
10 Nested Data
Structures

The LIKEDS and LIKEREC keywords provide the ability to create Qualified Data Structures
based on the format of existing data structures or record formats:

D CL_Date DS
D Century 1S 0
D Year 4S 0
D Month 2S 0
D Day 2S 0

D myDate DS LikeDS(CL_DATE)

This is extremely valuable to RPG IV development, but it doesn’t stop there. RPG IV also
supports data structures within data structures. These are known as Nested Data Structures
and, strictly speaking, they are simply qualified data structures within qualified data structures
—that is, a subfield of a qualified data structure may also be another qualified data structure:

Nesting Data Structures within One Another

D CustOrder DS Qualified Inz
D CustNo 7P 0
D OrdNbr 7P 0
D OrdDate LikeDS(CL_Date)
D BalDue 11P 2

In the example above, the CUSTORDER data structure is a typical data structure, and it is Qualified.
The first two subfields, CUSTNO and ORDNBR, and the last subfield, BALDUE, are traditional sub-
fields. However, the third subfield, ORDDATE, is declared using the LIKEDS keyword, and this cre-
ates a nested data structure.

RPG TnT 21

Nested Data Structure allows a subfield to be declared as a data structure—that is, the subfields from
the CL_DATE data structure are used as subfields of the CUSTORDER.ORDDATE subfield. When
compiled, the CUSTORDER data structure is expanded as follows:

D CustOrder DS Qualified Inz
D CustNo 7P 0
D OrdNbr 7P 0
D OrdDate Qualified
D Century 1S 0
D Year 4S 0
D Month 2S 0
D Day 2S 0
D BalDue 11P 2

The subfields from CL_DATE have been inserted after ORDDATE. The Qualified keyword,
which is implied by a LIKEDS keyword, is also inserted. These new subfields are acces-
sible using qualified syntax:

nYear = CustOrder.OrdDate.Year;

The YEAR subfield is qualified to its parent data structure, ORDDATE. ORDDATE, which
itself is a subfield, is further qualified to its parent data structure, CUSTORDER.

There is no practical limit to the number of levels for nested data structures. Although the
RPG limit of 99 nesting levels on just about any “nested” component (parens, IF state-
ments, expressions, etc.) seems to apply to nested data structures as well.

Now the crazy part: You can actually declare a nested data structure as an array.

D Contact DS Qualified
D Name 30A
D phone 10S 0 Dim(3)
D email 64A Dim(3)

D Customer DS Qualified Inz
D CustNo 7P 0
D Contact LikeDS(CL_Date) Dim(6)
D Addr 30A
D Addr2 30A
D City 20A
D State 2A

In this example, there are 6 elements of the CONTACT subfield in the CUSTOMER data
structure. This provides the ability to hold up to 6 contacts—name, phone numbers, and
email addresses. The cool thing is that the CONTACT data structure’s PHONE and EMAIL
subfields are also arrays of 3 elements each. This means we can have up to 6 contacts per
customer with up to 3 phone numbers or email addresses for each contact.

22 Robert Cozzi, Jr.

Expanded
CL_DATE structure

So how do you get to the second phone number of the 3rd contact? By using Qualified
syntax, as follows:

bestNbrToCall = customer.contact(3).phone(2);

This retrieves the second phone number of the third contact.

Nested data structures allow you to move beyond using the OVERLAY keyword in data
structure definitions by providing the ability to declare a data structure subfield as a data
structure itself.

Nested-data-structure syntax may be used in free format and in the Extended Factor 2
syntax. It may not be used with traditional opcodes in Factor 1, Factor 2, or in the Result
field. It is also not supported in input or output specifications.

RPG TnT 23

11 *ALL and *ALLX ‘xx’—
The Repeating
Constants

Figurative Constants such as *BLANKS and *ZEROS have been widely used. But most pro-
grammers overlook *ALL, which is a very useful figurative constant. *ALL is provided in
two versions:

• One replicates a literal—specified in character notation—matching the corresponding
variable’s size.

• The other replicates a literal—specified in hexadecimal notation—matching the corres-
ponding variable’s size. The actual value is converted to normal characters by the
compiler.

