
Index

Note: Boldface numbers indicate code and illustrations; an italic t indicates a table.

A
absolute positioning, in HTML, 184–187,

184–187
abstract classes, 6, 6
Accept header, 260–265, 261–265
access control list (ACL)

ArrayAccess interface in, 89–94, 89–94
Iterator interface in, 94–98, 94, 98

Adapter design pattern, 34–36, 34–36
Advanced Encryption Standard (AES), 159,

164
Ajax, 189, 197–204, 198–203

Document Object Model (DOM) and,
200–204, 201–203

JavaScript Object Notation (JSON) in, 197,
199–200, 203

jQuery in, 198–200, 198–199
Alexander, Christopher, design patterns, 29–30
aliasing, namespaces, 16–17, 17
anonymous functions. See closures
Apache, and security, 151
APIs

authentication in, 266–272, 266–272
keys and secrets for, 269–272, 269–272
version negotiation in, 259–265, 260–265

ArrayAccess interface, 89–94, 89–94, 99
ArrayObject class, 98–100
arrays

PHP vs. JSON, 248–249, 249

typing array values in, 101–102, 101–102
assertion in PHPUnit, 213, 213
asynchronous processing, 308–315, 309–315
authentication

nonsession-based, 268–272, 268–272
REST and, 236
session-based, 266–268, 266–268
web services and, 265–272, 266–272

autoloaders
namespaces and, 13
spl_autoload_register() in, 84–86, 84–86

B
backgrounds, HTML, 178–179, 179
backslash as namespace separator, 13, 14
basic concepts of PHP, 1–27
BBCode, 140
Bergman, Sebastian, PHPUnit, 206
binding, web services, 241
block vs. inline HTML elements, 168–169,

168
bootstrap files, unit testing/test-driven

development, 210–211, 210, 211
bootstrap processes, 41

Front Controller design and, 46
brackets(< >) in HTML, 167
breakpoints, 114, 121–124, 121–124
browsers, 165–204

HTML and, 165–187. See HTML

318

Advanced Guide to PHP on IBM i

Internet Explorer and HTML in, 167
JavaScript and, 187–197. See also JavaScript
security issues with, 129

C
C++, 66
caching, 296–298, 297

pre-, 303
preprocessing and, 302–308, 304–308
web services and, 233

CallbackIterator, 104
calls, in debugging, 115–116, 115–116
Cascading Style Sheets (CSS), 165, 169,

174–187, 176–177
display attribute in, 181–182, 182
float attribute in, 182–183, 182–183
home page example without, 175
inline, 176
layouts in, 181–183
position property in, 183–187, 183–187
positioning elements on page, absolute vs.

relative, 184–187, 184–187
selectors in, 179–181

Cipher Block Chaining (CBC), 161–162,
163

ciphers, 159, 163
classes, 1–4, 2–3

abstract, 6, 6
Adapter design pattern for, 34–36, 34–36
aliasing of namespaces in, 16–17, 17
ArrayObject, 98–100
constants in, 2, 4, 2–3
constructors in, 31–32
dependencies in, 32
dependency injection/Dependency Injection

Container (DI Container) in, 74–81,
74–81, 220–222, 220–222, 281–285,
281–285

Dependency Inversion Principle in, 68–73,
68–73

Factory design pattern for, 33, 33–34
HTML, 176, 180–181
Interface Segregation Principle in, 65–68,

65–68

Lazy Initialization/Lazy Loading design
pattern in, 37–40, 38–40, 102–104,
103–104

Liskov Substitution Principle in, 63–65, 64,
65

methods in, 2, 2–3
mock objects and, 32–33, 222–229, 223–229,

286–289, 287–289
OOP programming and, 1–2, 2–3
Open-Closed Principle in, 63–64
properties in, 2, 2–3
Single Responsibility Principle (SRP) and,

59–63, 60–63, 279
Singleton design for, 31, 31
specification of, in HTML, 176
Strategy design pattern for, 36–37, 36–37
traits and, 17–23, 18–23
unit testing/test-driven development and,

