
EGL Scope

Uses of EGL

EGL lets developers create business software without requiring them to have
a detailed knowledge of runtime technologies or to be familiar with
object-oriented programming. Developers can focus on business issues,
and your company can retain those people and their business savvy as
technology changes.

The Rational products that support EGL are based on Eclipse,
which is the integrated development environment (IDE) described at
http://www.eclipse.org. Developers familiar with Eclipse will be familiar
with the most basic product features, including the Workbench, which is the
interactive component.

The Workbench includes several wizards, each of which is a sequence of
dialog boxes that elicit developer input. The input is then used to automate an
aspect of the development process. Some wizards are similar to those in
Eclipse and set up folders to contain the developer’s source code. Other
wizards go beyond the ones available in Eclipse, creating skeletal source code
or Web pages.

C H A P T E R 5

Before we explore additional details about EGL, we describe its scope.

web20.book Page 83 Wednesday, April 22, 2009 8:05 PM

84 Chapter 5: EGL Scope

The EGL developer writes and changes EGL source code in a text editor that
provides interactive assistance. Also, the developer can use a source-code
debugger to verify the code’s runtime behavior and to test the effect of
different data values. The debugging session switches seamlessly from
technology to technology as the runtime situation changes. You might debug a
program, for example, along with a service that is invoked by the program and
is intended for use on a remote machine.

After the developer codes and debugs the EGL source, the next step is specific
to EGL: with a keystroke, the developer submits the source as input to a
process called generation. The primary output is Java or COBOL source
code, which is the basis of an executable, or JavaScript. The JavaScript is
subsequently included in a Web page, which is written in Hypertext Markup
Language (HTML).

The use of EGL is illustrated in Figure 5.1.

Figure 5.1: Generation and Deployment

The abstractions of EGL allow for simple coding and update. The output
of the generation process is only an intermediate form. If you wish to make
changes to the logic, you change the EGL source code and regenerate
the output.

The products that support EGL can place Java or COBOL output on a
deployment platform separate from the machine where development occurs.
In the case of COBOL output, the creation of an executable occurs on the

web20.book Page 84 Wednesday, April 22, 2009 8:05 PM

Supported Technologies 85

deployment platform. EGL also produces supplementary files to help the
deployment staff install the executable.

Another aspect of the overall development process is that each product that
supports EGL provides two ways to generate output. A developer working in
the Workbench interacts with the capabilities described earlier, including
editors, debuggers, and wizards. In contrast, a developer or administrator
working with the EGL software development kit (SDK) uses a command-line
interface that includes none of the interactive features characteristic of
the Workbench.

An organization might use the SDK in an automated build process.
Developers prepare an application for testing, for example, and then store the
EGL source files in a software-library system. A batch job periodically runs:
first, to extract the files from the library system; second, to trigger generation;
and third, to prepare and deploy the generated output. In response to errors
found by the testers, the developers update and store the source code for
another round of testing, which can occur only after the batch job runs again.

Each product runs on any of several Microsoft Windows platforms (Windows
2000®, Windows 2003®, Windows XP®, and Windows Vista®) or on Linux.
Each product includes WebSphere® Unit Test Environment, which is a
component for serving Web pages to browsers and for running applications
under Java Enterprise Edition (JEE). You can use the WebSphere environment
to test Web and JEE applications as you develop them. Moreover, you can test
Rich UI applications directly in the Rich UI editor.

Supported Technologies

We describe the commercial technologies supported by EGL. The
breadth of support has a long-term implication: the language and skills
taught in this book are likely to remain useful even as your organization
changes technologies.

Runtime Environment

EGL-generated code runs under any of the following environments.

• Java Platform, Standard Edition (JSE). JSE is the simplest Java
runtime. EGL-generated Java JSE code runs on the platforms AIX®,

web20.book Page 85 Wednesday, April 22, 2009 8:05 PM

86 Chapter 5: EGL Scope

HP UX, IBM i, Linux®, UNIX System Services (on System z™), and
the supported Windows platforms.

HTTP servers such as the Apache HTTP server are JSE environments.

• Java Platform, Enterprise Edition (JEE). JEE is a Java runtime that
provides special handling for database access, Web applications, and
other technologies. Developers can generate code that will run in one
of the following three ways: first, as an application client (a Java
program, but one that does not compete for all the resources needed to
present data to a browser); second, in a Web application (logic that
interacts with a browser); or third, as an Enterprise JavaBean stateful
session bean (a modular unit of business logic). EGL-generated Java
JEE code runs on the platforms AIX, HP UX, IBM i, Linux, Solaris®,
UNIX System Services, and the supported Windows platforms.

You can run JEE Web applications in Apache Tomcat, which you can
download from http://tomcat.apache.org, and you can run any kind of
Web or JEE application on WebSphere Application Server. EGL
helps you to work with JEE security on either server.