The first version allows you to copy one or more characters repeatedly to the target field
or to compare a field to a repeated pattern of characters. For example, to simulate
*BLANKS using *ALL, you would specify *ALL’ ‘ (*ALL followed by a blank inside single
quotes).

Any series of characters may be specified following *ALL. For example, to fill a field with
the letter Q, use *ALL’Q’ on the right side of the assignment statement. If *ALL’QRST’ is
specified, the pattern QRST is repeated in the target variable. For example, if the target is
10 positions in length, then QRST is repeated as QRSTQRSTQR.

The second version allows you to build a character using hexadecimal notation. The *ALL
figurative constant followed by the letter X (e.g., *ALLX) plus a quoted pair of hexa-
decimal letters or numbers can be used to build any of the 256 EBCDIC characters. But
this is not limited to a single character; multiple hexadecimal characters may be specified.

24 Robert Cozzi, Jr.

*ALL and *ALLX may be used in Calculation specifications as well as the Initial Value for
any field:

Initialize a Field to “Hex Zeros” with *ALLX ‘00’

D comData S 255A Inz(*ALLX’00’)

// Alternatively, copy the value at runtime
C eval comData = *ALLX’00’

To test a field for a repeating pattern of one or more characters, simply use *ALL or *ALLX
in conjunction with the IF (or another conditional statement):

Test a Field for a Repeating Pattern

D comData S 255A Inz(*ALL’. ‘)

C if comData = *ALL’. ‘
C eval comData = *ALLX’00’
C endif

RPG TnT 25

12 Embed Compiler
Parameters into
Source Members

One the benefits of RPG IV over RPG III and other languages is that compiler parameters
from the CRTBNDRPG and CRTRPGMOD commands and a few from the CRTPGM com-
mand may be specified directly in the source member.

The H specification, which is often referred to as the Header Specification, has space in
positions 7 to 80 where various controls or compiler parameters may be specified. For
example, to add the activation group name QILE for the program, the ACTGRP keyword
may be specified on the Header specification as follows:

H ACTGRP(‘QILE’)

The only difference between specifying the compiler parameter on the Header specifica-
tion verses the actual CRTxxx command is that so-called user-supplied values—such as
QILE—must be enclosed in single quotes and normally must be in all uppercase (with a
few exceptions). For example, ACTGRP(‘qile’) is not valid, but actgrp(‘QILE’) is valid.

Compiler parameter on the Header Specification are merged with those specified on the
actual compiler. Header specification keywords have priority over any override compiler
parameters.

Synchronize Source Statement Numbers with SEU and Debug

When RPG IV was introduced, the compiler sequenced source statements for the benefit
of the compiler listing. This provided uniqueness when external definitions or /COPY
members were imported.

The problem with this feature was that it became extremely difficult to match the line
number from the compiler listing back to the original source member statement line num-
ber. So IBM added the OPTION(*SRCSTMT) keyword to force the compiler to use the

26 Robert Cozzi, Jr.

same line numbers on the compiler listing as in the source member. This means that line
210 in the source member is referenced as line 210 by the compiler listing.

To use OPTION(*SRCSTMT), specify it on the Header specification as follows:

Use OPTION(*SRCSTMT) to Sequence Compiler Listings

H OPTION(*SRCSTMT)

Reduce Debug Fatigue with *NODEBUGIO

If you’ve ever debugged an RPG IV program and were stepping through your code using
the debugger’s F10 (Step) function, you may have run into this problem. If you come
across a READ operation to a database or display file and that file is Externally Described,
the next F10 will bring you to the top of the Input specifications for the file and position
you at the first field in the file. The next F10 positions you to the second field, and so on.
For large or small database files, this can be annoying, particularly if you don’t care about
the value of the input fields.

RPG allows you to avoid this situation. Simply include the OPTION(*NODEBUGIO) key-
word in the Header specification for the source member. Almost magically now, when
you approach the READ operation while debugging and press the infamous F10 key, you
are taken to the next executable line of code and not to the top of the Input specifications.

Use OPTION(*NODEBUGIO) to Avoid F10 Fatigue in Debug

H OPTION(*NODEBUGIO)

Even when no Files are declared in a source member, OPTION(*NODEBUGIO) is allowed—
however, it has no effect. This is helpful for creating a standardized Header specification
that may be used to /COPY into most source members.