207–209, 207–209
CLCommand(), 276
CLCommandWithCpf(), 276
CLCommandWithOutput(), 276
click events, in JavaScript, 189–190, 189–190
CLInteractive(), 276
closures, 23–27, 23–27

Closure class and, 25–26, 26
defining and using, 23–25, 23–25
$who keyword and, 26–27, 27

Code Complete (McConnell), 286
collections of data, looping, 84
color, with HTML, 178–179, 179
conditional statements, 83–84
CONNECT, 234
constants, 4

in classes, 2, 4, 2–3
constructors, 31–32
content negotiation, in web services, 264–265,

264, 265
context, 4

in classes, 4–5, 5
controllers, in MVC architecture, 54–55
count() function, Countable interface, 86–89,

87–89
Countable interface, 86–89, 87–89, 99

319

Index

cross-site request forgery, 131, 142–145, 144
cross-site scripting, 131, 138–142, 139–142
CRUD, 70
customization, 40–45

bootstrap processes and, 41
design patterns for, 40–45
Observer design pattern in, 41
Publish-Subscribe design pattern in, 42
Visitor design pattern in, 41–42

D
dangerous files, security issues, 151–152
data caching, 296–298, 297
data deletion attacks, 133
Data Description Specifications (DSS), 166
data modification attacks, 133–136, 133–136
data sources, testing, 222–229, 223–229
data types, PHP vs. JSON, 248
databases

cross-site request forgery vs., 142–145, 144
cross-site scripting threat in, 138–142,

139–142
data deletion attacks to, 133
data modification attacks to, 133–136,

133–136
session fixation vs., 145–146, 145, 146
session hijacking vs., 146–147, 147
SQL injection security threat in, 131–138,

132–138
unit testing/test-driven development and,

226–229, 226–229
validating input for, 147–150, 147–150

DB2, 273
performance issues and, in connection, 295

Debug URL selection, 111–113, 111–113
debugging, 105–128. See also test-driven

development
breakpoints in, 114, 121–124, 121–124
configuring Zend Debugger for, 107, 107
Debug URL selection in, 111–113, 111–113
expressions in, 120–121, 121
firewall restrictions and tunneling in,

107–110, 108–110
flow control in, 113–116, 113–116

function calls in, 115–116, 115–116
host IP addresses for Zend Debugger and,

106
initiating debug session in, 111–113, 111–113
manual control of, 126–128, 127
PHPUnit and unit testing in, 218
ports for Zend Debugger and, 106
Remove All Terminated Launches in, 114
Resume in, 114
Step Into in, 115–116, 115–116
Step Over in, 116
Step Return in, 116
Suspend in, 114
Terminate in, 114
toolbars for, 124–126, 125, 126
variables in, 116–120, 116–120
XDebug in, 105
Zend Debugger in, 105–106

decryption, 160–161, 160–161
DELETE, 133, 234
dependencies

in classes, 32
Dependency Inversion Principle in, 68–73,

68–73
injection/Dependency Injection Container

(DI Container) in, 73–81, 74–81,
220–222, 220–222, 281–285, 281–285

dependency injection/Dependency Injection
Container (DI Container), 73–81, 74–81,
220–222, 220–222, 281–285, 281–285

DES ciphers, 159, 163
design patterns, 29–81

Adapter, 34–36, 34–36
customizations using, 40–45
Factory, 33
Front Controller, 45–53, 45–53
Lazy Initialization/Lazy Loading, 37–49,

38–40, 102–104, 103–104
Model/View/Controller (MVC), 53–58,

54–58
Observer, 40–45
Publish-Subscribe, 40–45
Singleton, 30–33, 30–33
SOLID methodology vs., 58–81, 58t

320

Advanced Guide to PHP on IBM i

Strategy, 36–37, 36–37
Visitor, 40–45

DirectoryIterator, 104
display attribute, 181–182, 182
distributed computing, Publish-Subscribe

design pattern, 42
doctype, in HTML, 166–167, 167
Document Object Model (DOM), 187,

190–192, 191, 200–204, 201–203

E
ECMA, ECMAScript and JSON, 248
encryption, 152–164, 269–272, 269–272.

