

5
Control Statements

The preceding chapters cover only straightforward CL programming in which the
statements are executed sequentially. Most programs (in any language) do not
run that way. They perform decisions, execute loops, and so on. CL also has
commands to control execution of the program.

The IF Command

First and foremost is the IF command. You use the IF command to perform a
decision based on the result of a test. The nature of this test is always a logical
expression.

Simple Logical Expressions

A simple logical expression has one comparison operator between two
expressions of any other type. For example, if you say, “the option number is
equal to 5,” you have a comparison operator (“is equal to”) and two other
expressions (“the option number” and “5”). In CL, this could be coded as shown
in Figure 5.1.

 DCL &option *DEC 2

 IF (&option *EQ 5) CHGVAR &x 'A'

Figure 5.1: Expression with comparison operator

There are several points worth noting:

• The IF command has two parameters: COND (condition) and THEN (what to do
if the condition is true). The example shown in Figure 5.1 has been given
without keywords. With keywords, it would look like the example shown in
Figure 5.2.

70 • Complete CL, Sixth Edition

IF COND(&OPTION *EQ 5) THEN(CHGVAR VAR(&X) VALUE('A'))

Figure 5.2: Comparison expression without keywords

As you can see, CHGVAR VAR(&X) VALUE('A') is executed if the condition is
true.

• The comparison operator in the example is *EQ (equal). Actually, *EQ is just
one of the comparison operators you can use in a logical expression. See
Table 5.1.

• The two expressions being compared must be of the same type. In the
example, both have decimal values.

• The COND parameter must have a logical expression that can be evaluated to
either TRUE or FALSE.

Table 5.1: Logical Operators

Comparison Description

*EQ or = Equal to

*NE or ¬= Not equal to

*LT or < Less than

*LE or <= Less than or equal to

*NL or ¬< Not less than

*GT or > Greater than

*GE or >= Greater than or equal to

*NG or ¬> Not greater than

Because logical variables have only two possible values—TRUE or FALSE—you
can take a shortcut when you test logical variables in conditions. Figure 5.3
shows an example.

Chapter 5: Control Statements • 71

 /* Declare indicators 03 and 12 from a display file */

 /* These indicators turn on when F3 or F12 is pressed */

 DCL &in03 *LGL 1

 DCL &in12 *LGL 1

 /* The two IFs that follow are equivalent */

 /* Use either style in your programs. */

 IF (&in03 *EQ '1' *OR &in12 *EQ '1') ...

 IF (&in03 *OR &in12) ...

Figure 5.3: Using a comparison operator with logical variables

To test whether or not &IN03 is FALSE, you can code the expression as shown in
Figure 5.4.

 IF (&in03 *EQ '0') ...

 /* Or the shortcut: */

 IF (*NOT &in03) ...

Figure 5.4: An example of testing for FALSE

Complex Logical Expressions

The COND parameter can contain a complex logical expression that consists of
several simple expressions connected with the logical operations *AND, *OR, or
*NOT. Table 5.2 summarizes the logical value (T=TRUE, F=FALSE) of these logical
operators. For example, a TRUE value and a FALSE value combined with an *AND
operator yields a false value.

72 • Complete CL, Sixth Edition

Table 5.2: Results of Complex Logical Expressions

*AND *OR *NOT

First
Value

Second
Value

Result First
Value

Second
Value

Result Value Result

T T T T T T T F

T F F T F T F T

F T F F T T

F F F F F F

For example, you can say, “Send a warning message to the system operator if the
option number is 2 or 3.” In CL, this is coded as shown in Figure 5.5.

The COND parameter can contain extremely complicated logical expressions with
many *ANDs, *ORs, and *NOTs, even using parentheses to group subexpressions
when it becomes necessary to alter the natural order of evaluation. However, in
all cases, the condition must evaluate to either TRUE or FALSE.

 DCL &option *DEC 2

 IF (&option *EQ 2 *OR +

 &option *EQ 3) +

 SNDPGMMSG MSG('Warning') TOMSGQ(qsysopr)

Figure 5.5: Example of complex logical expression using *OR

Remember that:

Chapter 5: Control Statements • 73

• *NOT is evaluated first, whenever present.