Combine Header Specification OPTIONs

While the OPTION keyword may seem like a “singular” control, it actually supports multiple
options at one time. Specify multiple options within the same OPTION keyword by sepa-
rating each option with a colon. A typical OPTION keyword might include *SRCSTMT and
*NODEBUGIO as follows:

Specify Multiple OPTIONs

H OPTION(*SRCSTMT : *NODEBUGIO)

RPG TnT 27

The compiler keywords most often used on a Header specification include—but are not
limited to—the following:

• OPTION(*NODEBUGIO : *SRCSTMT)

• BNDDIR

• DFTACTGRP(*NO)

• ACTGRP

• OPENOPT(*INZOFL)

• EXTBININT

28 Robert Cozzi, Jr.

13 Avoid “Surprise
Initialize”

Legacy code is often the cause of the infamous Decimal Data Error periodically raising its
ugly head. In my experience, this is usually caused by blanks or X’40’ characters being
stored in numeric fields, which often are actually numeric subfields of a Data Structure.

Fixing this problem can be easy if you simply initialize the data structure. To do this, add
the INZ keyword to the Data Structure, and you’re done. I have personally corrected
around 80 percent of decimal data error problems I’ve encountered by simply adding the
INZ keyword to the Data Structure declaration.

The INZ keyword on the Data Structure declaration specification causes its subfields to be
set to zero for numeric fields, to blanks for character fields, and to the oldest (earliest)
date for date/time fields. Without the INZ keyword, Data Structures—and therefore all of
their subfields—are initialized to blanks.

Use INZ to Fix Decimal Data Errors

D MyStuff DS INZ
D ItemNo 5P 0
D Price 7P 2
D Desc 30A

Blanks in data structures cause decimal data errors when the data structure contains non-
character subfields.

RPG TnT 29

14 Qualified Externally
Described Files (1)

With the introduction of Qualified Data Structures (see Tip #8), IBM quietly added the
ability to qualify input file fields and, by doing so, they sped up I/O operations.

By converting an Externally Described file to a Qualified File, the I/O operation is per-
formed in one operation rather than a series of internal “MOVE/MOVEL” operations for
each input field. To declare a Qualified File, specify the following:

• An externally described file.

• A PREFIX keyword on the File specification identifying a Qualified Data Structure.

• A Qualified, Externally Described Data Structure.

The key component here is to specify the PREFIX keyword on the File Description speci-
fication with a data structure name followed by a period; for example:

FCUSTMAST IF E K DISK Prefix(‘CM.’)

The data structure name on the PREFIX keyword must be enclosed in quotes, be specified
in all uppercase letters, and be followed by a period.

When a PREFIX keyword is used in this way, qualified field names are generated (e.g.,
CM.CUSTNO). To define the Data Structure named CM that is associated with the CUST-
MAST File specification, a Qualified Externally Described Data Structure must be declared:

FCUSTMAST IF E K DISK Prefix(‘CM.’)

D CM E DS EXTNAME(CUSTMAST)
D QUALIFIED

In the example above, the Qualified Data Structure (see Tip #8) named CM is declared. Its
format (i.e., subfield) is derived from the external definition for the file named CUSTMAST.
This means that all the fields from CUSTMAST are included as subfields for the CM data
structure.

30 Robert Cozzi, Jr.

The PREFIX(‘CM.’) keyword on the File specification associates the input buffer of the
CUSTMAST file with the CM data structure. Hence, all input fields must be referred to
using Qualified Syntax. In fact, read operations for CUSTMAST are automatically mapped
into the CM data structure.

Qualified, Externally Described Files

FITEMMAST IF E K DISK Prefix(‘IM.’)

D IM E DS ExtName(ITEMMAST)
D Qualified
/free

read ItemRec;
dow NOT %EOF()

if im.QtyOH <=0;
joblog(‘Item %s out of stock.’:im.item);

endif;
if im.backOrd > 0;

joblog(‘Item %s is on backorder.’:im.item);
endif;
if im.price <= 0;

joblog(‘Warning item %s has no price.’:im.item);
endif;
read ItemRec;

enddo;
*inlr = *ON;

/end-free

When this technique is applied, the rule of Qualified Data Structure syntax also applies.
Since the file is mapped to a qualified data structure, its input fields are renamed to
IM.xxxxxx, where xxxxxx is the original field name.