See also hashing
Advanced Encryption Standard (AES) for,

159, 164
Cipher Block Chaining (CBC) and, 161–162,

163
ciphers in, 159, 163
decryption and, 160–161, 160–161
DES, Triple DES, AES, Rijndael ciphers in,

159, 164
hashing and, 152–158, 153–158
initialization vector (IV) and, 162–163, 162,

163
mycrypt library for, 159
symmetric key, 158–163, 159–163

event managers, Publish-Subscribe design
pattern, 42–43, 42–43

events, JavaScript, 189
exceptions, in unit testing, 214, 215–216
ExecuteProgram(), 276
export routine, 19, 19
expressions, debugging, 120–121, 121

F
Facebook, 248
factories, 69
Factory design pattern, 33, 33–34
Fielding, Roy, and HTTP protocol, 235
filtering

security and, 131
unit testing/test-driven development and,

214

firewall restrictions and tunneling, 107–110,
108–110

fixation, session, 145–146, 145, 146
float attribute, 182–183, 182–183
flow control, in debugging, 113–116, 113–116
fonts, with HTML, 178–179, 179, 181
foreach, 84, 96
forgery, cross-site request, 142–145, 144
Front Controller design pattern, 45–53, 45–53

building logic into, 49, 49–51, 52–53
mod_rewrite and, 47, 47
Model/View/Controller (MVC) applications

and, 46–47, 47, 55–58, 55–57
rewrite rules using, 46

function calls, in debugging, 115–116, 115–116
function keyword, 188
functions

anonymous. See closures
closures as, 23–27, 23–27
JavaScript, 188–189, 190

G
GET, 133, 143, 145, 203, 234

H
hashing, 152–158, 153–158

web services and, 269–272, 269–272
HEAD, 234
High Scalability blog, 298
hijacking, session, 146–147, 147
hinting, type, type hinting, 10–11, 10–11, 98
HTML, 165–187

<html> node in, 167
Ajax and, 197–204, 198–203
backgrounds in, 178–179, 179
block vs. inline elements in, 168–169, 168
brackets (< >) use in, 167
Cascading Style Sheets (CSS) in, 169,

174–187, 176–177. See also Cascading
Style Sheets (CSS)

Class attribute in, 176, 180–181
class specification in, 176
color in, 178–179, 179
cross-site scripting and, 139–142, 139–142

321

Index

CSS layouts in, 181–183
display attribute of CSS in, 181–182, 182
doctype in, 166–167, 167
Document Object Model (DOM) in, 187,

190–192, 191, 200–204, 201–203
errors and error correction in, 169
float attribute of CSS in, 182–183, 182–183
fonts in, 178–179, 179, 181
<head> and <body> nodes in, 167
hierarchical nature of, 166
htmlspecialchars() and htmlentities()

functions in, 140
hyperlinks in, 170–172, 171, 172
ID attribute in, 176, 178–179, 179
inline CSS and, 176
Internet Explorer use with, 167
JavaScript and, 187–197. See also

JavaScript
JavaScript libraries and, 192–197, 192–197
jQuery library in, 192–197, 192–197
lists in, 169–170, 170
navigation lists in, 179–180, 180
node ID specification in, 176
nodes in, to form hierarchy of, 167
paragraphs in, 169
position property in, putting elements in

place with, 183–187, 183–187
positioning elements on page, absolute vs.

relative, 184–187, 184–187
presentation code separated from, 176
security and, 140–142, 140–142
selectors in CSS and, 179–181
Standard Generalized Markup Language

(SGML) as precursor to, 166
Style attribute in, 176
tables in, 172–174, 172–173, 174
tag redefinition in, 178
type redefinition in, 176
title for documents in, 168, 168

