
4C h a p t e r

Establishing the Framework

A multi-tiered application needs a solid framework. Since you’re working
at many different levels, it’s crucial that you have a common framework
that crosses the tiers. Such a framework is hard to develop when you have
multiple languages in the mix, but EGL provides a very simple solution:
the record.

Defi ning the Tiers

Earlier chapters introduced the concept of application tiers. Now it’s time
to defi ne them very concretely. Figure 4.1 shows the tiers in an EGL Rich
UI environment. (You might remember these tiers from Chapter 2.)

Figure 4.1: These are the components of an EGL Rich UI application.

Chapter 4: Establishing the Framework82

While this is not a particularly complex design, it does need a little more
detail. This is shown in Figure 4.2.

As you can see, the EGL Rich UI component runs in Tier 1, which in turn
runs in the browser, while the ILE runs in Tier 3 on the IBM i. Tier 2 acts
as the bridge between those two very different worlds. This tier is really
the anchor for the entire application.

First Steps

When I design an application like the one in Figure 4.2, I follow some very
simple procedures. First, I try to get an idea of what I want to see in the
user interface. Obviously, I need to get the users involved at some point,
but I usually have enough information from the basic defi nition of the
problem to make a fi rst pass at the interface.

For example, consider a project to create a simple order-entry front end,
something along the lines of an Internet storefront. I might have a design
document that tells me the fi elds I need, or maybe just the request to “make
it look like such-and-such.com.” Whatever the input, I sketch out a list of
fi elds needed.

You might remember the records described in Chapter 2. They are from the
mental list of fi elds in Table 4.1.

Figure 4.2: Here are the same components, segregated by tier.

Adding a New Project for Tier 2 83

Is this an exhaustive list? Certainly not, but it’s more than enough to get
me started. You might have noticed that some of the fi elds could be calcu-
lated, such as “Total” in the order header. That’s not important in the fi rst
phase of the design. The goal here is to get something visible, as quickly as
possible. It’s not hard to add or change fi elds later in the process.

You might also have noticed that I don’t include the order number in the
order detail. That’s because the order lines will be part of the larger order
structure, which will also include an order header, which will in turn have
an order number. Although you might feel more comfortable including
the order number on every line, keep in mind that it introduces unwanted
redundancy. I suppose the most persuasive argument against redundant
data is that the goal is to minimize the data traffi c, since these messages are
used to communicate between tiers, potentially over relatively slow con-
nection speeds.

Adding a New Project for Tier 2

The next thing to do is to create a project for Tier 2 of Figure 4.2. Eventu-
ally, I’ll also create a project for Tier 1, the Rich UI browser component. I
don’t need an EGL project for Tier 3 because that is ILE code on the IBM
i. I will be able to edit, compile, and test that code using the IBM i tools
integrated into RDi-SOA. For now, let’s concentrate on the Tier 2 code.

In Chapter 3, you saw how to create a simple EGL Rich UI project. Figure
4.3 uses the same menu option to create an EGL web project. (This is the
New/Project option from the Project Explorer’s context menu, or from the

Table 4.1: Two Records, Each with a List of Fields

Order Header Fields Order Detail Fields

Order Number Item Number

Customer Number Description

Customer Name Quantity

Shipping Address Price

Tax Extended

Freight

Total

Chapter 4: Establishing the Framework84

File menu in the main menu bar.) In this example, though, Web Project is
selected from the radio buttons to create a web project named “iEGL.”

The only thing to worry about in a typical setup is which WebSphere run-
time to use. Figure 4.4 shows the confi guration for a WAS 7.0 project. It’s
important to select the runtime you’ll be deploying to when you create an
EGL project (or any web-based project). Otherwise, you won’t be able to
run your project in production.

Once the Finish button is clicked in Figure 4.4, RDi-SOA will create
the iEGL web project. By default, it will also create an EAR (Enterprise
Archive) project named “iEGLEAR.” You can change the name of the
EAR project, along with some other attributes, in the Advanced tab. How-
ever, I rarely fi nd that necessary.

