
C h a p t e r

CPU: Monitoring

AIX systems administrators have much more at their disposal than the av-
erage Unix administrator. Not only can you use the standard Unix generic 
monitoring tools that have been around nearly as long as Unix itself, but 
a potpourri of AIX-specifi c commands is also available. Some of these 
commands come standard with an AIX build, while others are tools that, 
although not offi cially supported by IBM, are widely distributed and are 
used by most administrators. We’ll discuss all these types of monitoring 
tools in this chapter, including those we don’t use very often.

As we go through the tools, note that four commands — mpstat, sar, 
topas, and vmstat — have been enhanced in AIX 5.3 to enable the tools 
to report back accurate statistics about shared partitions using Advanced 
Power Virtualization (PowerVM). The trace-based tools curt, filemon, 
netpmon, pprof, and splat have also been updated. One command not 
covered here, lparmon, is the most comprehensive tool you can use in a 
partitioned environment.

vmstat (Unix-generic)

vmstat [-fsviItlw] [[-p|-P] pagesize|ALL] [Drives] [Interval [Count]]

While the vmstat command is more commonly associated with view-
ing information about virtual memory (hence the “vm”), it is the fi rst 
tool most administrators invoke when trying to get a quick assessment of 
their systems. That’s because vmstat reports back all kinds of pertinent 

5



Chapter 5: CPU: Monitoring26

 performance-related information, including data about memory, paging, 
blocked I/O, and overall CPU activity. Because it reports virtually all 
subsystem information line by line in a quick and painless way, running 
vmstat is probably the simplest and most effi cient way to gauge exactly 
what is  going on in your system.

A common way to run vmstat is for fi ve iterations every two seconds:

Running the command in this way produces the following results:

In addition to specifi c monitoring information, vmstat provides a very 
high-level snapshot of the system, which can be useful. Just by running 
vmstat in the preceding snapshot, we know that we have a system with 
four logical CPUs and 3 GB of RAM and are using shared processors. (In 
actuality, this partition is using two physical CPUs; symmetric multithread-
ing is enabled, yielding the four logical CPUs. More about SMT later.)

Some of the more important fi elds in the vmstat output include the 
 following:

r ●  — The average number of runnable kernel threads over the sam-
pling interval you have chosen.

vmstat 2 5

# vmstat 2 5

System confi guration: lcpu=4 mem=3072MB ent=0.40

kthr    memory              page               faults              cpu

----- ------------- ----------------------  ---------- ----------------------

 r  b   avm   fre   re  pi  po  fr  sr  cy   in sy  cs us sy id wa    pc   ec

 1  0 128826 641397  0   0   0   0   0   0  448 87 138  0  1 98  0  0.01  2.8

 1  0 128826 641397  0   0   0   0   0   0  385 10 136  0  1 99  0  0.01  2.2

 1  0 128826 641397  0   0   0   0   0   0  381 13 138  0  1 99  0  0.01  2.2

 1  0 128826 641397  0   0   0   0   0   0  364 40 138  0  1 99  0  0.01  2.4

 1  0 128826 641397  0   0   0   0   0   0  610 13 138  0  2 98  0  0.01  3.3



vmstat (Unix-generic) 27

b ●  — The average number of kernel threads in the virtual memory 
waiting queue over the sampling interval. The r value should always 
be higher than b; if it is not, you probably have a CPU bottleneck.

fre ●  — The size of the memory free list. Don’t worry too much if this 
number is really small. More important, determine whether any pag-
ing is going on if this size is small.

pi ●  — Pages paged in from paging space.

po ●  — Pages paged out to paging space.

