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caching in, 233
callback validation in, using JSON, 257–258
class creation in, using JSON, 258–259, 258, 

259
content negotiation in, 264–265, 264, 265
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port type defined for, using WSDL, 242, 242, 

246–247, 247
Remote Procedure Call (RPC) and, using 

JSON, 248
Representational State Transfer (REST) in, 
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