HTML Purifier, 140–142, 140–142
HTTP/HTTPS. See also web services

Accept header in, 260–265, 261–265
action verbs used with, 234–235, 235t, 235
Ajax and, 197–204, 198–203

API version negotiation and, 259–265,
260–265

asynchronous processing and, 308–315,
309–315

authentication in, 266–272, 266–272
caching in, 233
content negotiation in, 264–265, 264, 265
cross-site request forgery vs., 142–145,

144
cross-site scripting and, 139–142, 139–142
htmlspecialchars() and htmlentities()

functions in, 140
request abstraction in, using SRP and

SOLID methodology, 60–63, 61–63
security issues of, 129
session fixation vs., 145–146, 145, 146
session hijacking vs., 146–147, 147
stateless protocols and, 233
symmetric key encryption in, 158–164,

159–164
tokens for security in, 143–145, 144
tunneling in, 107–110, 108–110
URL definition in, using REST, 233–234
web services and, 231. See also web services

HTTP Referer, 143
hyperlinks, in HTML, 170–172, 171, 172
Hypertext Markup Language. See HTML

I
ID attribute, HTML, 176, 178–179, 179
implements keyword, 8
indexes, in preprocessing, 299
Initialization, Lazy, 37–40, 38–40, 102–104,

103–104
initialization vector (IV), 162–163, 162, 163
initiating debug session, 111–113, 111–113
injection/Dependency Injection Container

(DI Container), 73–81, 74–81, 220–222,
220–222, 281–285, 281–285

inline vs. block HTML elements, 168–169,
168

input validation and security, 131, 147–150,
147–150

instantiation

322

Advanced Guide to PHP on IBM i

dependency injection/Dependency Injection
Container (DI Container) in, 75–81,
75–76

Factory design pattern for, 33, 33–34
insteadof operator, 22–23, 22–23
interfaces. See also browsers
integrated file system (IFS)

performance issues and, 294–295, 294, 295
security and, 148

Interface Segregation Principle, 65–68, 65–68,
70

interfaces, 6–9, 7–8
ArrayAccess interface in, 89–94, 89–94
Countable, 86–89, 87–89
defining, 6–9, 7–8
Interface Segregation Principle in, 65–68,

65–68, 70
Iterator interface in, 94–98, 94, 98
JavaScript, 195–197, 195–197
predefined, 84–104. See also Standard PHP

Library (SPL) and
internal threats to security, 130
Internet Explorer, 167
inversion of control, 220. See also dependency

injection, 220
IP addresses, session IDs and session fixation,

145–146, 145, 146
iteration in looping, ArrayObject class, 98–100
Iterator interface, 94–98, 94, 98
IteratorAggregate interface, 99

J
Java, 37, 66
JavaScript, 165, 187–197

Ajax and, 197–204, 198–203
click events in, 189–190, 189–190
cross-site request forgery vs., 143–145, 144
cross-site scripting and, 138–142, 139–142
Document Object Model (DOM) and, 187,

190–192, 191, 200–204, 201–203
embedding of, 187–188, 187
events in, 189
functions in, 188–189, 190
iteration or looping in, 194–195, 194–195

JavaScript Object Notation (JSON) in, 197,
199–200, 203, 248–259

jQuery in, 198–200, 198–199
jQuery library in, 192–197, 192–197
libraries in, 192–197, 192–197
rendering of, 188
session hijacking and, 146–147, 147
user interface with, 195–197, 195–197
variables in, 188–189, 189
writing code in, objects and properties of,

188–189
JavaScript Object Notation (JSON), 197,

199–200, 203, 248–259, 264, 309
arrays in, 248–249, 249
callback validation in, 257–258
class creation in, 258–259, 258, 259
data passing using, 250
data types of, 248
mapping requests using, 250–251, 251
method definition in, 255–257, 255–257
Remote Procedure Call (RPC) and, 248
REST and, 250
router creation in, 253–255, 254
service creation using, 251–259, 251–259
SOAP and, 250
Toolkit use with, 281
validation in, 250
XML vs., 250

job queues, asynchronous processing, 308–315,
309–315

JOIN, 301
jQuery, 198–200, 198–199
jQuery library, 192–197, 192–197

K
keys, API, for web services, 269–272, 269–272
keys, symmetric key encryption, 158–164,