Our focus in this chapter is on the last section of output, CPU:

us ●  — User time

sy ●  — System time

id ●  — Idle time

wa ●  — Time spent waiting on I/O

pc ●  — Number of physical processors consumed (displayed only if 
the partition is confi gured with shared processors)

ec ●  — Percentage of entitled capacity (displayed only if the partition 
is confi gured with shared processors)

Clearly, the system in our example has no bottleneck to speak of. How can 
we tell this? Let’s look at us and sy. If these entries combined consistently 
averaged more than 80 percent, you more than likely would have a CPU 
bottleneck. If you are in a state where the CPU is running at 100 percent 
(which happens on occasion to everyone), your system is really breath-
ing hot and heavy. If the numbers are small but the wait time (wa) is on 
the high side (usually greater than 30), this usually signals that there may 
be  I/O problems, which in turn can cause the CPU not to work as hard as 
it can. Alternatively, if more time is spent in sy time than us time, your 
system is probably spending less time crunching numbers and more time 
processing kernel data. When this happens, it is usually a sign either of 
badly written code or that something has run amok.



Chapter 5: CPU: Monitoring28

Let’s look at another system:

What kind of determination can we make here? When we add us and sy, 
our numbers come out much differently this time — fairly close to 100 
percent. This system is clearly CPU-bound. If paging were going on, we 
would see numbers in the paging (page) columns. In this case, no paging 
is occurring, nor are there any I/O problems to speak of. Because vmstat is 
an all-purpose utility, it can help you perform this quick-and-dirty analysis 
on the fl y. If the blocked processes represented three times the number of 
runnable processes and everything else stayed the same, I/O would likely 
be causing the CPU bottleneck. In that case, you should be prepared to 
have even more of a CPU bottleneck once you fi x the I/O problem. As I 
explained previously, this is all part of systems tuning; fi xing one bottle-
neck often causes another.

sar (Unix-generic)

sar {-A [-M]|[-a][-b][-c][-d][-k][-m][-q][-r][-u][-v][-w][-y][-M]}

   [-s hh[:mm[:ss]]] [-e hh[:mm[:ss]]]

   [-P processor_id[,...] | ALL]

   [-f fi le] [-i seconds] [-o fi le] [interval [number]]

   [-X fi le] [-i seconds] [-o fi le] [interval [number]]

The sar command is the Unix System Activity Reporting tool (part of the 
bos.acct fi leset). It is most commonly used to analyze CPU activity. The 
command writes to standard output the contents of the cumulative activity, 
similar to vmstat. The default version of sar produces a CPU utilization 
report:

# vmstat 2 5

System confi guration: lcpu=4 mem=3072MB ent=0.40

kthr    memory              page              faults               cpu

----- ------------- ---------------------- ------------- -----------------------

 r  b   avm   fre   re  pi  po  fr  sr  cy  in   sy  cs  us sy id wa    pc    ec

 2  1 169829 600290  0   0   0   0   0   0 553 36538 175 64 32  4  0  0.79  84.9

 3  2 169829 600290  0   0   0   0   0   0 778 33033 175 60 29 11  0  0.84  73.2

 4  1 169828 600291  0   0   0   0   0   0 403 11904 179 76 10  4 10  0.69  87.8

 2  1 169828 600291  0   0   0   0   0   0 368 30745 175 82 14  2  2  0.91  85.5

 6  2 169830 600289  0   0   0   0   0   0 395 27898 173 57 34  4  5  0.89  91.5



sar (Unix-generic) 29

Used this way, the sar command provides the same type of high-level 
information that vmstat does, although it also lets you know the mode 
in which the system is running, which is helpful. In the example, we can 
see that our partition is an uncapped partition, which, when confi gured 
as such, lets the partition use more resources than its entitled capacity. In 
this default view, the fi elds themselves are the same as the vmstat fi elds, 
but us becomes usr, sy becomes sys, id becomes idle, io becomes wio, pc 
becomes physc, and ec becomes entc.

