

44
Introducing

Free-Format RPG IV
The ability to create free-format calculations in RPG IV became available with
the arrival of Version 5 Release 1 of WebSphere® Development Studio, IBM’s
application development tool suite for the IBM i operating system. Free format’s
arrival caused little fanfare back then, and most RPG IV developers with whom
I spoke at the time weren’t very interested in the concept.

 Early on, some of my RPG IV programmer friends tried to use free format
and asked me for help in their work. The ambitious ones who gave it a try found
themselves pleased with the results. However, due to limitations in the first
release of free format, RPG calculations still required many lines of fixed-format
code, such as for Klist and Kfld operations. Mixing fixed- and free-format
calculations made programs look “clunky” and certainly didn’t help convince
co-workers to convert to the new style.

 In V5R2, IBM provided additional functionality that let RPG IV program-
mers use key arguments within a free-format Chain or Setxx operation or use the
%Kds built-in function with a data structure. These enhancements represented a
big step forward in “de-clunking” the calculations. Other new functions, such as
the += accumulative assignment operator (which adds the result of an expression

28 • Free-Format RPG IV

to the target of the assignment), gave free-format RPG procedures a C- and
Java-like appearance. Additional built-in functions at that time also helped to
modernize RPG IV’s procedures.

 Today, free-format calculations in RPG IV can look like any other modern
programming language. Newcomers to RPG IV programming who have prior
experience in C, Cobol, PL/1, or another free-format language find free-format
RPG IV simple to learn and use. Now that free-format calculations have gained
a modicum of acceptance, many fixed-format RPG IV “old-timers” are taking a
good look at the free-format style.

 For those new to free format, getting started is sometimes the toughest part.
Frankly, it’s not easy to change the way you’ve done something for a long time,
especially programming. If you have come this far and want to try writing a little
program in the new format, this book will help you begin. We start our tour of
free-format calculations in this chapter, with an overview of the free-format
structure and a look at some key operations and features.

Coding Free-Format Calculations
The first step in writing free-format calculations is remembering to place your
free-format RPG IV code in position 8 or beyond. Positions 1–5 are available for
anything (e.g., change control information). Position 6 must be remain blank, and
position 7 is reserved for compiler directives, such as /SQL. Free-format
calculations end in position 80.

 All supported free-format operations, as well as all built-in functions, are
available to you. In contrast to its fixed-format older brother, which has 153
operations, free-format RPG IV provides just 62 free-format operations (as of
V7.1). However, free-format RPG IV isn’t simply a “stripped-down” subset of its
fixed-format counterpart. IBM has created many built-in functions to provide
functionality equivalent to (or better than) most of the “missing” operation codes.
As of V7.1, RPG IV provides a total of 80 built-in functions.

 A line of free-format source begins with a free-format operation code,
followed by one or more spaces, the Factor 1 operand, one or more additional
spaces, and then the Factor 2 operand. Free-format RPG IV has no result field
operand. Instead, you perform arithmetic and character-management operations
using assignment statements (Eval operations without the Eval).

 An implication of no result field is the inability to define work variables “on
the fly” as RPG programmers commonly did years ago. However, thanks to the
powerful nature of free-format expressions, we don’t need as many work fields

Chapter 4: Introducing Free-Format RPG IV • 29

today, and declaring them in definition specifications makes program mainten-
ance easier and more productive.

 The final requirement for a line of free-format RPG IV source is a termin-
ating semicolon (;), followed by a comment if desired. You enter a comment by
keying two slashes (//) followed by the text of the comment. You can also place
comments on a line by themselves.

 Listing 4-1 shows a sample block of free-format code, including a few free-
format operations and some comments.

 Miles_per_gallon = Miles / Gallons;
 Eval(h) Pay = Hourly_rate * Hours;
 // An entire line comment
 Name = %trim(First_n) + ' ' + %trim(Last_n);
 Error_cust_no = *On; // Short comment on a calculation line

Listing 4-1: Sample free-format block

Naming Variables
Free-format RPG IV’s rules for naming variables are no different from fixed
format’s, but when employing longer names (more than 14 characters), you
must use either the extended Factor 2 format or free format in your calculations.
Variable names must begin with a character and can be in any case. The charac-
ter can be any one of the 26 regular alphabet characters or the special character #,
$, @, or _. Numbers (0–9) are optional and can be used after the first character.
Variable names cannot contain blanks, but you can use the underscore character
(_) as a word separator to form a multiword name (e.g., Miles_per_gallon).