• *AND is evaluated next, if present.

• *OR is evaluated last, if present.

• *NOT reverses the TRUE or FALSE value of the expression.

• *AND yields a TRUE result if both expressions are TRUE. In all other cases, it
yields FALSE.

• *OR yields a FALSE result if both expressions are FALSE. In all other cases, it
yields TRUE.

The DO and ENDDO Commands

An IF statement can be used to execute one command if the condition is met.
With the DO and ENDDO commands, you can change the function of the IF
command so that a group of statements is executed if the condition is met. This
group of statements must be enclosed between a DO and an ENDDO command pair.

Single-Level DO Groups

Suppose you want to execute four commands when an option number is equal to
three. You would need to code a CL routine like the one shown in Figure 5.6.

 DCL &option *CHAR 1

 IF (&option *EQ '3') DO

 SNDPGMMSG MSGID(cpf9898) MSGF(qcpfmsg) +

 MSGDTA('You''ve taken option 3') +

 TOPGMQ(*EXT) MSGTYPE(*STATUS)

 CHGVAR &option ' '

 CALL abc (&this &that)

 CALL def (&the &other)

 ENDDO

Figure 5.6: An example of single-level DO group

74 • Complete CL, Sixth Edition

The four commands enclosed in the box (SNDPGMMSG, CHGVAR, CALL, and CALL)
are executed if &OPTION equals '3'. Note that the DO is placed in the IF
statement’s THEN parameter, and the ENDDO is isolated.

Nesting DO Groups

Now that you know how to create a DO group, you should also know that you can
code an IF statement inside the DO group. As shown in Figure 5.7, this second IF
statement can open another DO group completely nested within the first one.

 IF (&a *EQ '1') DO

 *

 *

 *

 IF (&b *EQ '2') DO

 *

 *

 *

 ENDDO

 *

 *

 *

 ENDDO

Figure 5.7: An example of a nested DO group with indenting for easier reading

You can take nested DO groups to a maximum of 25 levels. The source code
shown in Figure 5.7 takes advantage of CL’s free-format nature to indent the
code (thus revealing the levels of nested DOs). If you let the command prompter
format the code for you, however, all commands are aligned the same. The result,
as shown in Figure 5.8, is less readable code.

Chapter 5: Control Statements • 75

 IF COND(&A *EQ '1') THEN(DO)

 *

 *

 *

 IF COND(&B *EQ '2') THEN(DO)

 *

 *

 *

 ENDDO

 *

 *

 *

 ENDDO

Figure 5.8: An example of a nested DO group without benefit of indenting

Nesting IF Commands

CL lets you nest IF commands up to 25 levels deep. You can code an IF
statement within the THEN parameter of another IF, as shown in Figures 5.9 and
5.10.

IF (&a *EQ &b) IF (&c *EQ &d) CALL xyz

Figure 5.9: An example of nested IF commands (no keywords)

IF COND(&A *EQ &B) THEN(IF COND(&C *EQ &D) +

 THEN(CALL PGM(XYZ)))

Figure 5.10: Example of nested IF commands with keywords

In this example, the CALL command runs only if &A equals &B and &C equals &D.
This particular case could be coded more clearly with the *AND logical operator in
a single if statement, as shown in Figure 5.11.

76 • Complete CL, Sixth Edition

IF (&a *EQ &b *AND &c *EQ &d) CALL xyz

Figure 5.11: Alternative method of coding nested IFs using *AND

There are cases, however, when nesting the conditions separately is perfectly
valid and is the only way to code what you want. In this case, you should
consider using the DO command for the outer IF statement, as shown in Figure
5.12.

 IF (&a *EQ &b) DO

 IF (&c *EQ &d) CALL xyz

 *

 *

 *

 ENDDO

Figure 5.12: An example of using the DO command for nested IF statements

The ELSE Command

The ELSE command works with the IF command. It provides instructions about
what to do when the condition in the IF command tests FALSE. ELSE is optional.