The input fields must be referred to using only qualified syntax; they are no longer con-
sidered stand-alone fields.

The types of files that can use this technique include Input, Input-Add, Update, and
Update-Add. Files declared as Output-only cannot use this technique.

RPG TnT 31

15 Qualified Externally
Described Files (2)

Qualified data structures aren’t limited to data structures—you can also use them as quali-
fied Input fields to a given input file name. Thus, you can have multiple declarations of
the same file in the same program and avoid input buffer/field name conflicts. Here’s how
it works:

FCUSTMAST IF E K DISK PREFIX(‘CM.’)
FCUSTMAST1 IF E K DISK PREFIX(‘LGL.’)
F RENAME(CUSTREC : CUSTLGL)

D CM DS LikeRec(CUSTREC)
D LGL DS LikeRec(CUSTLGL)
D save DS LikeRec(CUSTREC)

The Compiler uses the CUSTMAST file name to import the external definition for the
CUSTMAST file. The LIKEREC keyword is used to define the format of the CM, LGL, and
SAVE data structures. Data structures created by the LIKEREC keyword are Qualified Data
Structures and inherit a subfield for each input field in the associated Input record format.
The format name specified on LIKEREC must be from a file declared on the File specifica-
tions in this source member.

In the example above, the CM and SAVE data structures will have identical formats,
whereas the LGL data structure matches the format of the CUSTMAST1’s CUSTLGL record
format.

The PREFIX(‘CM.’) keyword indicates that the CUSTMAST file’s fields should be mapped
to a Qualified Data Structure named CM. Note that when this technique is applied, the
prefix value must be enclosed in quotes, specified in all uppercase letters, and followed
by a period.

The PREFIX(‘LGL.’) keyword indicates that the CUSTMAST1 file’s fields should be mapped
to a Qualified Data Structure named ‘LGL.’ CUSTMAST1 is a logical file built over the
CUSTMAST file and contains many, if not all, of the same field names as CUSTMAST.

When data is read from either the CUSTMAST or CUSTMAST1 files, it is automatically
mapped into the CM or LGL data structures, respectively. A side-effect of this technique is
that I/O performance is slightly improved. Normally, RPG copies input fields to the input
buffer one field at a time. Using Qualified Externally Described files forces it to copy the
entire buffer into the program in one operation.

32 Robert Cozzi, Jr.

16 Calculate the
End-of-Month Date

In several types of applications, the end-of-month date is important. It’s often used to
determine when to run month-end reports, close the current month’s books, or determine
if a payment is past due.

Calculating the end-of-month date for any given date can be easily accomplished in RPG
IV. One way is to use traditional fixed-format opcodes such as ADDDUR, EXTRCT, and
SUBDUR (in that order). The other way uses built-in functions on one line of code. Either
method is effective; both run with negligible differences in performance.

The formula for calculating the last day of the month is as follows:

• Add 1 month to the desired date X, giving a new date Y.

• Extract the day number D, from date Y.

• Subtract D days from date Y giving the end-of-month date.

These three steps can be performed in traditional RPG IV as follows:

Calculate End-of-Month in Fixed Format

D day S 5I 0
D nextMonth S D DatFmt(*ISO)
D endOfMonth S D DatFmt(*ISO)
D myDate S D Inz(*SYS)

C myDate AddDur 1:*Months nextMonth
C Extrct nextMonth:*D day
C nextMonth SubDur day:*Days EndOfMonth

In the example above, the field named MYDATE contains the date that is used to deter-
mine the end-of-month date.

On the first line, one month is added to MYDATE (a date field), giving NEXTMONTH
(also a date field). If MYDATE is D’2006-11-15’, then NEXTMONTH becomes D’2006-12-15’.

On the second line, the day of the month is extracted from NEXTMONTH and stored in
DAY. This day is extracted from NEXTMONTH rather than from MYDATE because it
could vary between those months. For example, if the original date is January 30, 2006,
then adding one month would result in a new date of February 28, 2006. (If in step 3 we

RPG TnT 33

extracted the day from MYDATE, 30 would be returned instead of the correct value, which
is 28.)