 Until RPG IV came along in late 1994, RPG variable names were limited
to six characters. This limitation included references to arrays and their indexes.
The first version of RPG IV supported 10-character names, matching the size
maximum in DDS for variable naming. A few years ago, IBM extended the
variable-name length to its present limit of 4,096! Not many programmers are
interested in using such long names, but it’s sure nice not to be constrained
either.

 Free-format RPG has a “semi” restriction for variable naming. In free format,
the Eval operation code may be dropped if no op-code extenders are needed.
However, if a variable name uses the same spelling as an operation code—such
as In, Out, Select, and others—you must specify the Eval operation code when the
variable is used on the left side of the assignment. I suggest not using variables

30 • Free-Format RPG IV

that are named the same as operation codes, to eliminate confusion and
restrictions.

Programming Style
No other rules apply when entering source statements in free-format calculations.
However, good programming style should prompt us to enter statements in an
ordered way that makes a program’s logic easier to understand during program
maintenance. Good style would dictate entering a program’s “outer” logic as far
left as possible (position 8) and beginning “inner” logic two spaces to the right.
Continue this indenting process until you’re about halfway across the page. If
you need deeper groups, you will have to decide whether to continue to the right
or to start over again at position 8.

 Listing 4-2 shows a free-format code block that uses indenting to make the
program logic more apparent.

 Dou %eof;
 ReadC SubfileRec;
 If not %eof;
 Fielda = Fieldb;
 If Fieldc <> *zero;
 Error_Msg_1 = *On;
 RI_Fieldc = *On;
 Sflnxtchg = *On;
 Endif;
 Update SubfileRec;
 Endif;
 ReadC SubfileRec;
 Enddo;

Listing 4-2: Example of indenting free-format calculations

A Note About Case
RPG IV has no rules regarding the case of variables, operation codes, and
comments in source statements, but some programmers suggest using a style
that capitalizes each “word” in variables and uses lower case otherwise (for
example, SubfileRec). Others recommend fully capitalizing all externally defined
variables. The compiler translates all variables and operation codes (other than
character strings within apostrophes) to upper case before analyzing the code, so
whatever case options you choose are purely a personal decision.

Chapter 4: Introducing Free-Format RPG IV • 31

Free-Format Operation Codes
Table 4-1 lists the 62 operations that free-format RPG IV supports as of V7.1.
Appendix A describes each of these operations in detail. All built-in functions
are also available to you in free format. Many built-in functions, such as %Check,
%Lookup, and %Scan, provide operation code functionality. Some, such as
%Check, provide exactly the same function as an operation code, while others,
such as %Lookup, provide additional capabilities.

Table 4-1: Free-format operations
Operation Description

Acq Acquire a program device (used in ICF files).

Begsr Begin a subroutine.

CallP
Call a prototyped procedure (you can also call procedures implicitly,
omitting the CallP).

Chain Access a record from a file directly by key or relative record number.

Clear
Set all items in a data structure, record format, array, or variable to zero
or blank, depending on the data type.

Close Close a file that has been opened using the Open operation.

Commit Commit file changes made since the last Commit or Rolbk operation.

Dealloc Deallocate dynamic storage.

Delete Delete a record from a file.

Dou Do until (a logical group ending with Enddo).

Dow Do while (a logical group ending with Enddo).

Dsply Display a message.

Dump Dump a program (variables, record contents, and so on).

Else Else (part of an If group).

Elseif Else and If combined (part of an If group).

Endxx
End a group of logic or monitor operations; the suffix xx must match the
starting operation (i.e., Enddo, Endfor, Endif, EndMon, or Endsl).

Endsr End of subroutine.

Eval
Evaluate an assignment expression; if a character string is specified, the
result is left-justified (assignment is possible without explicitly specifying
the Eval operation code).

EvalR Evaluate an assignment expression; character strings are right-justified.

Eval-Corr Assign corresponding subfields in data structures. Continued

32 • Free-Format RPG IV

Table 4-1: Free-format operations (continued)

Except Perform exception output (program-described on output specifications).