Packaging the Application

Now it’s time to actually describe the data. Before doing that, however, I
have to make some decisions about how to package the application. That

Figure 4.3: Create an EGL project, but be sure to select the Web Project option.

Packaging the Application 85

is, how will I defi ne the packages in my EGL source code? The IBM i
side is relatively simple; I create a library and store my programs there. I
might have several libraries for different applications, and I probably have
a source library separate from my program library, but that’s all second
nature for an ILE developer. The package concept is a little more off the
beaten path, so let me take a moment to tell you how I like to do things.

First, I need to create the overall package name. EGL uses the same dot-
notation for naming that Java uses, so it makes sense to use Java-style
conventions. In Java, you always use “reverse domain” naming for your
packages. That is, if your corporate domain is xyzcorp.com, you start
any of your custom packages with “com.xyzcorp.” The trick, though, is
to come up with a good convention for the parts after the reverse domain
name. If you’ve already got good standards for Java code, you might

Figure 4.4: Target Runtime is the important option on the second panel.

Chapter 4: Establishing the Framework86

be able to extend them. If you’re coming straight from the green-screen
world, though, you’re unlikely to have such a naming system in place.
Then what do you do?

Well, a lot depends on your expected application design. Let’s go through
the naming logic I use for the packages in this particular book.

I use the basic packages listed in Table 4.2. There are two things to keep in
mind: fi rst, the com.pbd.app package is typically only used in Tier 1, the
EGL Rich UI browser component. The com.pbd.data and com.pbd.bl pack-
ages reside only in Tier 2, the EGL service portion. The two other packages
live in both packages, though for slightly different reasons.

The com.pbd.util package is simple enough. It contains utility functions,
some of which are specifi c to the tier, and some of which are shared. For
example, it’s a good place to put extensions to the EGL language, but
extensions to Tier 1 are made in JavaScript, while extensions to Tier 2 use
Java. Tier 1 extensions don’t make sense in Tier 2, and vice versa.

The com.pbd.svc package is a little more specifi c to my own programming
style. In Tier 2, I use com.pbd.svc to expose EGL business logic from the
com.pbd.bl package. In Tier 1, however, I use the com.pbd.svc package
to hold the proxy libraries that use the services in Tier 2’s com.pbd.svc to
communicate with the libraries in Tier 2’s com.pbd.bl. The proxy libraries
have the same name as the business logic libraries in Tier 2, but they use
services in Tier 2 to call the library functions. As an example, OrderLib in
Tier 1’s com.pbd.svc calls OrderService in Tier 2’s com.pbd.svc, which in
turn calls OrderLib in Tier 2.

Table 4.2: Package Names

Package Contents

com.pbd.bl Business Logic

com.pbd.data Data Defi nitions

com.pbd.svc Exposed Services

com.pbd.util Utility Functions

com.pbd.app Application Programs

Creating Placeholders in Tier 2 87

This means that if you need to get an order, you call getOrder, regardless
of your tier. In Tier 2 (e.g., the thin client), you call getOrder from Order-
Lib in com.pbd.bl. In Tier 1, you call getOrder from OrderLib in com.pbd.
svc, which in turn calls getOrder in OrderService in com.pbd.svc in Tier 2,
which fi nally calls getOrder from Orderlib in com.pbd.bl. All very simple,
right?

Certainly, this is not the only way to do things, but for me, it ties the
components together nicely. I suppose an equally valid option might be to
name the package “com.pbd.ifc” in Tier 1, but I like it the way it is. You’ll
see the whole hierarchy in use when the tiers are tied together.

Creating Placeholders in Tier 2

The fi rst thing to do to tie the tiers together is create placeholders in Tier
2. To do this, I create data defi nitions in com.pbd.data and a simple “get”
function in com.pbd.bl that will return hardcoded information. In minutes,
I can have a complete test environment up and running. (It really takes me
longer to describe it than to do it!) The code for this chapter contains four
simple source fi les, one each in three of the standard packages, and a fourth
one in a special test package, which you’ll learn about a little later.