A more effective way to run sar is to view all processors by using the ALL 
fl ag:

# sar 2 5

AIX lpar30p682e_pub 3 5 00CED82E4C00    12/24/07

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

10:13:40    %usr    %sys    %wio   %idle   physc   %entc

10:13:42      13      31       0      57    0.18    44.5

10:13:44      12      30       0      58    0.17    43.5

10:13:46      14      35       0      51    0.20    50.8

10:13:48       6      11       0      83    0.07    18.0

10:13:50       9      24       0      67    0.14    34.5

Average       11      26       0      63    0.15    38.3

# sar -u -P ALL 2 5

AIX lpar30p682e_pub 3 5 00CED82E4C00    12/24/07

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

10:24:18 cpu    %usr    %sys    %wio   %idle   physc   %entc

10:24:20  0       27      71       0       2    0.15    37.5

          1        0      35       0      65    0.00     0.5

          2        0      36       0      64    0.00     0.0

          3        0      29       0      71    0.00     0.0

          U        -       -       0      62    0.25    61.8

          -       10      27       0      63    0.15    38.2

10:24:22  0       32      66       0       2    0.15    37.2

          1        0      37       0      63    0.00     0.6

          2        0      35       0      65    0.00     0.0



Chapter 5: CPU: Monitoring30

I prefer using vmstat to sar because vmstat provides a quick snapshot of 
all subsystems, not just CPU. Although you can use other fl ags to obtain 
additional subsystem information using sar, it just is not as effi cient or 
simple.

One advantage sar provides that vmstat does not is the ability to capture 
information and analyze data. This is done through the System Activ-
ity Data Collector (sadc), which is essentially a back end to sar. When 
enabled through cron (it is commented out on a typical default AIX parti-
tion), sadc collects data periodically in binary format. In the following 
example, we run it from the command line: 

To view the results (remember it’s in binary format), we need to use  the –f 
fl ag:

          3        0      30       0      70    0.00     0.0

          1        0      37       0      63    0.00     0.6

          2        0      35       0      65    0.00     0.0

          3        0      30       0      70    0.00     0.0

          U        -       -       0      62    0.25    62.1

          -       12      25       0      63    0.15    37.9

10:24:24  0       29      69       0       2    0.15    37.7

# /usr/lib/sa/sadc 2 5 /tmp/sarinfo

# sar -f /tmp/sarinfo

AIX lpar30p682e_pub 3 5 00CED82E4C00    12/24/07

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

10:41:42    %usr    %sys    %wio   %idle   physc   %entc

10:41:44       0       1       0      99    0.01     2.4

10:41:46       0       1       0      98    0.01     2.6

10:41:48       0       1       0      99    0.01     2.1

10:41:50       0       1       0      99    0.01     1.9

Average        0       1       0      99    0.01     2.3



w (Unix-generic) 31

iostat (Unix-generic)

iostat [-a][-l][-s][-t][-T][-z] [{-A [-P] [-q|Q]} | {-d|-D [-R]} ] 

[-m] [Drives] [Interval [Count]]

The iostat command is another good fi rst-impression type of tool, which 
is more commonly used for I/O information. When run with the –t fl ag, it 
provides only tty/cpu information. I also like to use the –T fl ag to obtain the 
timestamp:

w (Unix-generic)

/usr/bin/w64 [ -hlsuwX ] [ user ]

The w command prints a summary of all current activity on the system. 
I like this command — always have and always will. Sometimes I run it 
even before vmstat. I appreciate the clear, concise way in which w pro-
vides important information, such as load average. You can tell a lot about 
your system from the load average. If my load average commonly varies 
between 2 and 5 but is 37 when I run this command, I’m about ready to 
say, “Houston we have a problem.” In the following case, we’re okay.