Exfmt Write and then read a record format (often called “Execute a format”).

Exsr Perform a subroutine (often called “Execute a subroutine”).

Feod Force end of data.

For
Begin a logic group, ending in Endfor, that uses a specified index and
counts up or down to a specified limit.

Force Force a specified file to be read next (used only if the cycle is desired).

If
Begin a logic group, ending in Endif, that may have Else or Elseif inside
the logic group.

In Retrieve data from a data area and load the named data structure.

Iter Iterate, or jump to the most current Enddo or Endfor.

Leave
Leave, or jump out of the most current Do or For group to the next
statement after the Enddo or EndFor.

LeaveSR Leave a subroutine.

Monitor
Begin a monitor group, ending with an EndMon, to handle error
situations in a section of code.

Next Force the next input to come from the specified program device.

On-Error
Used in a Monitor group to specify an error condition and begin
handling if true.

Open Open a file that was specified as user open on the file declaration.

Other
Used in a Select/When group to handle the condition “none of the
above.”

Out Write the contents of the named data structure to a data area.

Post
Update the file information data structure for the named program device
or file.

Read
Read next (forward in the file); the operand can be a record name or file
name.

ReadC Read a changed record (used only for subfiles within a display file).

ReadE
Read equal—A multifunction operation that compares a specified
operand with the current file index, and if the operand matches the
current key, reads a record. If they are not equal, eof is set.

ReadP
Read prior (backward in the file); the operand can be a record name or
file name.

ReadPE Read prior equal (the same as ReadE, but reading backward).

Rel Release a program device.

Reset Reset a data item to its initialized value.

Chapter 4: Introducing Free-Format RPG IV • 33

Return
Return—Used in two contexts: at the end of a subprocedure with an
optional expression or elsewhere to return to the caller of the procedure.

RolBk
Roll back—Used with commitment control to remove file changes made
since the last Commit or RolBk operation.

Select Begin a logic group requiring When statements and ending with Endsl.

Setgt
Set file pointer greater than (a parameter is used to set the file pointer to
the record whose key value is closest to but greater than the parameter).

Setll
Set file pointer greater than or equal (used to be called “lower limit,” thus
the LL. The file pointer is set to the record whose key is equal to or
greater than the specified parameter).

SortA
Sort an array (the array to sort is specified as a parameter; the order is
specified on the array definition).

Test
Test a date, time, or timestamp for validity, or test a character or numeric
field for a valid date or time.

Unlock Unlock a data area object, or release a record lock.

Update Update a record previously read via a Read or Chain operation.

When Part of a Select group used to specify a condition to test, similar to If.

Write Write a new record to a file.

XML-Into Parse an XML document into a variable.

XML-Sax SAX Parse for an XML document.

 Perhaps more interesting than which operations are present in free format
is which fixed-format operations are not included in the set of free-format
operations. Some frequently used fixed-format operations didn’t make the cut.
Table 4-2 lists a sampling.

Table 4-2: Examples of fixed-format–only operation codes

Add Move

Call (Dynamic call) Movea

CallB (Bound call) Mult

CASxx (Case) Mvr

Cat Scan

Div Setoff

Do Seton

End Sub

Goto Subst

Lookup Tag

34 • Free-Format RPG IV

 Most of these operation codes have a free-format counterpart to which you
can easily convert. The Seton and Setoff operations, for example, have been
replaced by the Eval operation (as in Eval *In21= *On). Another example, Mvr,
is easily converted to the %Rem built-in function. And you can replace a Lookup
operation with one of five %Lookup or five %Tlookup built-in functions,
depending on whether you are searching an array or a table.

 It would be nice if all the unsupported operations from fixed format had a
simple equivalent in free format, but this is not the case. Some fixed-format
operations, such as Move, have no clean and easy conversion path to free format.
In Chapter 11, I provide solutions for some of the tough ones (of which, fortu-
nately, there are few). Perhaps one day IBM will provide additional built-in
functions or other methods to address the more difficult conversion situations.

 In the rest of this section, I describe some of free-format RPG IV’s more
commonly used operations (as well as built-in functions where needed) and show
some examples to illustrate their use. If you are already writing calculations
using the extended Factor 2 format rather than RPG’s original fixed format, you
will find much of this material familiar.