On the third line, the day of the month is subtracted from NEXTMONTH. This returns the
last day of the previous month, which is also the last day of the month of the date we
original specified.

If free format is preferred, you can perform this algorithm in one statement. The use of
the %MONTHS, %DAYS, and %SUBDT built-in functions allows the end-of-month routine
to be performed in one expression, as follows:

Calculate End-of-Month in Free Format

D myDate S D Inz(*SYS)
D EOM S D
/free

eom = (myDate+%months(1))
%days(%subdt(myDate+%months(1):*DAYS));

/end-free

The date variable EOM is assigned the end-of-month date. The starting date is specified in
MYDATE. This expression performs the same tasks as the original fixed-format method.
Either method may be used.

A GETEOM (retrieve end-of-month) subprocedure can be created using either of these
two methods. This subprocedure accepts an input date and returns the end-of-month date
for the input date, as follows:

Get End-Of-Month Subprocedure

P GetEOM B Export
D GetEOM PI D DATFMT(*ISO)
D inDate D Const DATFMT(*ISO)

/free
return (inDate+%months(1))

%days(%subdt(inDate+%months(1):*DAYS));
/end-free
P GetEOM E

This subprocedure is a good argument for a macro language in RPG IV. In many other
languages, I could have created a macro that would expand to insert the date into the
expression. The expanded code would appear in-line in the program rather than in a sub-
procedure.

34 Robert Cozzi, Jr.

17 Using Free-Format
Comments in
Fixed-Format Code

When free-format syntax was introduced to RPG IV, an alternate syntax for comments was
also introduced. But unlike free-format source code, free-format comments are not required
to be enclosed in /free and /end-free compiler directives.

Here’s an example of free-format comments being used in free-format source code:

D Notes S 4000A Varying

/free
// These are some comments

// More comments here
if A = B; // Inline comments too!
bEqual = *ON

endif;
/end-free

Comments may appear anywhere in a free-format source line. However, once the free-format
comments appear, no other data is recognized on that line. Therefore, they may appear
on the same line following a free-format statement but not preceding them on the line.

Free-format comments may also be intermixed within fixed-format statements—that is they
are not required to be stuffed between /FREE and /END-FREE directives:

Free-Format Comments in Fixed Format

// Declare Lillian Date field
D nDays S 10I 0

// Calculate days since Oct 14 1582
C InputDate SubDur BaseDate nDays:*DAYS

// Pass the duration to the OS/400 API.
// Calculate the day of the week.

C CALLP CEEDYWK(nDays: nDayOfWeek :*OMIT)

// Return the day of week to the caller.
C return nDayOfWeek
P GetDayOfWeek E

RPG TnT 35

18 Get Day-of-Week
Name

Often the name of the day of the week is needed for reports, output displays, and web
pages. Fortunately, OS/400 includes an API that can format the date in many ways,
including returning a simple name of the day of the week.

The CEEDATE API is used to format a date as words. To convert a date into the name of
the day of the week, we need to pass to the API the number of days since October 14,
1582 (the so-called “Lillian date”) and a formatting string. The API returns the name of
the day of the week:

GetDayName Subprocedure Source Code

P GetDayName B Export
D GetDayName PI 10A
D inputDate D Const DATFMT(*ISO)
D rtnDayName 10A OPTIONS(*NOPASS)

D BaseDate S D INZ(D’1582-10-14’)
D nDayOfWeek S 10I 0
D nDays S 10I 0
D szDay S 10A

C TEST(E) inputDate
C if %ERROR
C return ‘Invalid’
C endif

C inputDate SubDur baseDate nDays:*DAYS

C CallP CEEDATE(nDays:’Wwwwwwwwwz’:szDay:*OMIT)
C if %parms()>= 2
C eval rtnDayname = szDay
C endif
C return szDay
P GetDayName E

In the above example, the input date is tested to verify that it is a valid date. Then it cal-
culates the Lillian date for the input date (i.e., the number of days since October 14,
1582). That Lillian date is passed as the first parameter to the CEEDATE API.