# iostat -tT 1

System confi guration: lcpu=4 ent=0.40

tty:   tin    tout   avg-cpu: % user % sys % idle % iowait physc % entc  time

       0.0    41.0               0.0   1.1   98.8      0.0   0.0    2.2  10:51:13

       0.0   182.0               0.0   0.9   99.0      0.0   0.0    1.8  10:51:14

       0.0    92.0               0.0   0.9   99.1      0.0   0.0    1.7  10:51:15

       0.0    92.0               0.1   1.1   98.8      0.0   0.0    2.1  10:51:16

       0.0    92.0               0.0   1.4   98.6      0.0   0.0    2.7  10:51:17

# w

  08:29AM   up 1 day,  23:44,  2 users,  load average: 1.00, 1.00, 1.01

User     tty          login@       idle      JCPU      PCPU what

u0004773 pts/0       06:40AM          0         0         0 -ks

u0004773 pts/1       08:28AM          0         0         0 –ksh



Chapter 5: CPU: Monitoring32

lparstat (AIX-specifi c)

lparstat { -i | [-H|-h] [Interval [Count]] }

The purpose of the lparstat command is to report logical partition (LPAR) 
information statistics. This command also displays hypervisor statisti-
cal data about many POWER Hypervisor calls. Introduced in AIX 5.2, 
lparstat is commonly used to assist in shared-processor partitioned 
 environments.

In the following command output, you should recognize the entries up 
until entitled capacity (entc).

On shared partitions, lparstat provides the following information:

lbusy ●  — The percentage of logical processor utilization (executing at 
the user and system level)

vcsw ●  — The number of virtual context switches that are virtual pro-
cessor hardware preemptions

phint ●  — The number of phantom interrupts (redirected to other parti-
tions in the shared pool)

An important fl ag worth a mention is the –h fl ag, which shows the POWER 
Hypervisor statistics:

# lparstat 2 5

System confi guration:

  type=Shared mode=Uncapped smt=On lcpu=4 mem=3072 psize=16 ent=0.40

%user  %sys  %wait  %idle physc %entc  lbusy  vcsw phint

-----  ----  -----  ----- ----- ----- ------  ---- -----

  0.1   1.4    0.0   98.5  0.01   2.6    0.0   582     0

  0.0   1.4    0.0   98.6  0.01   2.6    0.0   635     0

  0.0   1.3    0.0   98.7  0.01   2.4    0.0   593     0

  0.0   1.5    0.0   98.5  0.01   2.8    1.2   685     0

  0.1   1.1    0.0   98.8  0.01   2.1    0.0   458     1



mpstat (AIX-specifi c) 33

Hypervisor information includes:

Number of calls ●  — The number of Hypervisor calls

%Total Time Spent ●  — Percentage of total time spent on call

%Hypervisor Time Spent ●  — Percentage of Hypervisor time spent on 
call

Avg Call Time ●  — Average call time for this type of call; the percent-
age of logical processor utilization executing at the user and system 
level (in nanoseconds)

Max Call Time  ● — Maximum call time for this type of call (in nano-
seconds)

For partitions running AIX 5.2 or AIX 5.3, either in a dedicated environ-
ment or in shared and capped mode, the overall CPU utilization is based on 
the user, sys, wait, and idle values. In AIX 5.3 partitions running in un-
capped mode, the utilization is based on the entitled capacity percentage.

mpstat (AIX-specifi c)

mpstat [ { -a | -d | -i | -s | -h } ] [ -w ] [ interval [ count ] ]

# lparstat -H 2 5

System confi guration:

  type=Shared mode=Uncapped smt=On lcpu=4 mem=3072 psize=16 ent=0.40

           Detailed information on Hypervisor Call

Hypervisor   Number of   %Total Time   %Hypervisor   Avg Call   Max Call

  Call         Calls        Spent       Time Spent   Time(ns)   Time(ns)

remove          0           0.0            0.0          1         656

read            0           0.0            0.0          1           0

nclear_mod      0           0.0            0.0          1           0

page_init      265          0.0            0.9        604        6593

clear_ref       0           0.0            0.0          1           0

protect         0           0.0            0.0          1           0

put_tce         0           0.0            0.0          1           0

xirr           565          0.1            2.4        758        1406



Chapter 5: CPU: Monitoring34

The mpstat command (part of the bos.acct fi leset) was introduced in AIX 
5.3. This tool displays overall performance numbers for all logical CPUs 
on your partitioned system. When you run the command, two sections 
of statistics are displayed. The fi rst section shows system confi guration 
information, which is displayed when the command starts and whenever 
a change in the system confi guration occurs; the second section, which is 
displayed at user-specifi ed intervals, shows utilization statistics:

Information given includes:

cpu ●  — Logical CPU processor ID

min ●  — Minor page faults

ma ●  — Major page faults

mpc ●  — Total number of interprocessor calls

int ●  — Total number of interrupts

cs ●  — Total number of voluntary context switches

ics ●  — Total number of involuntary context switches

# mpstat 1 2

System confi guration: lcpu=4 ent=0.4 mode=Uncapped

cpu  min  maj  mpc  int   cs  ics   rq  mig lpa sysc us sy wa id   pc  %ec  lcs

  0   18    0    0  524  125   56    1    0 100  100  8 58  0 34 0.01  2.1  465

  1    0    0    0  108    0    0    0    0   -    0  0 36  0 64 0.00  0.5  108

  2    0    0    0   10    0    0    0    0   -    0  0 32  0 68 0.00  0.0   10

  3    0    0    0   10    0    0    0    0   -    0  0 29  0 71 0.00  0.0   10

  U    -    -    -    -    -    -    -    -   -    -  -  -  0 97 0.39 97.3    -

ALL   18    0    0  652  125   56    1    0 100  100  0  1  0 98 0.01  2.7  593

-------------------------------------------------------------------------------

  0    3    0    0  392  127   58    1    0 100   67  5 56  0 38 0.01  1.4  331

  1    0    0    0   70    0    0    0    0   -    0  0 34  0 66 0.00  0.4   70

  2    0    0    0   10    0    0    0    0   -    0  0 32  0 68 0.00  0.0   10

  3    0    0    0   10    0    0    0    0   -    0  0 29  0 71 0.00  0.0   10

  U    -    -    -    -    -    -    -    -   -    -  -  -  0 98 0.39 98.2    -

ALL    3    0    0  482  127   58    1    0 100   67  0  1  0 99 0.01  1.8  421



topas (AIX-specifi c) 35

rq ●  — Total run queues

mig ●  — Total number of thread migrations

lpa ●  — Logical processor affi nity

sysc ●  — Total number of system calls

us ●  — CPU time spent on user activity

sy ●  — CPU time spent on system activity

wa ●  — CPU time spent waiting on I/O

id ●  — CPU time idle

pc ●  — Fraction of processor consumed

%ec ●  — Percentage of entitled capacity consumed

lcs ●  — Total number of logical context switches

The mpstat command is a very useful command because it reports collec-
tion information for each logical CPU on your partition in a format that is 
clearly illustrated. You can even view SMT utilization by specifying the –s 
fl ag:

topas (AIX-specifi c)

IBM has improved the topas command (part of the bos.perf.tools fi leset) 
substantially in AIX 5.3. Before these changes, topas did not have the 

# mpstat -s 1

System confi guration: lcpu=4 ent=0.4 mode=Uncapped

     Proc0           Proc1

      1.01%           0.02%

 cpu0    cpu1    cpu2    cpu3

  0.85%   0.16%   0.01%   0.01%

------------------------------------------------------------------

     Proc0           Proc1

      0.74%           0.02%

 cpu0    cpu1    cpu2    cpu3

  0.56%   0.18%   0.01%   0.01%



Chapter 5: CPU: Monitoring36

ability to capture historical data, nor was it enhanced for use in shared 
partitioned environments. (The command’s –L fl ag now reports partitioned 
information.) By incorporating these changes to let you collect perfor-
mance data from multiple partitions, IBM has really simplifi ed the capabil-
ity of topas as a performance management and capacity planning tool. The 
command’s look and feel is quite similar to top and monitor (used in other 
Unix variants).

The topas utility displays all kinds of information on your screen in a text-
based, graphical type of format. In its default mode, it provides a myriad of 
CPU, memory, and I/O information. Some recent changes:

As of TL_4 of AIX 5.3,  ● topas uses a daemon named xmwlm, which 
is automatically started from the inittab.

