
8C H A P T E R

Daemons

In reading this chapter, you might get the idea that I’m telling you to use PHP
to build large-scale, daemon-based applications. While I defi nitely am of the

opinion that PHP can be used for this purpose, the language was not designed for
it. For me, the question of whether PHP can be used as a daemon comes out of the
“use the best tool for the job” discussion that often happens online. Usually, this
topic comes up as an argument after one person bested another in some kind of
language shootout. The looser of the argument (regardless of the actual merits of
his or her chosen language) half-concedes by saying, “Well, you just use the best
tool for the job.” Meaning, “You got me, but I won’t be made to look the fool.” Or,
“It’s not worth arguing with this idiot.” Chances are it’s the latter.

The problem is that there are lots of jobs that need to be done that are outside the
specialty of a given language. Following the “best tool for the job” mentality, you
might have part of your infrastructure running PHP, part of it running Ruby on
Rails, part of it running .NET, and part of it running Java. I’ve got nothing against
any of those languages, but absolutely none of them do everything well.

Java is a good example. I personally like programming in Java. However, to
have a Web site running in Java, you need to have layer upon layer upon layer of
application server upon application server upon application server to make it run.
Will it run? Yes. Will it run fast? Yes. Are Web pages what Java was designed to
do? With due respect to JavaServer Pages (JSP) developers, no.

Same thing with Ruby. Ruby is really good if you can aff ord to have very little
fl exibility. The benefi t of Ruby on Rails comes at the price of infl exibility. If you

Chapter 8: Daemons322

need specifi c control over aspects of your application, Ruby is probably not the
best choice for you.

Where am I going with this discussion? The question of using “the best tool for
the job.” A heterogeneous environment is not a good one to build for or to manage.
Getting one of those to work should be the goal of academics. Real life, with
all its warts, does much better with a fuller understanding of a smaller subset of
features. This is because as soon as you have more than one type of architecture
in your organization, you need to have more than one skill set. Having more skill
sets means it’s hard to fi nd experts. And fewer experts means more time spent on
support calls with other people whose knowledge base is also too wide.

What’s the solution? I would contend that there is not one. Just as there is no
vehicle that serves all needs, there is no programming language that serves all
needs. In addition, the people you have around are important factors. If you
have developers who are good, but not great, at PHP, Ruby, Python, Java, and
.NET (who also need to know Flash), where will you have the skill set internally
to handle a problem for which you can’t fi nd an answer on Google? It’s like
buying a Peugeot in Wyoming. I believe that if you have several languages and
infrastructures that you support, your developers are going to have more problems
and be less creative.

Creativity for the sake of creativity is not good. However, creativity enables
innovative solutions to diffi cult problems. Far too many people pick up a language
and work with it, thinking that they are experts, because someone else said the
language was cool. However, the more languages you know, the less of an expert
you will be in each.

This takes us back to the earlier statement about using “the best tool for the job.”
I would contend that this philosophy is wrong, or at least, problematic. I’d go the
route of saying “use the best tool for the organization” instead. That organization
might be your place of business, a nonprofi t you work for, the Web site of a friend
who’s starting a new business, your church, anything. How do you decide which
tool you are going to use for a specifi c problem?

What you base the decision on is not set in stone. In fact, it’s unlikely that your
organization made an intentional decision beyond, “Hey, we’re building a Web site;

Starting Out 323

we should use PHP, right?” If your organization has a signifi cant Web presence,
then that is probably the right call. PHP does Web good. But what if you need
something else? Say, for example, you need a simple message queue. You have
several options. One is to obtain some kind of third-party messaging software.
There are plenty of options available for you, and they probably are going to be
better than what you would build.

But there is often a problem with using off -the-shelf software, both proprietary and
open source. Half the time, it’s complicated enough that once you install it, you
need even more experts to manage it. So, say you have simple needs. You need a
message queue, but your organization does not have the skill to support another
language.

That is where building a PHP daemon comes in.

Starting Out

If we’re going to be building a daemon, one of the primary goals is to build
something that can handle multiple tasks at one time. To do that, we need to be
able to handle multiple connections at once. Building an application that can
handle multiple connections at once is actually very simple. So simple, in fact, that
we’ve already done it, back in the chapter on networking and sockets. However, we
have two problems, one old and one new. Both deal with how to use the resources
on the system in the best way possible.

The old problem is the question of how to effi ciently use CPU time when we may
have signifi cant parts of our work that require other services and, thus, have wait
times. These can be tasks such as database calls, network calls, or even fi le system
access. Even though disks are relatively fast these days, I/O contention does
occur. This isn’t just a problem that happens for larger organizations with high
performance environments; smaller shops that have ineffi cient data structures on
disk or just high-performance data requirements also face this issue. So, how do
we do other things while waiting for slower things to do their thing?