For example, suppose that a user enters a “Y” or an “N” to a question presented
by a display file (the variable name is &ANSWER). The CL program will use the
response, but it first must be translated to '*YES' or '*NO'. The IF and ELSE pair
shown in Figure 5.13 will take care of this problem.

 DCL &answer *CHAR 1

 DCL &yesno *CHAR 4

 IF (&answer *EQ 'Y') +

 CHGVAR &yesno '*YES'

 ELSE +

 CHGVAR &yesno '*NO'

Figure 5.13: An example of translating input variables to different values
using IF and ELSE

Chapter 5: Control Statements • 77

The IF command evaluates the condition in the COND parameter. If true, it
executes the command found in the THEN parameter (which is a CHGVAR command
to assign '*YES' to variable &YESNO).

The ELSE command follows. If the condition previously tested is true, the ELSE
command is skipped altogether. If the condition is not true, the system runs the
command found in the CMD parameter (which is another CHGVAR command).

Using DO with ELSE

You also can use the DO/ENDDO pair with the ELSE command when you need to
execute more than one command with an ELSE. See Figure 5.14.

IF (&a *EQ &b) DO

 *

 *

 *

 ENDDO

 ELSE DO

 *

 *

 *

 ENDDO

Figure 5.14: An example of using ELSE with DO/ENDDO

What you code inside each DO/ENDDO pair is up to you. Except to limit you to 25
levels of nested DO groups, CL places no restrictions on you. It is possible to have
another IF. See the example shown in Figure 5.15.

78 • Complete CL, Sixth Edition

 IF (&a *EQ &b) DO

 IF (&c *EQ &d) DO

 *

 *

 *

 ENDDO

 ELSE DO

 *

 *

 *

 ENDDO

 ENDDO

 ELSE DO

 IF (&e *EQ &f) DO

 *

 *

 *

 ENDDO

 ELSE DO

 *

 *

 *

 ENDDO

 ENDDO

Figure 5.15: An example of IF commands within the ELSE construct

Note how indenting the code makes it much easier to follow the hierarchy of the
various IFs and ELSEs.

Chapter 5: Control Statements • 79

The SELECT Command

The SELECT, WHEN, OTHERWISE, and ENDSELECT commands implement a case
structure in CL procedures. Case structures are suited for situations in which only
one of several alternatives is to be executed.

A SELECT group begins with the SELECT command and ends with the ENDSELECT
command. Neither of these commands has parameters.

Each condition that must be tested is coded in the COND parameter of a WHEN
command. The command to be executed is coded in the THEN parameter. You can
see that WHEN is like IF in structure.

You may use the optional OTHERWISE command to execute a command when
none of the conditions proves true. OTHERWISE accepts only a single parameter—
CMD, which makes it similar in structure and function to ELSE.

In the example in Figure 5.16, a variable named &OPTION is tested for values of 1
through 4. If &OPTION has any of those values, one or two programs will be
executed. If &OPTION has any other value, the SIGNOFF command will execute,
ending the session.

 DCL VAR(&option) TYPE(*CHAR) LEN(1)

 SELECT

 WHEN COND(&option *EQ '1') THEN(CALL PGM(pgm1))

 WHEN COND(&option *EQ '2') THEN(CALL PGM(pgm2))

 WHEN COND(&option *EQ '3') THEN(CALL PGM(pgm3))

 WHEN COND(&option *EQ '4') THEN(DO)

 CALL PGM(pgm4)

 CALL PGM(pgm5)

 ENDDO

 OTHERWISE CMD(SIGNOFF)

 ENDSELECT

Figure 5.16: Case structures are implemented with SELECT and its
associated commands.

80 • Complete CL, Sixth Edition

The DOWHILE Command

Use the DOWHILE command to implement a top-tested loop. That is, the condition
that controls the loop is tested before each iteration of the loop. If the condition is
false when control reaches the DOWHILE command, the commands in the body of
the loop will not be executed at all.

The DOWHILE takes one parameter—COND, which defines the condition that must
be true for the loop to continue to execute. The end of the loop structure is
indicated with the ENDDO command. The commands that make up the body of the
loop follow DOWHILE and precede ENDDO.