As of TL_5 of AIX 5.3, the system keeps seven days of data as a  ●

default and records almost all the topas data that is displayed inter-
actively, except for process and Workload Manager (WLM) infor-
mation. You can use the topasout command to generate text-based 
reports. By specifying the –C fl ag, you can actually view monitoring 
information across all partitions in an IBM POWER system.

nmon

My favorite of all performance monitoring tools is nmon, which until 
recently was not an “offi cially” supported IBM tool; if you were going to 
send data to IBM for analysis, this was not the tool you would use. nmon 
is almost the perfect AIX analysis tool (it’s also available now for Linux 
on POWER). The data it collects is available either from your screen or 
through reports, which you can run from cron. In the words of nmon’s 
creator, Nigel Griffi ths, “Why use fi ve or six tools when one free tool can 
give you everything you need?”

What attracts most people to nmon is that not only does it have a very 
effi cient front-end monitor, but it also provides the ability (unlike topas) 
to capture data to a text fi le for graphing reports because the output is in a 
.csv (spreadsheet) format. In fact, moments after running an nmon ses-
sion, you can actually view the nicely rendered charts in a Microsoft Excel 
spreadsheet, which you can hand off to senior management or other techni-



Using nmon for Historical Analysis 37

cal teams for further analysis. Further, in contrast to topas, I’ve never seen 
any performance-type overhead with this utility.

Using nmon for Historical Analysis

First, we’ll tell nmon to create a fi le, name the run, and do data collection 
every 30 seconds for one hour (120 intervals):

When monitoring is completed, we’ll sort the fi le:

Now, we can FTP the spreadsheet to a PC and open it up. Start the nmon 
analyzer, and click on Analyze nmon data. Enter the location of the fi le, 
wait about 20 seconds, and you’ll see your nmon data in all its glory! 
 Figure 5.1 shows some sample output from the nmon analyzer.

The nmon analyzer is an awesome tool, written by Stephen Atkins, that 
graphically presents data (CPU, memory, network, or I/O) from an  Excel 

# ./nmon -f -t -r test3 -s 30 -c 120

AIX version 5.3.0.0 and starting up nmon nmon_aix5

# sort -A p682e_pub_071224_1411.nmon > lpar30p682e_pub_071224_411.csv

Figure 5.1: Sample nmon analyzer output



Chapter 5: CPU: Monitoring38

spreadsheet. Perhaps the only drawback that prevents it from being per-
ceived as an enterprise type of tool is that it lacks the ability to gather 
statistics about large numbers of LPARs at once (although it now has a 
partition-viewing capability similar to that of topas). The analyzer is not 
a database, nor was it meant to be. That is where a tool such as Ganglia 
helps; this utility has actually received the blessing of Nigel Griffi ths as the 
tool that can integrate nmon analysis.

You can download the nmon analyzer for free from http://www.ibm.
com/developerworks/aix/library/au-nmon_analyser. For more information 
about Ganglia, see http://ganglia.info.

ps (Unix-generic)

ps [-ANPaedfklmMZ] [-n namelist] [-F Format] [-o 

specifi er[=header],...] [-p proclist][-G|-g grouplist] [-t 

termlist] [-U|-u userlist] [-c classlist] [ -T pid] [ -L pidlist]

ps [aceglnsuvwxU] [t tty] [processnumber]

The ps command shows the current status of processes. Upon viewing the 
syntaxes shown above, the fi rst question you may have is, why the two 
sets of usage parameters? To make a long story short, the answer has to do 
with the basic history of Unix — the old Berkeley versus System V (now 
referred to as X/Open Standards) wars. As we discussed in Chapter 2, AIX 
is a hybrid of sorts, and it contains both fl avors of Unix. Most of you are 
probably more familiar with the X/Open Standards usage of ps (e.g., ps 

–ef), which is the fi rst usage shown above.