The newer problem is probably one with which you’re already familiar. With
processors opting now for multi-core, multi-CPU, hyper-threaded architectures, a
big issue to solve is that of using all of those CPUs and cores. PHP has a simple

Chapter 8: Daemons324

architecture that is great for HTTP. But it doesn’t work so well once you start
building a daemon-ized architecture. PHP has no internal mechanism for doing
things asynchronously. Why should it? In PHP’s native arena, Apache handles that
work. And even the default prefork Multi-Processing Module (MPM) in Apache
doesn’t really do a lot of asynchronous processing because each process is separate
from the others and handles only one request at a time.

So the fi rst problem we need to solve is how to handle doing more than one thing
at a time. There are two ways to do this, and the method you choose will depend
on what type of system you’re working on. If you are building a daemon, handling
many incoming connections, then using a forking, or rather, a pre-forking, method
is likely the best option.

In our prior examples using non-blocking I/O, we had to have a relatively complex
piece of logic to handle data coming in from multiple sources. When you use pre-
forking, this is not required, depending on how you do it. That’s because forking
actually lets the operating system manage the connections instead of you doing it
yourself.

When a process is forked, the system copies the allocated resources into a new
segment of memory, and both processes are resumed after the fork() call. The
only diff erence between the two is the return value of the call. The parent process
receives the process ID of the child, and the child receives a process ID of 0 (zero).
If an error occurs, -1 is returned.

Because the process being copied is mostly identical, some shared resources
remain somewhat shared. An example of this is a socket that was opened prior to
the forking. If a socket was created before the forking, you likely do not need to
worry about non-blocking I/O. That is because existing connections are duplicated
during the forking operation. When a new socket is accepted, the socket is unique
to the individual forked process, even though the server socket is shared. Each
forked process represents a resource that is available to do a specifi c unit of work.
Because blocking operations on one work unit will not aff ect the operations on
another work unit we can build our functionality without having to come up with
an architecture that is tolerant of wait times on disk and network I/O.

Starting Out 325

To handle multiple work units, any solution we implement will likely need to
work similarly to the pre-forking method. But there is, of course, the problem of
how to do that on Windows. Windows does not support forking. To get around
this limitation, we would need to create a daemon to act as a broker between
the incoming requests and the worker processes that will ultimately handle the
work. That type of broker would require very few CPU resources and would need
to run as a single process/thread. Clearly, PHP doesn’t do this, but the broker
functionality is relatively simple, and as such it wouldn’t matter that it uses only
a single core. The operating system would take care of allocating the other cores
automatically because they would be distinct processes from each other.

The second problem is going to be how to share data. But before examining
that challenge, let me state something that you should keep in the back of your
mind. Try to not share data, especially writeable data. That is a tall order, indeed.
However, sharing data, particularly sharing data that needs to be written to, is one
of the Achilles’ heels of modern programming. It is far too easy to read data that
is in the process of being overwritten. That is not to say that you shouldn’t share
data, but only that you should proactively minimize the use of shared resources.
Consider defi ning as many resources as you can as read-only.

Also, try to write your data historically rather than overwriting values. When you
overwrite data, you generally need to lock the resource. Fine-grained locks are not
desirable. Locks are often necessary, but try to minimize them.

Another thing to consider is loading as many of your resources up front as
possible. Consistency can be a problem in a shared environment. By front-loading
as much data as you can, you reduce the likelihood of a collision between current
and out-of-date data in the same data set. Inconsistency is probably a bigger threat
than wasting some compute time processing old data.

As a language, PHP is very good at serialization, while other languages tend to
restrict you more. The purpose of this restriction in other languages is mostly
for security. Serializing data exposes that data to the outside world. It is quite
possible that the data in question may be available in a context in which there are
no security considerations to be had. Myself, I am somewhat unconvinced that
this restriction truly buys a solid layer of security — the reason being that if your
system is compromised to the point where an attacker can read serialized data,

Chapter 8: Daemons326

your problems are probably bigger than an attacker being able to read serialized
data.

Using data serialization, you can easily pass virtually any data between PHP
processes. One exception to this rule would be anything that has a resource
variable in it. So things such as fi le handles or database connections cannot be
passed. But passing regular serialized data is relatively easy and can be done by
using a very simple protocol. Basically, you send four bytes (or eight bytes) that
state the length of the serialized object and then send the raw object. Sometimes,
the binary data in a serialized object can be problematic for some mechanisms,
but as long as you use fread(), fwrite(), and so on in combination with sending
the serialized data length, you should be fi ne. This point is important because
some functions may not like reading the binary content because serialization
operations can generate null characters which could be interpreted as the end of
the string.

One of the benefi ts of serialization is that it lets you pass data within the
context of your entire application. Say you need to pass information about
a user. Yes, you could use Soap and have all the mappings done between the
Soap call and native code, but passing serialized data is just nice, effi cient, and
native. Modern applications seem to be sold on how many layers are required
to make it run. There’s something about “here’s your frigging data” that’s kind
of refreshing as many of the problems I’ve seen are due to overly complex
application layers.