Let’s take a look at the new parts in the three standard packages. First, a
member called Order is added to the package com.pbd.data. Typically, I’ll
add one part (one source fi le) for each set of related records. Sometimes
this will only be a single record, such as a customer record. It’s unlikely
that a customer will have a very complex structure, so it’s probably repre-
sented by a single database record. An order, on the other hand, is almost
always made up of multiple records. At the very least, you’ll have an order
header and order detail.

Let’s take a look the parts for an order. Here is the part Order.egl in the
package com.pbd.data:

package com.pbd.data;
record Order{}
 Header OrderHeader;
 Lines OrderLine[]
end

Chapter 4: Establishing the Framework88

record OrderHeader{}
 OrderNumber string;
 CustomerNumber decimal(6,0);
 CustomerName string;
 ShippingAddr string;
 Tax money(9,2);
 Freight money(9,2);
 Total money(9,2);
end
record OrderLine{}
 ItemNumber string;
 Description string;
 Quantity decimal(9,2);
 Price money(9,2);
 Extended money(11,2);
end

You can see how easy it is to represent complex data types in EGL.
After the package statement, you immediately see the defi nitions of the
data, starting with the defi nition of the complex Order structure. Order
is made up of an OrderHeader record and an array of OrderLine records.
One nice thing about EGL is that arrays are self-sizing; you don’t have
to muck around with determining an optimum maximum value for
an array.

You might notice that the code uses String for all character fi elds. That’s
because EGL, especially in the Rich UI component, isn’t really built on
fi xed-length data. The whole idea of a fi xed-length string has positive
and negative connotations. It’s obviously easier to defi ne data when you
don’t have to worry about the length, but it’s harder to set up your user
interface when you don’t know the width of a given fi eld. Tradeoffs exist,
as always.

The next thing is to create what I call the “placeholder” function. This is a
simple data-access function, designed to support the actions that will even-
tually be required by the application. Typically, the fi rst thing you need is
a fetch function (or a “getter,” if you prefer object-oriented terms). In this
example, I will create a part that has a function to get an order.

While I put the data defi nitions in my data package, the placeholders go
into the business logic package. (If you remember, that’s the one named
com.pbd.bl.) The part that has the functions directly related to a given
record has a name derived from that record; in this case, the part for Order
functions is OrderLib. OrderLib looks like this:

Initializing Data in EGL 89

package com.pbd.bl;
import com.pbd.data.*;
import com.pbd.util.*;
library OrderLib type BasicLibrary {}
 // Get an order
 function getOrder(orderNumber string in, order Order inOut)
 returns (Error)
 order = new Order { Header = new OrderHeader {
 OrderNumber = orderNumber,
 CustomerNumber = 789,
 CustomerName = “Pluta Brothers Design, Inc.”,
 ShippingAddr = “542 E. Cunningham, Palatine, IL, 60074”,
 Tax = 17.19,
 Freight = 14.95,
 Total = (17.19 + 14.95 + 4.32 + 23.95 + 9.45)
 }, Lines = [
 new OrderLine {
 ItemNumber = “AS-1445”, Description = “Squirt Guns”,
 Quantity = 36, Price = .12, Extended = 4.32 },
 new OrderLine {
 ItemNumber = “IIR-7728”, Description = “Wading Pool”,
 Quantity = 1, Price = 23.95, Extended = 23.95 },
 new OrderLine {
 ItemNumber = “IIR-7243”, Description = “Metal Ladder”,
 Quantity = 1, Price = 9.45, Extended = 9.45 }
]};
 return (null);
 end
end

The function is very simple, although it shows off a number of very inter-
esting features of EGL. For example, EGL supports bidirectional param-
eters, and even allows you to control the directionality of those parameters.
In this case, the getOrder function has two parameters: the key, orderNum-
ber, is an input-only string, and the order itself is a bidirectional parameter
of type Order. Many of these capabilities become even more important in
the world of SOA, because they allow you very fi ne-grained control over
the amount of data sent back and forth.