159–164

L
Lazy Initialization/Lazy Loading, 102–104,

103–104
Lazy Initialization/Lazy Loading design

pattern, 37–40, 38–40

323

Index

levels of security, 149, 149
libraries, JavaScript, 192–197, 192–197
Linux, 294, 295

security issues and, 148
Liskov Substitution Principle, 63–65, 64, 65
Liskov, Barbara, 64
Loading, Lazy, 38–40, 39–40, 102–104,

103–104
looping, 83–84

ArrayAccess interface in, 89–94, 89–94, 99
ArrayObject class and, 98–100, 98
collections of data and, 84
Countable interface and, 86–89, 87–89, 99
foreach and, 84, 96
iteration in, ArrayObject class for, 98–100
Iterator interface in, 94–98, 94, 98
IteratorAggregate interface in, 99
JavaScript, 194–195, 194–195
predefined interfaces and, 84
Serializable interface in, 99
Standard PHP Library (SPL) and, 84
Traversable interface in, 99
type hinting and, 98

Lynx, 165

M
Magento, 285–286, 299
Markdown, 140
Martin, Robert C., SOLID methodology,

58–59, 66
McConnell, Steve, 286
MD5, 145, 153–158
memoization, 302–303
method definition, using JSON, 255–257,

255–257
methods, 3

in classes, 2, 2–3
Microsoft Windows, 294
mock objects, 32–33, 222–229, 223–229,

286–289, 287–289
mod_rewrite and Front Controller, 47, 47
Model/View/Controller (MVC) applications,

53–58, 54–58
architecture of, 54

controllers in, 54–55
Front Controller and, 46–47, 47
Front Controller design pattern and, 55–58,

55–57
models in, 54
separation of concerns in, 53
URL mapping in, 55
views in, 55

models, in MVC architecture, 54
Mogull, Rich, 130
mycrypt library, 159
MySQL, 295, 298

N
namespaces, 11–17, 12–17

aliasing for duplicate class names and,
16–17, 17

autoloaders and, 13
backslash as separator in, 13, 14, 14
defining, 12, 12
instantiating, 12, 12
multiple different, working with, 14, 14
use keyword to declare, 15–16, 16
Zend Engine and, 12

navigation lists, HTML, 179–180, 180
NIST, 159, 164
nodes, in HTML, 167

ID specification in, 176
nonsession-based authentication, 268–272,

268–272

O
object oriented programming (OOP), 1–27

abstract classes in, 6, 6
classes in, 1–2, 2–3
closures in, 23–27, 23–27
context in, 4–5, 5
interface definition in, 6–9, 7–8
namespaces in, 11–17, 12–17
objects in, 1–2, 2–3
polymorphism in, 9, 9
traits in, 17–23, 18–23
type hinting in, 10–11, 10–11, 98
visibility levels in, 5, 5

324

Advanced Guide to PHP on IBM i

objects
ArrayObject class and, 98–100
mock, 32–33, 222–229, 223–229, 286–289,

287–289
OOP programming and, 1–2, 2–3

Observer design pattern, 40–45
ODBC, 273
Open-Closed Principle, 63–64
OPTIONS, 234
outside threats to security, 130–131

P
passwords, hashing, 152–158, 153–158
Pattern Language, A (Alexander), 30
performance, 293–315

asynchronous processing and, 308–315,
309–315

caching and, 296–298, 297, 302–308,
304–308

DB2 connections and, 295
integrated file system (IFS) and, 294–295,

294, 295
Linux and, 294, 295
Microsoft Windows and, 294
preprocessing and, 298–308
recent improvements to, from IBM, 293
Toolkit and, 295
Zend Server Job Queue and, 308–309