Evaluate
The most common operation in free-format RPG IV doesn’t even use an operation
code. It’s the evaluate (Eval) operation, minus the Eval operation code. This form
of evaluate is usually called an assignment statement. The evaluate operation
evaluates the expression specified to the right of the equal sign (=) and assigns the
result to the receiving item on the left side of the equal sign. The receiving side is
cleared for the default length of the item or for the specified length if substringing
is used. This is the way other free-format languages work, too. In fact, CL’s
CHGVAR (Change Variable) command functions this way for its VAR parameter.

 When performing mathematical calculations, you sometimes want the result
rounded (half adjusted). The assignment statement doesn’t perform this rounding,
but you can accomplish it by entering the Eval operation code to the left of the
assignment statement and specifying the half-adjust operation extender, h. You
specify other operation extenders, such as precision (r), in the same way.

Chapter 4: Introducing Free-Format RPG IV • 35

 Listing 4-3 shows several examples of assignment statements.

 Dcl-S Field30 Char(30);
 Dcl-S Field10 Char(10) Inz('ABCDEFGHIJ');
 Dcl-S Field3 Char(3);

 Field30 = Field10; // Field30 is cleared, and then Field10 is
 // moved to it, left-justified

 Eval(h) Pay = Hourly_rate * hours; // The math is performed (with
 // rounding) and the result assigned to Pay

 // More complex forms

 *In03 = F7 = F3; // This statement checks to see whether F7
 // is equal to F3. If yes, *In03 is set to
 // *On, but if F7 is not equal to F3, *In03
 // is set to *Off

 *In21 = *In43 or (Pay > 100); // This statement sets *In21 to *On
 // if either *In43 is *On or Pay > 100

 %subst(Field30:5:4) = 'xyz'; // Positions 5-8 of Field30 are
 // cleared, then 'xyz' is moved to 5-7

 Field3 = *In03 + (Pay > 100) + %eof(FileA); // Three items are
 // evaluated as true or false and then
 // concatenated, with the result of Field3
 // equal to '000', '001', '010', and so on

Listing 4-3: Sample assignment statements

If
Another popular operation code, supported both in fixed and free format, is
the If operation, along with its associated operations Else, Elseif, and Endif. The
free-format version of If is similar to the extended Factor 2 method, but it gives
you the added freedom of being able to place the specifications anywhere within
the line (or lines). Parentheses, in addition to the logical operators And and Or,
provide a significant improvement in programming ease over the previous Ifxx
operation.

36 • Free-Format RPG IV

 Many people are not aware that RPG had no If at all until RPG III (circa
1979). IBM retrofitted the operation into RPG II around 1990. In case you’re
wondering how programmers performed “If” logic in RPG before If was
invented, the operation used (and still supported today) was Comp (Compare),
along with lots of indicators.

 The Elseif operation is a relative newcomer to RPG IV, new with V5R1. Its
use can simplify a long set of nested Ifs and Elses. Elseif is equivalent to an Else
operation followed immediately by an If. You need only one Endif at the end of
an If/Elseif group, regardless of how many Elseifs the group contains. One set of
statements may be performed in the If and Elseif blocks of code, or possibly none.
This functionality follows the same scheme as the Select and When operations
(you’ll learn more about those two operations in Chapter 6).

 Interestingly, you can’t shorten the Endif operation to End in free format. In
fact, free format doesn’t support the End operation at all. Correct “Ends” force us
as programmers to put the appropriate “Endxx” at the end of a set of logic. It’s a
small thing, but program clarity is improved.

 Listing 4-4 illustrates the use of If, Else, Elseif, and Endif operations in free
format.

 If A = B; // Simple If, Else, and Endif
 FieldA = FieldB;
 Else;
 FieldA = *Zero;
 Endif;

 // An If, Elseif, Else, and Endif group
 If Option = 'A' and (Type = 3 or Company = 73);
 Value = 1;
 Elseif Option = 'B' and (Type = 3 or Company = 75);
 Value = 2;
 Elseif Option = 'C' and (Type = 1 or Company = 99);
 Value = 3;
 Else;
 Value = 4;
 Endif;

Listing 4-4: Examples of If, Elseif, Else, and Endif