Initializing Data in EGL

This function also shows how easy it is to create and fully initialize com-
plex data structures with EGL. Although it might take you a few moments
to work your way through the syntax, you’ll fi nd that the entire function is

Chapter 4: Establishing the Framework90

made up of only two statements. The fi rst statement creates the order and
encompasses the fi rst 19 lines of the function. The second line returns a
null value (something I’ll get back to momentarily). For now, focus on the
fi rst line, if you will.

Even though the Order record is complex, with both a nested record and
a nested array of records, it is still relatively easy to create a fully initial-
ized order. That’s because of EGL’s simple, keyword-based approach to
initialization. For example, if I already had a record of type OrderHeader
named orderHeader, and an array of lines named orderLines, I could have
done this:

order = new Order { Header = orderHeader, lines = orderLines };

That’s all it would take. Note that the fi eld names defi ned in the record
(in the Order.egl listing earlier in this chapter) can be used as key-
words to assign values when creating a new variable of that record type.
By using curly braces, { }, after the new Order syntax, you can now
specify one or more fi elds using their names as keywords. This is quite
spectacular, actually; the EGL editor is smart enough to make use of
the code in other EGL source to edit the current source. You can also
use auto-completion. If you press Ctrl-Space within the braces, you
will get a list of the fi elds that (still) need to be initialized, as shown in
 Figure 4.5.

What really makes your job easier is that, for complex structures, the
initialization code can be nested. An example of that is shown in the
code for the OrderLib.egl part. First, the Order record is initialized using
an instance of new Order, with the two keywords Header and Lines
(similar to the one-line snippet in the previous paragraph). Then, each

Figure 4.5: Auto-complete works very nicely when initializing complex structures.

Handling Errors 91

of those fi elds is initialized by further use of the new keyword. Header
is initialized by creating a new OrderHeader record and then setting
each of the fi elds in the OrderHeader (OrderNumber, CustomerNumber,
and so on). Even more fascinating is that you can initialize the array
by simply using square brackets and then defi ning a list of OrderDetail
records (each using new and then setting the values for its own inner
fi elds). What might have taken a whole bunch of initialization lines and
a number of work variables can all be done quickly and easily using
this syntax.

Suppose you tried to do the same thing for Java records. You’d have to
create a class for each component, and each class would need a construc-
tor that takes all of the variables. When initializing each level, you’d
have to remember the order of the constructor’s parameters and specify
every one (or at least null). The keyword syntax in EGL lets you eas-
ily change the order of initialization and leave out fi elds you don’t need
to initialize. To do the same thing in Java, you’d have to have multiple
constructors.

The point is that with EGL, it’s very, very easy to create dummy data.
That’s crucial to testing. It’s easy to set up even the most complex data,
including data that tests boundary conditions or bad data, and use that to
rigorously test your code.

Handling Errors

I glossed over the issue of bad data earlier, simply because this topic
needed its own section. One of the only things I’m not thrilled about with
EGL is the lack of good, custom error-handling. I’d like to have the try/
catch capabilities of Java, but since they’re not available, I had to come up
with my own technique.

I’ve created a standard error record, named “Error.” This record is the
return value for every function that can fail, or at least whose failure
I need to be able to recognize, handle, or at least report cleanly. The
Error record is contained in com.pbd.util, in the Error part. It looks
like this:

Chapter 4: Establishing the Framework92

package com.pbd.util;
record Error
 severity int;
 message string;
end

Right now, there’s almost no support; it’s just a bare-bones record with
a couple of fi elds, the severity and the message. However, neither one of
these is really defi ned to any degree. My primary purpose for creating this
part is to defi ne my functions. The Error record will get more capabilities
and support later in the project.

So, now I can go on creating functions. As you can see in Table 4.3, all are
variations on the same basic structure.

You can see that the getOrder function follows this structure. It has an
input parameter of the orderNumber and a bidirectional Order record to
return the result, and it returns an Error record to indicate the outcome of
the operation.