PgmCall(), 276
PHP library. See Standard PHP Library (SPL)
PHPUnit, 206–218. See also test-driven

development
polymorphism, 9, 9
position property, 183–187, 183–187
POST, 143, 203, 234
predefined interfaces, 84–104. See also

Standard PHP Library (SPL) and
predictable locations for security attacks,

151–152
prepare statements, 136–138, 136–138
preprocessing, 298–308

caching and, 302–308, 304–308
normal calculations and, 298–302, 299–302

private visibility level, 5, 5

procedural programming, 1
properties, 3

in classes, 2, 2–3
protected visibility level, 5, 5
public visibility level, 5, 5
Publish/Subscribe (PubSub) design pattern,

40–45
class definitions for, 43–44, 44
event manager for, 42–45, 42–45
subscriber for, 44–45, 44–45

PUT, 234

Q
qshellCommand(), 276
queries

cross-site request forgery vs., 142–145,
144

jQuery library in, 192–197, 192–197
prepare statements in, for security, 136–138,

136–138
preprocessing and, 298–308
session fixation vs., 145–146, 145, 146
session hijacking vs., 146–147, 147
SQL injection security threat in, 131–138,

132–138
queues, asynchronous processing, 308–315,

309–315

R
registries, 69
relative positioning, in HTML, 184–187,

184–187
Remote Procedure Call (RPC), 248
Remove All Terminated Launches, in

debugging, 114
Representational State Transfer (REST),

232–236, 235t, 235, 309
architecture of, 232–233
authentication in, 236
caching in, 233
HTTP verbs in, 234–235, 235t, 235
JSON and, 250
resource/URL definition in, 233–234
stateless protocols and, 233

325

Index

request abstraction, using SRP and SOLID
methodology, 60–63, 61–63

REST. See Representational State Transfer
(REST)

Resume, in debugging, 114
Rijndael ciphers, 159, 164
router creation, using JSON, 253–255, 254
RSS, 42
Ruby on Rails, 53

S
“script kiddies,” 130
security. See also encryption, 129–164, 161

browsers and, 129
cross-site request forgery vs., 131, 142–145,

144
cross-site scripting vs., 131, 138–142,

139–142
dangerous files and, 151–152
data deletion vs., 133
data modification attacks vs., 133–136,

133–136
encryption and, 152–164
filtering output for, 131
hashing for, 152–158, 153–158
HTML and, 140–142, 140–142
htmlentities() function in, 140
htmlspecialchars() function in, 140
HTTP issues in, 129
integrated file system (IFS) systems and, 148
internal threats to, 130
levels of, 149, 149
Linux systems and, 148
outside threats to, 130–131
predictable locations for attacks against,

151–152
prepare statements in, 136–138, 136–138
“script kiddie” and, 130
session fixation vs., 131, 145–146, 145, 146
session hijacking vs., 131, 146–147, 147
SQL injection vs., 131–138, 132–138
storage practices vs., 151–152
symmetric key encryption in, 158–164,

159–164

tokens in, 143–145, 144
validating input for, 131, 147–150, 147–150
vulnerability of applications and, 131

SELECT, 133, 298, 301
selectors, CSS, 179–181
self keyword, 5
Serializable interface, 99
session fixation, 131, 145–146, 145, 146
session hijacking, 131, 146–147, 147
session-based authentication, 266–268,

266–268
sessions, Singleton design, 31–32
SHA-1/2/...256, etc., 145, 153–158, 269–270
Simple Object Access Protocol (SOAP), 231,

236–240, 237–240
JSON and, 250
Web Services Definition Language (WSDL)

and, 236–238, 240–248, 241–248
XML documents and, 236

Single Responsibility Principle (SRP), SOLID,
59, 281

Singletons, 30–33, 30–33, 274
SOAP. See Simple Object Access Protocol

(SOAP)
SOLID methodology, 58–81, 58t, 148, 281, 285

dependency injection/Dependency Injection
Container (DI Container) in, 73–81,
74–81, 220–222, 220–222, 281–285,
281–285