These are all points that you will have to take into consideration if you are
to build your own PHP daemon. With PHP 5.3’s new garbage collection
mechanism, the walls preventing long-running PHP daemons are slowly being
torn down. The last major wall is that of architecting your application to make
full use of your CPU resources — in other words, how to do more than one thing
at a time.

Our Example

For simplicity’s sake, I am going to focus on building a pre-forking daemon,
similar in approach to the Apache prefork MPM. It is rather unlikely that
PHP developers deploying to Windows are going to run PHP as a daemon

Our Example 327

any time soon. Linux developers are more likely to do that, even though
they are only slightly less unlikely to do it. So, with apologies to all the PHP
developers on Windows (and there are a bunch), this example will focus on
Linux. The same thing can be achieved on Windows using a proxy architecture
similar to FastCGI.

Our example will be a simple spider. It will run in the background while PHP runs
on the Web server. When someone makes a request stating the desire to spider
a Web site, the PHP on the Web server will create an object representing that
request and pass it off to the daemon, which will then handle the spidering of the
Web site.

The fi rst class defi nition is for the Url class, which will be used by both the front
end and the back end to initiate the spider request. The front end uses it to pass the
basic information about the URL to the back end and then disconnect. The back
end uses it to spawn the request for each individual URL it fi nds on the site.

Figure 8.1 shows the code to defi ne the Url class.

class Url
{
 private $_url;
 private $_recursive;
 private $_disconnect;

 public function __construct(
 $url,
 $recursive = false,
 $disconnect = true
)
 {
 $this->_url = $url;
 $this->_recursive = $recursive;
 $this->_disconnect = $disconnect;
 }

 public function getUrl()
 {
 return $this->_url;
 }

Chapter 8: Daemons328

Figure 8.1: URL container class

For handling the responses, we have a simple class, UrlResponse (Figure 8.2), that
will be used to pass data from a worker back to the dispatcher process.

Figure 8.2: Data class for holding the response from a URL

 public function isRecursive()
 {
 return $this->_recursive;
 }

 public function willDisconnect()
 {
 return $this->_disconnect;
 }
}

class UrlResponse
{

 private $_body;
 private $_links = array();

 public function __construct($body,
 array $links = array())
 {
 $this->_body = $body;
 $this->_links = $links;
 }

 public function getBody()
 {
 return $this->_body;
 }

 public function getLinks()
 {
 return $this->_links;
 }
}

Our Example 329

Our front end will consists of a single form (Figure 8.3). I use Zend_Form because
the actual form HTML is kind of irrelevant, and the code used here should be easy
to conceptualize even if you are not familiar with Zend Framework.

Figure 8.3: A Zend_Form based class for submitting the URL

When it is submitted, the PHP script on the server side will serialize the URL
object and submit it to the back-end daemon for processing (Figure 8.4).

class UrlForm extends Zend_Form
{

 public function init()
 {
 $this->setMethod('POST');
 $this->addElement(
 'text',
 'url',
 array('label' => 'URL')
);
 $this->addElement(
 'checkbox',
 'recursive',
 array(
 'label'=> 'Do recursive spider'
)
);
 $this->addElement(
 'submit'
);
 }
}

$form = new UrlForm();
$form->setView(new Zend_View());

if ($_SERVER['REQUEST_METHOD'] === 'POST'
 && $form->isValid($_POST)) {
 $url = new Url(
 $form->getValue('url'),
 $form->getValue('recursive'),
 true
);

Chapter 8: Daemons330

Figure 8.4: Code to submit the URL to the daemon socket

We take the data from the form submission and create a new Url object. From
there, we serialize it and then build the data stream by prepending the size as
a 32-bit unsigned long. You will notice that we build the entire string instead
of sending it in pieces. That is because we don’t want to give the network the
opportunity to fl ush bits of data. The purpose of this example is to write a
decently scalable networking application without the connection management of
non-blocking I/O. For this goal, we need to be able to read the full string from
the stream. Making two write calls can cause separate packets to be sent. In the
Web–PHP portion of the script, this didn’t seem to be much of an issue, but on the
command-line interface (CLI) it is.

Now for the fun stuff . The daemon will be a class called Daemon (no points for
creativity). It will contain an interface to the Zend_Search_Lucene search engine
in Zend Framework. I used this solution for the simple reason that it was already
written. Figure 8.5 shows the starting defi nition for the Daemon class.