36 Robert Cozzi, Jr.

The second parameter is a formatting code. The format ‘Wwwwwwwwwz’ indicates that
the Day-Of-The-Week Name is to be returned. The day name is returned to the szDAY
field specified on the third parameter. That day name is subsequently returned to the
caller.

The CEEDATE API accepts many formatting codes, ranging from entire date as words to
the abbreviated day name; for example:

Format String Example Output

YYMMDD 880516
YYYYMMDD 19880516
YYYY-MM-DD 1988-05-16

<JJJJ> YY.MM.DD Showa 63.05.16

<CCCC> YY.MM.DD MinKow 77.05.16

MMDDYY 050688
MM/DD/YY 05/06/88
ZM/ZD/YY 5/6/88
MM/DD/YY 05/06/1988
MM/DD/Y 05/06/8

DD.MM.YY 09.06.88
DD-RRRR-YY 09- VI-88
DD MMM YY 09 JUN 88
DD Mmmmmmmmmm YY 09 June 88
ZD Mmmmmmmmmz YY 9 June 88
Mmmmmmmmmz ZD, YYYY June 9, 1988
ZDMMMMMMMMZYY 9JUNE88

YYMMDDHHMISS 880516204229
YYYYMMDDHHMISS 19880516204229
YYYY-MM-DD HH:MI:SS.999 1988-05-16 20:42:29.046
WWW, ZM/ZD/YY HH:MI AP MON, 5/16/88 08:42 PM
Wwwwwwwwwz, DD Mmm YYYY, ZH:MI AP Monday, 16 May 1988, 8:42 PM

RPG TnT 37

19 Run CL Commands
from an FTP Client

Have you ever needed to run a CL command from within an FTP client when you were
connected from a PC or Linux box to your iSeries or System i5? There is a way.

FTP clients usually support the RCMD command. This command allows you to run com-
mands on the target/remote site from within an FTP session. For example, to run the
ADDLIBLE QGPL command, the following FTP statement could be used:

>> RCMD ADDLIBLE QGPL

If the FTP client doesn’t directly support RCMD, the FTP QUOTE command can be used.
To use QUOTE to run RCMD, specify the RCMD as the parameter to QUOTE, as follows:

>> QUOTE RCMD ADDLIBLE QGPL

The FTP QUOTE command conveys the rest of the statement that follows the QUOTE
command to the remote server. If the server supports the statement, it is processed accord-
ingly. So between iSeries systems, use RCMD, but between a PC and an iSeries, you may
need to use QUOTE RCMD.

38 Robert Cozzi, Jr.

20 Put Your
Program to Sleep

Inevitably, there will be times when performance isn’t taken into consideration for a sec-
tion of a program. For example, if a record is locked and you would like to give the user
the opportunity to try to access the record again, you may want to wait 2 to 30 seconds
before attempting another record access.

There are several inefficient ways to accomplish a planned hold or wait period in RPG IV.
One common yet very poor method involves looping in a Do loop for several thousand
iterations. This is arguably the worse kind of delay-loop technique, as it not only delays
the current user’s job, it also eats up CPU cycles and system resources, consequently
impacting every other active job on the system.

A better approach is to use the system’s interrupt capabilities and put the job to sleep for
the desired wait period. There are two efficient techniques to accomplish this: the sleep()
C runtime function or the waittime() MI built-in. My preference is the C runtime function,
as it is the easier to use.

Both these functions avoid eating up valuable CPU resources. In fact, there should be vir-
tually no CPU utilization as a result of using either the sleep() or waittime() functions.

As with any C or MI function, a prototype must be created before you can use it. The
sleep() function from the C language prototype follows:

RPG IV Prototype for the sleep() C Runtime Function

D sleep PR 10U 0 extProc(‘sleep’)
D milliSecs 10U 0 value

Once prototyped, call sleep(xxxx)—where “xxxx” is the number of seconds for which you
want your program to sleep—from within RPG IV. To sleep for 2 seconds, specify a value
of 2000, as follows:

callp sleep(2000);

RPG TnT 39

21 Use VARYING to
Improve Performance

Fixed-length character fields have been around forever. With RPG IV, new varying-length
fields were introduced. These new fields allow you to store character data in the same
way as fixed-length fields except the fields keep track of their “current” length.