Dependency Inversion Principle in, 68–73,
68–73

Interface Segregation Principle in, 65–68,
65–68, 70

Liskov Substitution Principle in, 63–65, 64,
65

Open-Closed Principle in, 63–64
Single Responsibility Principle (SRP),

59–63, 60–63, 279
spl_autoload_register(), 84–86, 84–86
SplPriorityQueue, 104
SQL injection security threat, 131–138,

132–138
Standard Generalized Markup Language

(SGML), 166

326

Advanced Guide to PHP on IBM i

Standard PHP Library (SPL), 83–104
ArrayAccess interface in, 89–94, 89–94, 99
ArrayObject class and, 98–100
Countable interface in, 86–89, 87–89, 99
Iterator interface in, 94–98, 94, 98
IteratorAggregate interface in, 99
Serializable interface in, 99
spl_autoload_register() in, 84–86, 84–86
Traversable interface in, 99
type hinting and, 98

stateless protocols, 233
Step Into, in debugging, 115–116, 115–116
Step Over, in debugging, 116
Step Return, in debugging, 116
storage practices vs. security, 151–152
Strategy design pattern, 36–37, 36–37
Style attribute, HTML, 176
Suspend, in debugging, 114
symmetric key encryption, 158–164, 159–164

T
tables, in HTML, 172–174, 172–173, 174
tabling, 302–303
tags, redefining, in HTML, 178
Terminate, in debugging, 114
test suites, 219–220, 219, 220
test-driven development, 205–230. See also

debugging
assertion in PHPUnit and, 213, 213
bootstrap files for, 210–211, 210, 211
classes and class structure in, 207–209,

207–209
data sources and, 222–229, 223–229
database connections and, 226–229, 226–229
debugging and, 218
dependency injection and, 220–222, 220–222
exception throwing in, 214, 215–216
failure in, 213–214, 213, 216, 216
filtering in, 214
mock objects and, 222–229, 223–229
output of PHPUnit in, 213, 213
passing code, 216, 216–217, 218, 229, 229
PHPUnit in, 206–218
PHPUnit menu in, 212, 212

PHPUnit test case window in, 207
repeating the test in PHPUnit, using F11, 218
selecting test file for, 212, 212
test suites in, 219–220, 219, 220
Toolkit and, 285–291, 286–291
unit testing in, 206, 285–291, 286–291

Textile, 140
$this keyword, 5
timestamp, 15, 15
title, in HTML, 168, 168
tokens, in security, 143–145, 144
toolbars, debugging, 124–126, 125, 126
Toolkit, 273–292

abstraction for, 273–274
calling a program in, 276
calls into, 276, 276
CL command execution in, 276, 276
connections and InternalKey parameter

setting in, 275, 275
dependency injection with, 281–285,

281–285
encapsulating individual calls into classes

for, 278–280, 279–280
error checking/testing in, 289–291, 289–291
instantiating ToolkitService class in, 274, 274
mock objects in, 287–288, 287, 288
parameter creation and setting for, 276–277,

276–277
performance issues and, 295
source code for, 273
testing inline functionality with, 278
ToolkitService class in, 274–277, 274–277
unit testing with, 285–291, 286–291
XML and, 273

ToolkitService class, 274–277, 274–277
TRACE, 234
traits, 17–23, 18–23

adding to class, 19, 19
collisions in, 22–23, 22–23
defining, 18, 18
insteadof operator and, 22–23, 22–23
testing for use of, 20–22, 20–22

Traversable interface, 99
Triple DES cipher, 159, 163

327

Index

tunneling, 107–110, 108–110
Twitter, 248, 298
type hinting, 10–11, 10–11, 98
types

array values, 101–102, 101–102
redefining, in HTML, 176
validating, 101–102, 101–102