How can you best use ps in CPU systems monitoring? In other words, 
how can you identify processes that are taking an inordinate amount of 
CPU time? If you can fi nd these processes, you can take action on them. I 
like using the Berkeley syntax better here; the information it provides is in 
a nicer, more presentable format. Let’s look at ps ux, which displays the 
CPU execution time of processes:

# ps ux | more

USER        PID %CPU %MEM   SZ  RSS  TTY STAT     STIME  TIME COMMAND

root       8196  0.1  0.0  384  384    -    A  08:45:25  1:02 wait



tprof 39

This ps command uses two key parameters:

u ●  — Displays user-oriented output about each process: the USER 
(user), PID (process ID), %CPU (CPU time used), %MEM (memory 
used), SZ (size of process core image), RSS (resident set size), TTY 
(controlling terminal name), STAT (process state), STIME (start 
time), TIME (total run time), and COMMAND (executed command) 
fi elds.

x ●  — Displays processes without a controlling terminal in addition 
to processes with a controlling terminal. To see processes that don’t 
include daemons, substitute a for x.

For our purposes, the most important fi eld of the ps output is %CPU. This 
fi eld reports the percentage of CPU time that the process has used since it 
started.

Tracing Tools

Tracing tools come in handy when you want to drill down further to ana-
lyze processes that are causing bottlenecks. Among these tools are curt, 
splat, tprof, trace, and trcrpt. We’ll use the tprof and trace tools here.

tprof

tprof [ -c ] [ -C { all | cpuidslist } ] [ -d ] [ -D ] [ -e ]

  { [ -E { ALIGNMENT | EMULATION | ISLBMISS | DSLBMISS | PM_<event> } ]

  [ -f interval ] } [ -F ] [ -j ] [ -J profi lehook ] [ -k ] [ -l ]

root      53274  0.0  0.0  384  384    -    A  08:45:25  0:30 wait

root      86118  0.0  0.0  504  512    -    A  08:45:27  0:08 /usr/sbin/syncd

root     299158  0.0  0.0  472  500    -    A  08:45:44  0:06 /usr/sbin/getty

root      69666  0.0  0.0  960  960    -    A  08:45:25  0:04 gi

root          0  0.0  0.0  384  384    -    A  08:45:25  0:04 swappe

root      57372  0.0  0.0  384  384    -    A  08:45:25  0:02 wait

root      61470  0.0  0.0  384  384    -    A  08:45:25  0:02 wait

root     286880  0.0  0.0  900  928    -    A  08:45:44  0:01 /usr/bin/xmwlm-

root     258190  0.0  0.0 1216 1216    -    A  08:45:35  0:01 rpc.lock

root     151642  0.0  0.0  512  512    -    A  08:45:27  0:01 rtcmd

root     233606  0.0  0.0  840  956    -    A  08:45:44  0:00 /usr/sbin/sshd



Chapter 5: CPU: Monitoring40

  [ -L objectslist ] [ -m objectslist ] [ -M sourcepathlist ]

  [ -p processlist ] [ -P { all | pidslist } ] [ -s ]

  [ -S searchpathlist ] [ -t ] [ -T buffersize ] [ -u ] [ -v ]

  [ -V verbosefi lename ] [ -I ] [ -N ] { [-z] [-Z] | -R }

  { { -r rootstring } [ -X { xmloptions } ] |

    { { [ -A { all | cpuidslist } ] [-n] } [ -r rootstring ] -x command }

  }

The tprof command reports CPU usage for both individual programs and 
the system as a whole. The output provides an estimate of the amount of 
CPU time spent for each process that was executing while tprof was run-
ning. It also contains an estimate of the amount of CPU time spent in each 
of the kernel address spaces: the kernel address space, the user address 
space, and shared library address spaces.

You can use tprof to view a basic global program and thread-level sum-
mary by running the command in the following fashion:

Let’s view the fi le (sleep.prof) that we just created:

Next, let’s use the trace command to run a manual trace:

# tprof -x sleep 20

Mon Dec 24 18:55:54 2

System: AIX 5.3 Node: lpar30p682e_pub Machine: 00CED82E4C0

Starting Command sleep 2

stopping trace collection.