Figure 8.5: Base Daemon class

 $serverSock = fsockopen('tcp://dev', 10000);
 $data = serialize($url);
 $data = pack('N', strlen($data)) . $data;
 fwrite($serverSock, $data);
 fflush($serverSock);
 echo "URL submitted";
} else {
 echo $form;
}

class Daemon {

 private $_sSock;
 private $_workerCount = 0;

 /**
 *
 * @var Zend_Search_Lucene_Interface
 */

 private $_index;

}

Our Example 331

In here, we have a property that holds the server socket resource, a property that
holds the count for the number of forked processes we’ll start up, and then the
object for the index. When a connection is made to the daemon from the Web
server, the pre-forked process that answers the request manages the spidering
of the Web site, farming out the individual HTTP requests to other pre-forked
processes while taking the results and storing them in the Lucene index. The
“answering” process loads the fi rst page, retrieving all the URLs on the page that
match the current docroot and passing them off to individual workers. That is
defi ned in a function called execute() (Figure 8.6).

Figure 8.6: Code to execute the daemon

public function execute($host, $port, $workerCount)
{

 $this->_index = Zend_Search_Lucene::create(
 '/tmp/index'
);
 $this->_workerCount = $workerCount;
 $this->_sSock = socket_create(
 AF_INET,
 SOCK_STREAM,
 SOL_TCP
);
 socket_set_option(
 $this->_sSock,
 SOL_SOCKET,
 SO_REUSEADDR,
 1
);

 if (!socket_bind($this->_sSock, $host, $port)) {
 throw new Exception("Unable to bind socket");
 }

 if (!socket_listen($this->_sSock)) {
 throw new Exception("Unable to listen on socket");
 }

 for ($c = 0; $c < $workerCount; $c++) {
 if (($pid = pcntl_fork()) === 0) {
 $this->_execute();
 } else {
 echo "Child {$pid} started...\n";
 }
 }

 socket_close($this->_sSock);
 pcntl_wait($status);
}

Chapter 8: Daemons332

This method primarily does two things: it creates the server socket, and it pre-forks
the correct number of processes.

Creating the socket is similar to what we saw in the networking and sockets
chapter, but we have an additional function call here to socket_set_option(), setting
the socket option SO_REUSEADDR to 1. The purpose of this step is so that if the
daemon goes down without properly closing the server socket, we can immediately
bring it back up. When a daemon goes down and the socket is still open, the socket
will be in a TIME_WAIT state if there are clients attached to it. What this means is
that the socket has closed, and the client side connection has closed, but the socket
is waiting for a timeout to occur. This is normal TCP behavior. However, by default,
Linux will not let you bind to a socket that’s listening on the same port as a socket
in the TIME_WAIT state until the socket times out and is removed. By setting SO_

REUSEADDR, we can re-bind to that socket while it is still in a TIME_WAIT state. If
it is in the LISTEN or ESTABLISH state, it will not bind. Only if it is in TIME_WAIT
or if the socket has timed out can we re-bind.

The second thing the execute() method does is perhaps the most important part of
our discussion. It occurs in the for() loop. Here, we will create all the individual pre-
forked processes. When we call the pcntl_fork() process, Linux takes the memory
allocated to the application and copies it to a new memory space. This includes
objects, classes, sockets, and so on. The return value of pcntl_fork() will diff er
depending on whether you are the child process or the parent process. If you are the
child, it will return zero. If you are the parent, it will return the parent of the child.

After that, we close the socket for the parent process and sit on pcntl_wait(). The
reason we close the socket is because we don’t want this process to answer any
connections, and we want to keep it in the foreground so we can easily kill the
process for testing reasons. The pcntl_wait() function call will wait until one of
the children receives some kind of signal, such as an interrupt or a kill. We could
actually use this mechanism to manage the children, however in this example we’re
just using it to keep the parent process from dying. With this code, killing just one
child process will cause the parent process to exit because pcntl_wait() is called
only once. One of the things we could do is have it sit on pcntl_wait() and if a child
goes down have it spawn another one. But I didn’t want to do a whole bunch of
process management stuff because that can get to be a little confusing, particularly
in print. Calling pcntl_wait() just once lets the parent process hang around so we

Our Example 333

can simply hit Ctrl-C and have the parent, plus all the children, terminate in one
action.

Once a process has been forked, and it is a child, we need to be able to manage the
incoming connections. The _execute() method call handles that work (Figure 8.7).

Figure 8.7: Code to handle child process requests

private function _execute()
{
 while (true) {
 $sock = socket_accept($this->_sSock);

 $obj = $this->_readData($sock);
 if (!$obj instanceof Url) {
 socket_close($sock);
 continue;
 }
 echo 'PID '
 . posix_getpid()
 . ' received URL '
 . $obj->getUrl()
 . "\n";

 try {
 $url = Zend_Uri_Http::fromString(
 $obj->getUrl()
);
 if ($obj->willDisconnect()) {
 socket_close($sock);
 }
 $reqData = @file_get_contents($url);
 $this->_processPage(
 $obj,
 $url,
 $reqData,
 $sock
);

 } catch (Exception $e) {
 echo $e->getMessage() . "\n";
 }
 if ($sock && is_resource($sock)) {
 socket_close($sock);
 }
 }

}

Chapter 8: Daemons334

As you can see, we put ourselves into an infi nite loop. We then sit on a socket_

accept() call on the socket that we created earlier. This is the primary method of
handling multiple connections. Because we copied the memory from the parent
process after creating the socket, the kernel will handle dispatching the request to
each individual child process as a new connection on the server socket comes in.
From there, we call the _readData() method, which reads the initial data from the
socket. We’ll see that step in a bit.