U
unit testing, 206. See also test-driven

development
Toolkit and, 285–291, 286–291

URL mapping, in MVC implementations, 55
URLs and web services, using REST, 233–234
use keyword, namespaces declaration, 15–16,

16
user interface, JavaScript, 195–197, 195–197

V
validation

JSON, 250
security and, input, 131, 147–150, 147–150

validators, 101–102, 101–102
typing array values and, 101–102, 101–102

var keyword, 188
variables

debugging, 116–120, 116–120
Interface Segregation Principle in, 66–68
JavaScript, 188–189, 189

version negotiation, API, for web services,
259–265, 260–265

views, in MVC architecture, 55
visibility levels, 5, 5
Visitor design pattern, 40–45

W
web services, 231–272

Accept header in, 260–265, 261–265
adding and deleting input parameters for,

using WSDL, 242–243, 243
API version negotiation in, 259–265,

260–265
authentication in, 266–272, 266–272
authentication in, using REST, 236

binding content for, using WSDL, 244–246,
246

binding creation for, using WSDL, 241, 241
caching in, 233
callback validation in, using JSON, 257–258
class creation in, using JSON, 258–259, 258,

259
content negotiation in, 264–265, 264, 265
encryption in, 269–272, 269–272
endpoint setting for, using WSDL, 246–248,

247, 248
hashing and, 269–272, 269–272
HTTP and, 231
HTTP action verbs and, 234–235, 235t, 235
JSON and, 264
key and secret for APIs in, 269–272,

269–272
mapping requests in, using JSON, 250–251,

251
method definition in, using JSON, 255–257,

255–257
new service creation in, using JSON,

251–259, 251–259
new service creation in, using WSDL,

240–241, 241
nonsession-based authentication in, 268–272,

268–272
port type defined for, using WSDL, 242, 242,

246–247, 247
Remote Procedure Call (RPC) and, using

JSON, 248
Representational State Transfer (REST) in,

232–236, 235t, 235
return type and browser for, using WSDL,

243–244, 244, 245
router creation in, using JSON, 253–255,

254
session-based authentication in, 266–268,

266–268
setting operation name for, using WSDL,

243, 243
Simple Object Access Protocol (SOAP) and,

231, 236–240, 237–240
stateless protocols and, 233

328

Advanced Guide to PHP on IBM i

Web Services Definition Language (WSDL)
and, 236–238, 240–248, 241–248

X-based headers in, 259–260
Web Services Definition Language (WSDL),

236–238, 240–248, 241–248
adding and deleting input parameters in,

242–243, 243
binding content setting in, 244–246, 246
binding creation in, 241, 241
creating files in, 240
creating new service in, 240–241, 241
endpoint setting in, 246–248, 247, 248
port type definition in, 242, 242, 246–247,

247
return type and browser setting in, 243–244,

244, 245
setting operation name in, 243, 243

WHERE, 133
$who keyword, 26–27, 27
Wikitex, 140
WordPress, 53
WSDL. See Web Services Definition Language

(WSDL)

X
X-based headers, in web services, 259–260
XDebug, 105
XML

JSON vs., 250

SOAP and, 236–240, 237–240
Toolkit use and, 273, 281

Y
YAML, Toolkit use, 281

Z
Zend Debugger, 105–106. See also debugging

breakpoints in, 121–124, 121–124
configuration of, 107, 107
Debug URL selection in, 111–113, 111–113
expressions in, 120–121, 121
firewall restrictions and tunneling in,

107–110, 108–110
flow control in, 113–116, 113–116
host IP addresses for, 106
initiating debug session in, 111–113,

111–113
manual control of, 126–128, 127
ports for, 106
toolbars for, 124–126, 125, 126
variables in, 116–120, 116–120

Zend Engine, 104
ArrayAccess interface in, 89–94, 89–94
namespaces and, 12

Zend Framework, 60
Zend Server, 106
Zend Server Job Queue, 308–309
Zend Studio, 106, 206, 240