In the example in Figure 5.17, three commands—two CALL commands and one
CHGVAR—are governed by the DOWHILE command. If the &STATUS variable has a
value of five zeros when control reaches the DOWHILE, the three inner commands
will not execute. If &STATUS has a non-zero value, the loop will begin execution
and continue until program PGM3 changes the value of &STATUS to a value of
zeros.

DOWHILE COND(&STATUS *NE '00000')

 CALL PGM(pgm2)

 CALL PGM(pgm3) PARM(&STATUS)

 CHGVAR VAR(&COUNT) VALUE(&COUNT + 1)

ENDDO

Figure 5.17: DOWHILE defines a top-tested loop.

The DOUNTIL Command

The DOUNTIL command defines a bottom-tested loop. That is, the condition that
controls the loop is tested after each iteration of the loop. The commands in the
body of the loop will be executed at least once. In Figure 5.18, the loop continues
to execute until program PGM3 returns a status value of five zeros.

Chapter 5: Control Statements • 81

DOUNTIL COND(&STATUS *EQ '00000')

 CALL PGM(pgm2)

 CALL PGM(pgm3) PARM(&STATUS)

ENDDO

Figure 5.18: DOUNTIL defines a bottom-tested loop.

The DOFOR Command

Most programming languages have some form of the counted loop. This type of
loop has a control variable, which is given an initial value and incremented or
decremented with each iteration, until the control variable falls outside some
acceptable range. The counted loop is defined with the DOFOR command.

DOFOR has three required parameters and one optional one. All four parameters
require integer values. In the VAR parameter, provide the name of a signed or
unsigned integer variable to be used for the control variable. The FROM parameter
allows you to specify the value to which the control variable is to be initialized.
In the TO parameter, specify the terminal value of the control variable. The last
parameter, BY, is the quantity to be added to the control variable after each
iteration. Specify a negative value for a descending loop.

The loop in Figure 5.19 executes four times. Variable &OFFSET assumes the
following values: 3, 13, 23, and 33.

DCL VAR(&OFFSET) TYPE(*INT) LEN(2)

DOFOR VAR(&OFFSET) FROM(3) TO(33) BY(10)

 (CL commands)

ENDDO

Figure 5.19: DOFOR defines a counted loop.

82 • Complete CL, Sixth Edition

The *DOSLTLVL Option

When DO and SELECT groups are nested, it can be difficult to match the beginning
and ending commands. If you specify the *DOSLTLVL option on the CRTBNDCL
(Create Bound CL Program), CRTCLMOD (Create CL Module), or CRTCLPGM
(Create CL Program) commands, the CL compiler adds two columns—DO and
SLT—to the compiler listing the nesting level.

The LEAVE and ITERATE Commands

The LEAVE and ITERATE commands provide further control over DOWHILE,
DOUNTIL, and DOFOR looping structures. LEAVE causes an immediate exit from a
loop. ITERATE passes control to the bottom of a loop.

You may specify an optional CMDLBL parameter with LEAVE and ITERATE. If you
do not use the CMDLBL parameter, the LEAVE or ITERATE command applies to the
innermost loop. To exit or continue an outer loop, provide a label for a DOWHILE,
DOUNTIL, or DOFOR command, and refer to this label in the LEAVE or ITERATE
command.

The example code segment in Figure 5.20 contains two loops, one within the
other. The first two IF commands refer to the inner loop, referred to with label
NEXT. The last IF refers to the outer loop, named PROMPT.

prompt: DOWHILE COND(*NOT &IN03)

 CHGVAR VAR(&pos) VALUE(1)

next: DOWHILE COND(&pos *LT 120)

 ...

 IF COND(&fname *EQ ' ') THEN(LEAVE)

 ...

 IF COND(&error *EQ '1') THEN(ITERATE)

 IF COND(&error *EQ '2') THEN(LEAVE CMDLBL(prompt))

 ...

 ENDDO

 ...

 ENDDO

Figure 5.20: LEAVE and ITERATE alter the normal behavior of loops.