Because the request must be made with a serialized version of Url, if the data is
not an instance of Url then we simply close the connection. After printing some
informational data (which technically should go to a log fi le), we parse the URL
to make sure it is valid. Then, we check to see whether the client cares about the
response, by calling willDisconnect(). An example of this would be the front-end
Web server. The Web server does not want to hang around while a site is spidered.
And so, the daemon immediately disconnects once it has read and parsed the
request. On the other hand, the dispatch process that manages the spider operation
will want to stay around so it can retrieve the body and the list of links from the
worker process.

Having done all that, we then call file_get_contents() on the URL and pass all that
data on to the _processPage() method. However, before we look at the
_processPage() method, let’s take a quick look at _readData() (Figure 8.8).

Figure 8.8: Reading data from the server socket

private function _readData($sock)
{
 $data = socket_read($sock, 4);
 if (!$data) {
 return false;
 }

 $data = unpack('N', $data);
 $len = array_shift($data);
 $data = socket_read($sock, $len);
 $obj = @unserialize($data);

 return $obj;
}

Our Example 335

This is really a very simple method. We know that the fi rst four bytes are a
32-bit long unsigned integer. So we read four bytes and unpack that data. We
then know exactly how much data we need to read from the socket when we call
socket_read(). Because we’re using blocking I/O and letting the kernel handle the
asynchronous operations, the code is much simpler than it would be had we used
non-blocking I/O. After we read the data, we unserialize it. If the data we read is
malformed, unserialize() will throw an error and return false. Good or bad, we
return the value.

Pretty easy. Now that we have that operation out of the way, let’s look at the
_processPage() call (Figure 8.9).

private function _processPage(
 Url $obj,
 Zend_Uri_Http $url,
 $reqData,
 $sock
)
{
 $links = $this->_getLinks(
 $reqData,
 $url->getHost(),
 $url->getPath()
);
 $farmedLinks = array();
 foreach ($links as $link) {
 $farmedLinks[$link] = false;
 }
 // Don't re-spider the original URL
 $farmedLinks[$obj->getUrl()] = true;
 if (!$obj->willDisconnect()) {
 $response = new UrlResponse(
 $reqData,
 $links
);
 $data = serialize($response);
 $data = pack('N', strlen($data)).$data;
 socket_write($sock, $data);
 socket_close($sock);
 }
 if ($obj->isRecursive()) {
 $this->_farmLinks($farmedLinks);
 $this->_index->commit();

Chapter 8: Daemons336

Figure 8.9: Indexing a page and gathering links

The fi rst thing _processPage() does is call the _getLinks() method, which uses
XML Path Language (XPath) to query the HTML page. We’ll look at that step
shortly. From there, _processPage() captures all the links and places them in an
associative array so that they can be returned as part of the UrlResponse object.
This is only done if the client intends to disconnect. The front-end request will
disconnect. But if for some reason it doesn’t want to, this mechanism could be
used to report back the links that were found on the page. However, it is most
likely to be used by the dispatch process so it can process the links and hand them
off to other worker processes.

If the request is a recursive request, meaning a full spider of the URL, the method
passes off the links to a method called _farmLinks(), which is where the actual
dispatching occurs.

The _getLinks() method (Figure 8.10) is a relatively long method, but it’s primary
purpose is to get all the href attributes and return fully formatted URLs. That’s
where most of the length comes in.

 echo "Data received. Optimizing index...\n";
 $this->_index->optimize();

 echo "Optimizing Complete.\n";
 }
}

private function _getLinks($data, $host, $path)
{
 $currentDir = dirname($path);

 $doc = new DOMDocument();
 @$doc->loadHTML($data);
 $links = array();
 $xPath = new DOMXPath($doc);
 $nodeList = $xPath->query('//a[@href]');
 foreach ($nodeList as $node) {
 $link = $node->getAttribute('href');