By tracking their own length, VARYING fields can help out with optimization by
informing RPG IV’s opcodes of its current length. That way, they perform their task only
on the current length instead of the entire field. This is particularly useful with the so-
called “string” built-in functions—%SCAN, %XLATE, %CHECK, and so on—as well as
simple assignment statements (e.g., EVAL operations).

For example, assume you have a 4,000-byte character field. Scanning, translating, com-
paring, clearing that field always occurs on all 4,000 bytes. But when a VARYING field
that is defined as 4,000-bytes in length is used, only its current length is scanned, trans-
lated, compared, or cleared. If its current length is 15, only 15 bytes are manipulated
instead of the entire 4,000.

This in and of itself isn’t a huge performance benefit; however, when it is compounded
several thousand times in a loop or other routine, it matters very much. So when pro-
cessing many database records or processing subfile or web browser (HTML) output in a
loop, adding the VARYING keyword to a character field can improve performance.

VARYING fields are also compatible with the DB2/400 VARLEN keyword. Database files
with fields that have the VARLEN keyword automatically map to VARYING fields in RPG IV.

A couple of points about VARYING fields:

• The entire length of the field is allocated by the compiler at startup.

• A 5U0 (2-byte integer) hidden prefix is stored with the field. It contains the current
length of the field.

• When the current length of the field is shortened, the current length is changed but the
data is not changed.

• When the current length of the field is increased, the current length is changed, and the
bytes following the previous current-length position are cleared to the new current
length.

40 Robert Cozzi, Jr.

To illustrate VARYING fields, the following 10-position VARYING field named VTEXT
occupies 12 bytes of memory. This comprises its 2-byte integer prefix and the 10 bytes of
the field itself. If it were initialized to the value ‘Cozzi’, it would be declared as follows:

D VText S 10A Varying Inz(‘Cozzi’)

This field would have the following memory structure:

Memory/Byte Positions
1 2 3 4 5 6 7 8 9 10 11 12
Data Positions 1 2 3 4 5 6 7 8 9 10

Current Length Data
C o z z i

0 0 C 9 A A 8 4 4 4 4 4
0 5 3 6 9 9 9 0 0 0 0 0

The following illustrates declaring and using a 4,000-position VARYING field with the
%SCAN built-in function.

VARYING Keyword to Help Improve %SCAN Performance

D Notes S 4000A Varying

/free
notes = ‘Customer was very happy with the +

product and will tell their friends.’;
if (%scan(‘not happy’ : notes) > 0);
bHappyCust = *ON;

endif;
/end-free

In the example above, the %SCAN built-in function runs substantially faster thanks to the
NOTES field being defined as a VARYING field. Only the current length, about 70 bytes, is
scanned. If the entire 4,000 bytes were to be scanned, it would (obviously) take more time.

Most opcodes and built-in functions take advantage of VARYING fields. Every opcode that
supports traditional fixed-length fields also supports VARYING-length fields.

RPG TnT 41

22 Converting Numeric
to Character with
%CHAR

In /free RPG IV syntax and with the EVAL operation, the question of how to convert
numeric to character keeps coming up. In traditional fixed-format RPG, the MOVE opcode
was used, plain and simple—but what about /free?

RPG IV includes the %CHAR built-in function. This built-in function converts just about
any non-character data-type to character, and it does it extremely easily.

The syntax is myData = %char(myNumVal). This converts the numeric value in the
myNumVal field to character(s) and stores the value, left-justified and zero-suppressed, in
the myNumVal field.

%CHAR also strips off leading zeros and left-justifies the result. It will include a negative
sign if applicable but not a positive sign. In addition, the right side of the decimal notation
always retains its zeros. So if the value being converted is declared as a 9P4 value, the
right side of the decimal always includes 4 digits.

Convert Numeric to Character

D price S 7P 2 Inz(12.50)
D szText S 10A

// Convert to Character: szText = ‘12.50’
C eval szText = %char(price)

// Or in /free syntax, as follows:
/free

szText = %char(price);
/end-free

42 Robert Cozzi, Jr.