Note that none of these routines has a completion code or status
 parameter. They are all assumed to complete successfully. Instead, they
all return an Error record. If a function returns a null value, then the func-
tion completed successfully. Otherwise, the error information is in the
Error record.

It can get a little more complex for editing; instead of a simple error
 message, you might have to return more information. That’s not a
 problem, however; you can easily extend the Error record if needed.
For the purposes of this exercise, though, a single error string will
 suffi ce.

Table 4.3: Functions

Function Input Parameters Output Parameters

Get (single) Unique key Instance of record

Get (multiple) Selection criteria Array of record

Put/Update Record to write n/a

Delete Unique key n/a

Testing 93

Testing

Now that I have defi ned the basic framework for my functions, I can return
to the task at hand, which in this case is testing the function. It’s really
easy. I can test using a simple EGL program:

package test;
import com.pbd.bl.*;
import com.pbd.util.*;
import com.pbd.data.*;
program Test1 type BasicProgram {}

 function main()
 order Order;
 error Error = OrderLib.getOrder(“ABC654”, order);
 writeStdout(
 “Order: “ :: order.Header.OrderNumber ::
 “, lines: “ :: order.Lines.getSize());
 end

end

I usually create test programs in a separate package that isn’t part of
the standard reverse-domain hierarchy. The test programs are internal
 components that should never escape the lab, so they can be defi ned
using a different, simple package name; such as “test.” That’s what I’ve
done here.

The program itself is very simple, which makes sense given how little
actual logic I’ve actually written thus far. This code creates an empty order,
and then invokes the getOrder function from OrderLib. Upon completion,
it writes out the order number from the newly retrieved order. This sort of
test program takes almost no time to create and is really easy to run using
the context menu. The writeStdout command sends data straight to the
console.

If you’re new to EGL, you might be wondering about the syntax of the
writeStdout command. Basically, writeStdout will output any sort of data.
You use the double-colon operator, ::, to concatenate values. (This is simi-
lar to the two vertical bars, ||, in CL or SQL.)

The context menu for an EGL program part (one that has the type
BasicProgram) has the Debug EGL Program option enabled, as shown in

Chapter 4: Establishing the Framework94

Figure 4.6. Select it, and the workbench will run your program, sending
any output to the console.

As you can see in Figure 4.7, the output shows the order number and the
number of lines.

Figure 4.6: Right-clicking the test program gives you the option to debug an
EGL program.

Summary 95

The order number is actually the one passed into the program. If you
review the code for the getOrder function, you’ll see that I initialize the
order number from the input parameter:

function getOrder(orderNumber string in, order Order inOut)
 returns (Error) order = new Order { Header = new OrderHeader {
 OrderNumber = orderNumber,

The last line sets the OrderNumber fi eld in the OrderHeader record from
the orderNumber parameter on the function.

The number of lines is calculated by getting the size of the Lines array.

Summary

That’s all there is to it. Just like that, your program is running, and your
library function is tested. What I want you to take away from this chapter
is that you don’t need a user interface to create your business logic. While
at fi rst this seems almost counterintuitive, it’s actually the underlying
premise of this entire book: your user interface and your business logic
should be fundamentally independent of one another.

Achieving complete independence is of course, impossible; your tiers must
have some knowledge of one another. But you can strive for it with the
only binding between the layers being your messages. In EGL, those mes-
sages are Records which are passed between the tiers. By writing your tiers
to those Records, they can remain as independent as possible. And as I’ll
demonstrate throughout the rest of the book, that also means that you can
build and evolve your user interface as needed without having to rewrite

Figure 4.7: The output of the program is
shown here.

Chapter 4: Establishing the Framework96

your business logic, and that’s the very defi nition of leveraging your legacy
assets.

Now you’ve got a test environment that provides a foundation for your
business logic and that you can test without having to commit to any
particular user interface strategy. Of course, a hardcoded test program that
dumps to the console isn’t always the best or even the easiest way to test a
routine. The next chapter shows you another option.