Our Example 337

Figure 8.10: Retrieving all the links from a page

 if (!$link) $link = $path;
 if (stripos($link, 'http://') === 0) {
 if (stripos($link,'http://'.$host.'/')!== 0) {
 continue;
 }
 } else if (stripos($link, 'https://') === 0) {
 if (stripos($link,'https://'.$host.'/')!== 0){
 continue;
 }
 }
 if (($ancPos = strpos($link, '#')) !== false) {
 $link = substr($link, 0, $ancPos);
 }

 if (strlen($link) >= 2
 && $link[0] == '.'
 && $link[1] == '/') {

 $link = substr($link, 2);
 }
 if (!$link) {
 continue;
 } else if ($link[0] === '/') {
 $link = 'http://'
 . $host
 . $link;
 } else if (stripos($link, 'http://') !== 0
 && stripos($link, 'https://') !== 0) {
 $link = 'http://'
 . $host
 . $currentDir
 . '/'
 . $link;
 }

 if (array_search($link, $links) === false) {
 try {
 $l = Zend_Uri_Http::fromString($link);
 $links[] = $link;
 } catch (Exception $e) {}
 }
 }

 return $links;
}

Chapter 8: Daemons338

We make a good eff ort to format the data as best we can. Next, we check to see
whether we already have that link found. Then, we do a fi nal check using Zend_

Uri_Http to make sure that the format is correct. If we were not able to generate a
properly formatted URL, we simply ignore it via the empty catch statement.

The _farmLinks() method (Figure 8.11) takes the links that were supplied and
sends them to the worker connections to do the actual downloading and parsing of
content for the remote page.

private function _farmLinks($farmedLinks)
{

 $connCount = (int)($this->_workerCount / 3);

 $addr = $port = null;
 socket_getsockname($this->_sSock, $addr, $port);

 $req = array();
 $write = $except = array();
 while (($link = array_search(false, $farmedLinks))
 !== false
 || count($req) > 0) {

 if ($link !== false) {
 $farmedLinks[$link] = true;
 $sock = $this->_sendPacket(
 'localhost',
 $port,
 $link
);
 $req[$link] = $sock;
 }
 $timeout = 0;
 if (count($req) >= $connCount
 || array_search(false, $farmedLinks)
 === false) {
 $timeout = null;
 }
 $conn = $req;
 socket_select($conn, $write, $except, $timeout);
 foreach ($conn as $c) {

 $obj = $this->_readData($c);

Our Example 339

Figure 8.11: Sending the requests to parse the links to child workers

The fi rst thing the _farmLinks() method does is determine how many workers it
is going to use. In this case, we choose a third of them, although as long as you
choose a fraction that is at least a few less than the number of connections you
should be fi ne. The call to socket_getsockname() is there only so we can get the
actual port on which the server is listening.

After that, it’s time to start iterating over the results. We do this by trying to fi nd
the fi rst instance in $farmedLinks whose value is false. Earlier, we iterated over all
the links, changing the values (which were the URLs) to be the keys and setting the
$link value to false for each one. False values would mean that the URL had not
been spidered yet, whereas true values would mean that it had. So we retrieve the
next URL or, if there are no more links to be found, check to see whether we have

 $connKey = array_search($c, $req);
 socket_close($c);
 unset($req[$connKey]);
 $farmedLinks[$connKey] = true;
 if ($obj instanceof UrlResponse) {

 $doc =
 Zend_Search_Lucene_Document_Html::loadHTML(
 $obj->getBody()
);
 $doc->addField(
 Zend_Search_Lucene_Field::keyword(
 'url',
 $connKey
)
);
 $this->_index->addDocument($doc);

 foreach ($obj->getLinks() as $link) {
 if (!isset($farmedLinks[$link])){
 $farmedLinks[$link]=false;
 unset($req[$link]);
 }
 }
 }
 }
 }
}

Chapter 8: Daemons340

some connections open. If either of these conditions is true, we iterate over the
array, sending data to the workers.

If $link is not false, it means that we found a link that has not been spidered yet. In
that case, we initiate a connection by calling _sendPacket(). This quick and easy
helper function is shown in Figure 8.12.

Figure 8.12: Code to send the response back

The function’s sole purpose is to take the URL and place it into a Url object,
connecting to a worker process and sending the serialized Url object. After sending
the object, _sendPacket() takes the socket that was created and returns it so that
the _farmLinks() method can manage it.

Once we have that socket back, we place it into the $rec array so we can manage
it later on. The next thing we need to do is determine what our read timeout is.
One thing we do not want to do is poll TCP connections. That would mean we
would have to do a read on each socket, let it time out, and go on to the next one
— a very ineffi cient process. Instead, we use the socket_select() function, just
as we did with non-blocking I/O, and have it select on the sockets that are in the
$rec array.