Generating sleep.prof

root@lpar30p682e_pub[/]

# more sleep.prof

Confi guration information

=========================

System: AIX 5.3 Node: lpar30p682e_pub Machine: 00CED82E4C00



time 41

The tprof command is an excellent tool for identifying runaway processes 
because these processes appear at the top of the output list.

Timing Tools

Two tools, time and timex, provide access to information about command 
execution time.

time

time [ -p ] Command [ Argument ... ]

The time command returns the total execution time of your program, 
including real time, user time, and system time. This information can be 
useful when you’re trying to fi gure out the amount of time it takes for com-
mands to execute. time works by counting the CPU ticks from the time the 
command was fi rst started until the time it ends:

    /usr/bin/trace -ad -M -L 109113753 -T 500000 -j

000,00A,001,002,003,38F,005,006,134,139,5A2,5A5,465,234, -o -

Total Samples = 1088

Traced Time = 20.02s (out of a total execution time of 20.02s)

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

Process                                Freq  Total Kernel   User Shared  Other

=======                                ====  ===== ======   ==== ======  =====

wait                                      4  99.82  99.82   0.00   0.00   0.00

swapper                                   1   0.09   0.09   0.00   0.00   0.00

/usr/bin/tprof                            1   0.09   0.00   0.00   0.09   0.00

Total                                     6 100.00  99.91   0.00   0.09   0.00

Process                   PID      TID  Total Kernel   User Shared  Other

=======                   ===      ===  ===== ======   ==== ======  =====

wait                     8196     8197  44.58  44.58   0.00   0.00   0.00

swapper                     0        3   0.09   0.09   0.00   0.00   0.00

/usr/bin/tprof         418000   688307   0.09   0.00   0.00   0.09   0.00

=======                   ===      ===  ===== ======   ==== ======  =====

Total                                  100.00  99.91   0.00   0.09   0.00

# time fi nd ./ -depth 1>/dev/null

real    0m23.30s

user    0m0.22s

sys     0m2.10s



Chapter 5: CPU: Monitoring42

timex

timex [ -s ][ -o ][ -p [ -fhkmrt ] ] cmd

Without any fl ags, the timex command provides the same type of informa-
tion as time, but with a prettier view. Used with the –s fl ag, it summarizes 
all system activity while the command is being executed. This spares you 
the task of starting up a sar or vmstat process while running a timing. For 
this reason alone, I like to use timex, and I’ve found it a very useful tool 
through the years.

# timex -s fi nd ./ -depth 1>/dev/null

real 21.69

user 0.20

sys  2

AIX lpar30p682e_pub 3 5 00CED82E4C00    12/26/07

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08    %usr    %sys    %wio   %idle   physc   %entc

08:40:30       5      33       0      62    0.17    43.2

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s

08:40:30       0       0       0       0       0       0       0       0

System confi guration: lcpu=4 mem=3072MB ent=0.40 mode=Uncapped

08:40:08   slots cycle/s fault/s  odio/s

08:40:30  392358    0.00   18.11    0.00

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

08:40:30       0       0       0       0       0       0

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08 scall/s sread/s swrit/s  fork/s  exec/s rchar/s wchar/s

08:40:30   19659       8    5522    0.14    0.18   12407  308149

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08 cswch/s

08:40:30    5617

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08  iget/s lookuppn/s dirblk/s

08:40:30       0       8513        0



timex 43

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08 runq-sz %runocc swpq-sz %swpocc

08:40:30     1.3      95

System confi guration:  mode=Uncapped

08:40:08  proc-sz     inod-sz     fi le-sz     thrd-sz

08:40:30  68/262144   0/170       387/1124    219/524288

System confi guration: lcpu=4 ent=0.40 mode=Uncapped

08:40:08   msg/s  sema/s

08:40:30    0.00    0.00




