in only one place. The programs use that code as if it were their own. This allows 
the developer to construct the programs a bit like playing with Lego blocks: use a 
building block to write a record, use another to check a business rule, use yet another 
to print a report, and so on.



4  •  Evolve Your RPG Coding: Move from OPM to ILE ... and Beyond

“Why ILE? OPM Has Served Me Fine So Far”
I like it when my readers reach out to me with questions about my writing; every 
writer does. It means people are actually reading and trying to use the stuff I write. 
However, I’ve noticed more and more that the questions are not about the topic 
per se. Instead, they’re about the foundations that every RPG programmer—whether 
novice or expert with 20 years of experience—should know. You might say, “Why 
ILE? OPM has served me fine so far.”

The problem is that OPM has, as we all know but don’t like to admit, many 
limitations. It can create behemoths of code, with do-it-all-in-one programs that go 
on and on. This approach works ... until corrections and modifications are necessary. 
Here’s where OPM has one of its biggest problems: it’s not easy to maintain “old” 
code, especially when a change affects many different programs.

The modularity of ILE’s smaller, “smarter” programs will save you a lot of time, not 
only when you are writing the code, but particularly when you are reading it later on. 
Did you know that on average, a piece of code is read eight times more often than 
it is modified? Think about it—if the code is simpler, more structured, and smaller, 
it takes a lot less time to read and understand! That’s where I want to take you. This 
book will (hopefully) guide you on a quest for better programming, with better skills, 
better standards, and most of all, more efficient code. More efficient code is code 
that runs faster, uses the latest available built-in functions (BIFs), doesn’t execute 
unnecessary operations, and is easier to read and maintain.

The Virtues of ILE, by IBM Itself 
(with a Little Help from Me)
Don’t just take my word about the virtues of ILE; let IBM convince you! According 
to the IBM manual ILE Concepts (www-01.ibm.com/support/knowledgecenter/ssw_
ibm_i_71/ilec/sc415606.pdf?lang=en), there are three main advantages of ILE:

 z Modularity
 z Reusable components
 z Common runtime services

Let’s consider each of these big concepts, one by one.



Introduction  •  5

Modularity, or Playing with Legos
Earlier, I mentioned Lego blocks. As with Legos, the whole idea behind modular 
programming is to build with small, simple, reusable pieces of code. Smaller code 
blocks have shorter compile times and are easier to maintain.

In an OPM program, just to change two lines of code, you might have to read through 
2,000 lines. When you finally find what you are looking for and change it, you still 
have 2,000 lines of code to compile! In ILE, it’s simply a matter of identifying the 
right “Lego block” to change. After that, it’s easy: it will be a small piece of code, it 
will be simple (if it’s well-built), and it should compile in a breeze. These blocks are 
small, specific functions that are easier to understand and adapt, even if they were 
written in a style different from your own. Since there’s a big community of ILE 
RPG programmers out there, you can do what the Java people have been doing for 
years: download the source code of a function that performs a specific task from the 
Internet, compile it, and easily use it in your program.

Modular programs should also be easier to test, although from personal experience, 
I can tell you that this is not always true. It depends a lot on whether the code was 
written in a debugger-friendly manner. Finally, with modular programming, the 
work can be divided. Each programmer can write a “building block” instead of the 
complete program.

Reusable Components—Don’t Rewrite; Reuse!
You probably use something similar to “building blocks” in OPM, by having 
some subroutines that you copy from one program to another that requires similar 
functionality. The difference here is that you won’t be copying the code; you’ll 
reuse it. You’ll write and compile it once, and then every program that needs that 
functionality will “connect” to the code. (I’ll explain what this means and how to do 
it in chapter 2.)

What you might not know is that these pieces of code can be written in other 
programming languages, such as COBOL, C, C++, CL, or even Java! In the old 
days, an RPG shop had RPG programmers; today, the whole “RPG shop” concept 
doesn’t make sense. Today’s IT departments are composed of professionals trained 
in different programming languages. With ILE, you can take advantage of this 
heterogeneous environment, by using the best that each language has to offer and 
using it transparently in your programs, as if it were RPG code.



6  •  Evolve Your RPG Coding: Move from OPM to ILE ... and Beyond

Common Runtime Services—Don’t Reinvent the Wheel
IBM supplies a very nice set of off-the-shelf components that you can incorporate 
into your applications. These components provide message handling, date and time 
manipulation, math routines, dynamic storage allocations, and greater control over 
screen handling. Again, from my experience, this is extremely useful. Not only are 
the tools ready to use, they’re also well documented in IBM manuals. Then you have 
the Internet: loads and loads of code from the RPG community, with varying levels of 
complexity and documentation, ready to be used.

Remember, these components don’t even need to be written in RPG; they just have 
to “play nice” with ILE. For example, my previous book, Flexible Input, Dazzling 
Output with IBM i (also published by MC Press), features a few components that 
were originally built in Java and adapted to ILE to facilitate several interesting 
functions that RPG is not (easily) capable of, such as producing Microsoft Excel 
files or invoking Web services. So, before writing a generic function, check whether 
someone (IBM, a third party, or a fellow programmer) has already tackled that 
particular problem with a piece of code that you can use “as is” or adapt to your 
needs. You no longer need to reinvent the wheel!

Source Debugger—No Longer the ISDB Nightmare
Every OPM programmer’s worst nightmare is debugging a huge program with the 
Interactive Source Debugger. ILE provides a brilliant and simple debugger that turns 
that nightmare into a pleasant dream. This debugger, combined with ILE’s modular 
code structure (and the strict adherence to a few rules, explained in chapter 7) makes 
debugging much more efficient and less time-consuming.

Summary
This book explores the main advantages of ILE. I intentionally left out the more 
complex aspects of ILE, like activation groups and shared open data paths, which are 
beyond the scope of this book.

It should now be easy to understand why every programmer should embrace ILE as 
soon as possible. This book will help you do that. Keep reading, and find out about 
the basic module, service program, and program concepts in chapter 1.