If data has been received on any of the sockets, we can call the _readData()
method on the socket that was returned as part of $conn. This is a blocking call,
but because the socket was returned from the select operation, we know that there
will be data on it, so no read timeout is needed. If a data stream were longer than
the TCP packet size, a delay could occur. On a remote machine on an Ethernet

private function _sendPacket($host, $port, $link)
{
 $sock = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);
 socket_connect($sock, $host, $port);
 $url = new Url($link, false, false);
 $data = serialize($url);
 $data = pack('N', strlen($data)) . $data;
 socket_write($sock, $data);
 return $sock;
}

Our Example 341

network, that size, called the Maximum Transmission Unit (MTU), is 1,500
bytes. However, we are connecting over the local interface, so in our case any lag
would be negligible. In addition, the MTU for the local interface is usually larger
than an Ethernet one. Mine is 16,436 bytes. If we were doing this over a larger
network, non-blocking I/O might be more pertinent, but here it is not. Another
reason for opting to connect over the local interface is because I wanted a simpler
example than what we would have had to do with non-blocking I/O over multiple
connections on a pre-forked server. It’s moderately easy to do, but also very easy
to get lost if it is a new concept. So I sacrifi ced a small increase in effi ciency for
clarity of code.

Once we receive and process the data, we close the socket, unset the variable
in $req, and set the value to true in $farmedLinks so we don’t download
the data again. If we get a response back of UrlResponse, that means that
the request was successful and we can now place the URL into our Lucene
index. We do that by creating a document object of a type that was specifi cally
created for HTML and adding an additional fi eld so we can get the URL for
search results.

That encompasses most of our functionality. The last thing we need to do is
create the Daemon object and execute it. Figure 8.13 shows how simple this
is to do.

Figure 8.13: Kicking off the daemon

Because we are using several Zend Framework components, we make sure to
load the autoloader and then execute the Daemon object, telling it to listen on all
interfaces, on port 10000, with 10 workers.

require_once 'Zend/Loader/Autoloader.php';
Zend_Loader_Autoloader::getInstance()
 ->setFallbackAutoloader(true);

$d = new Daemon();
$d->execute('0.0.0.0', 10000, 10);

Chapter 8: Daemons342

Does it work? Figure 8.14 shows the output generated when we start the daemon.

Figure 8.14: Output after starting the daemon

And if we do an lsof -i -P to list the Internet sockets and port numbers (not port
names), we see all of them listening on the correct socket (Figure 8.15).

Figure 8.15: All the forked processes listening on the same socket

Does it run? I placed the PHP manual on my server so that I could test indexing a
decent-sized volume of information. If I go to the form I created earlier, type the
URL where the documentation is available, set the “recursive” checkbox to true,
and submit the page, the Web page immediately returns with the “URL Submitted”
message. The daemon is quite diff erent.

[apache@localhost Daemon]#
 /usr/local/zend/bin/php daemon.php
Child 3000 started...
Child 3001 started...
Child 3002 started...
Child 3003 started...
Child 3004 started...
Child 3005 started...
Child 3006 started...
Child 3007 started...
Child 3008 started...
Child 3009 started...

[root@localhost conf.d]# lsof -i -P | grep 10000
php 3000 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3001 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3002 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3003 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3004 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3005 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3006 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3007 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3008 apache 16u IPv4 9591 TCP *:10000 (LISTEN)
php 3009 apache 16u IPv4 9591 TCP *:10000 (LISTEN)

Our Example 343

Figure 8.16 shows the output generated after submitting the URL to the daemon.
(Due to page width limitations, this version of the output includes a couple of line
breaks for readability.)

Figure 8.16: Output after submitting a URL

The daemon immediately starts processing the pages, using up much of my free
CPU very quickly. Because we index each document, the bottleneck is the writing
to the index. But even so, I am processing multiple pages at a time, doing a fair
number each second. Once the daemon has parsed and indexed all the pages, it
generates the output shown in Figure 8.17 (again with line breaks introduced).

Figure 8.17: Output after site has been spidered

At this point, we can leave the daemon running to handle more connections
or press Ctrl-C to get out of it. All that’s left to do is to test the search on the

Child 3008 started...
Child 3009 started...
PID 3000 received URL http://dev/php/html/index.html
PID 3001 received URL http://dev/php/html/preface.html
PID 3002 received URL http://dev/php/html/copyright.html
PID 3003 received URL
 http://dev/php/html/getting-started.html
PID 3004 received URL
 http://dev/php/html/introduction.html
PID 3004 received URL http://dev/php/html/tutorial.html
PID 3005 received URL http://dev/php/html/manual.html
PID 3004 received URL http://dev/php/html/install.html
. . .

PID 3030 received URL
 http://dev/php/html/function.imagickdraw-bezier.html
PID 3029 received URL
 http://dev/php/html/function.imagickdraw-arc.html
PID 3026 received URL
 http://dev/php/html/function.imagickdraw-annotation.html
PID 3024 received URL
 http://dev/php/html/function.imagickdraw-affine.html
Data received. Optimizing index...
Optimizing Complete.

Chapter 8: Daemons344

machine. When I type in pcntl as my search query, I get the output shown in
Figure 8.18.

Figure 8.18: The search results

Inter-Process Communication

We could leave it at that, but there is one more thing we might want to look at,
primarily because it’s kind of a neat way of distributing functionality. What I would
like to do is demonstrate how, by using a combination of objects and serialization,
you can actually build a very compelling distributed system that can be both dumb
and smart at the same time.

Let’s start by defi ning an interface. This interface will be used by an individual
worker to discover whether the received object was a Url object that we had
previously defi ned or an object that contains executable functionality. We can
use this interface as a sort of switch to help make that determination. Figure 8.19
shows the interface defi nition.

Figure 8.19: Interface for any executable functionality

interface CmdInterface
{
 public function execute();
}

Inter-Process Communication 345

Simple enough. For our example, the command that we want to build here is a
command that forks another process based on the answering process upon request
(Figure 8.20).

Figure 8.20: Class designed to fork a child

The class basically has one line of functional code. However, based on whatever
functionality you need, it could have as much code as you want and as much data
as you need.

We need a simple user interface (UI) to kick this off (Figure 8.21).

Figure 8.21: Sending the fork command to the daemon

To implement the command, we create a new object of CmdFork, serialize it, and
send it to the daemon. That’s easy enough. The only thing left to do now is make

class CmdFork implements CmdInterface
{
 public function execute()
 {
 if (($pid = pcntl_fork()) > 0) {
 echo "New child {$pid} started...\n";
 }
 }
}

if (isset($_GET['fork'])) {
 $fork = new CmdFork();
 $serverSock = fsockopen('tcp://dev', 10000);
 $data = serialize($fork);
 $data = pack('N', strlen($data)) . $data;
 fwrite($serverSock, $data);
 fflush($serverSock);
 echo 'Request has been sent';
} else {
 ?>
Would you like to have another forked worker?
Yes
 <?php
}
?>

Chapter 8: Daemons346

our daemon aware of it. For that, we’ll modify the _execute() method. Figure 8.22
highlights the necessary change.

Figure 8.22: Modifying the _execute() call to recognize CmdInterface

That is all we need to do. We start our daemon back up, click on the forking link
on our UI, and send the command to the daemon. Figure 8.23 shows our output.

Figure 8.23: Output after sending fork request

private function _execute()
{
 while (true) {
 $sock = socket_accept($this->_sSock);

 $obj = $this->_readData($sock);
 if ($obj instanceof CmdInterface) {
 $obj->execute();
 socket_close($sock);
 continue;
 } else if (!$obj instanceof Url) {
 socket_close($sock);
 continue;
 }

. . .

 }
}

[apache@localhost Daemon]#
 /usr/local/zend/bin/php daemon.php
Child 2931 started...
Child 2932 started...
Child 2933 started...
Child 2934 started...
Child 2935 started...
Child 2936 started...
Child 2937 started...
Child 2938 started...
Child 2939 started...
Child 2940 started...
(. . . and then later on)
New child 2943 started...

Conclusion 347

After I submitted the Web page, which in turn submitted the CmdFork object,
a new process with the ID of 2943 was started. Let’s take a look at our network
connections (Figure 8.24) and see if this process is ready to go.

Figure 8.24: Output after fork request

Yep. Process 2943 is sitting on the same socket as all the others, ready to handle
the request.

Conclusion

The idea that is exciting here is that with this type of functionality, you can actually
run PHP code as a background process by using a relatively dumb daemon. In fact,
with our spidering example, we could even have written the code as a command,
removing much of the functionality from the daemon itself. With that approach,
the daemon would become much more multipurpose while still being able to do
our spidering activity via a command instead of directly in the daemon. From a
teaching perspective, I believe that the order of the ideas presented here is a better
approach. But now that you have seen both possibilities, let your imagination run
wild with the things you might be able to do.

Now, let’s go back to my note at the beginning of the chapter. Having seen the code
in this chapter, you might think this is something that a lot of organizations should
be doing. I would argue that that is not the case. In most situations, the traditional
PHP Web HTTP request/response approach is the proper way to write your
application. Don’t try to be too creative with your solutions. Be practical. Also, if
you have an application that requires very high performance and a large back-end

[root@localhost ~]# lsof -i -P | grep 10000
php 2931 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2932 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2933 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2934 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2935 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2936 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2937 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2938 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2939 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2940 apache 16u IPv4 10891 TCP *:10000 (LISTEN)
php 2943 apache 16u IPv4 10891 TCP *:10000 (LISTEN)

Chapter 8: Daemons348

infrastructure, this might not be the approach that you want to take either. PHP
running as a daemon does not have the type of ecosystem that a language such as
Java or C has.

However, the vast majority of Web sites out there do not require a massive
back-end infrastructure, and many of them do have needs for some kind of
asynchronous processing. If you are working on one of those sites, then something
like what we’ve covered in this chapter might be pertinent to what you are doing.