• IBM i. On the midrange IBM Power Systems, in the context of the
operating system IBM i, EGL-generated COBOL code includes
interactive programs, batch programs, and services. Moreover, EGL
lets you quickly create Web services that expose the logic available in
any of the following kinds of programs: rpgle, cbl, cblle, sqlrpgle,
sqlcbl, and sqlcblle.

• z/OS®. On the mainframe computer System z, in the context of the
operating system z/OS, EGL-generated COBOL code runs in any of
the following environments:

z/OS batch is the z/OS batch-processing environment.

Customer Information Control System (CICS) is a transac-
tion manager, which is a runtime for handling large numbers
of business transactions such as customer orders. Developers
can generate interactive programs, batch programs, and
SOAP services, all in COBOL.

Information Management System (IMS™) is another
transaction manager. Developers can generate COBOL

web20.book Page 86 Wednesday, April 22, 2009 8:05 PM

Supported Technologies 87

programs that use any of the major IMS facilities on System
z. Generated interactive programs can be IMS Message
Processing programs (MPPs). Generated batch programs can
be IMS Batch Message Processing programs (BMPs), DL/I
Batch programs, or MPPs. EGL also supports the IMS
FastPath facility.

• z/VSE™. Also on System z, in the context of the operating system
z/VSE, EGL-generated COBOL code runs in either of the following
environments:

z/VSE batch is the z/VSE batch-processing environment.

CICS is available; in this case, developers can generate
interactive or batch programs.

EGL offers a special benefit when you are writing interactive code for CICS
or IMS. In this case, you structure your code as if the user were having a
conversation with a program that is always in memory, even though the
runtime code (in the usual case) is repeatedly brought into memory and taken
out of memory during the program’s interaction with the user. The complexity
of the conversation is handled in the logic generated by EGL and not in your
EGL source code, which is relatively simple to write and understand.

Persistent Data Storage

The EGL developer uses intuitive I/O statements (such as add and get) to
access data from a relational database, a hierarchical database, a message
queue, or a file:

• Relational databases. The standard language for accessing relational
databases is Structured Query Language (SQL). For simple
applications, the developer can rely on the SQL statements used by
default in EGL I/O statements. For complex applications, an EGL
developer familiar with SQL can go beyond the defaults. Moreover,
EGL is structured so that an SQL developer can write sophisticated
database-access code for other developers to use.

EGL supports access of DB2® Universal Database (DB2 UDB) from
COBOL code and supports access of the following databases by way

web20.book Page 87 Wednesday, April 22, 2009 8:05 PM

88 Chapter 5: EGL Scope

of Java Database Connectivity (JDBC): DB2 UDB, Informix®,
Microsoft SQL Server®, Oracle®, Cloudscape®, and Derby.

• Hierarchical databases. The standard language for accessing
hierarchical databases is Data Language/I (DL/I). The developer can
rely on default EGL I/O statements, can go beyond the defaults, and
can write database-access code for other developers.

EGL supports access of hierarchical databases on IMS, CICS, and
z/OS batch.

• WebSphere MQ message queues. WebSphere MQ calls allow
program-to-program communication that involves a set of queues
managed by WebSphere MQ rather than by either program. The
application that sends data is not dependent on the immediate
availability of the application that receives the data, yet message
delivery is assured.

When accessing a message queue, the EGL developer usually relies
on default EGL I/O statements. Specialized expertise is not as
necessary as in the case of database access.

EGL supports access of WebSphere MQ message queues on
all platforms.

• Files. EGL supports access of sequential files, whose constituent
records are accessed in record order. Access of those files is available
for any target platform. EGL also supports access of two other types
of files, for target platforms that allow the choice. Those other types
are indexed files, whose records are each accessed by the value of a
key in the record, and relative files, whose records are each accessed
by an integer that represents the record’s position in the file.

For some platforms, you can associate a sequential, indexed, or
relative file with any of several file technologies. You write your EGL
code, then choose a file technology at generation time. The generated
source code includes the I/O statements that are specific to the
technology chosen.

web20.book Page 88 Wednesday, April 22, 2009 8:05 PM

Supported Technologies 89

Here are the technologies:

Virtual Storage Access Method (VSAM). EGL supports
VSAM files, each of which is organized as a sequential,
indexed, or relative file. EGL-generated code that runs on any
of several platforms can access either local VSAM files or (in
the case of IBM i) an equivalent type of file.

The platforms for local access are AIX; IBM i; CICS; z/OS
batch; and IMS (but only for EGL-generated BMPs on IMS).
In addition, EGL-generated code that runs on a supported
Windows platform can access VSAM files that reside on a
remote System z.

CICS-specific technologies. EGL supports access of the
following kinds of data stores on CICS: spool files, which
primarily hold program output for subsequent printing;
temporary storage queues, which hold data for subsequent
processing in the same or another program; and transient data
queues, which submit data to another program.

IMS-specific technologies. EGL supports using I/O
statements to access IMS message queues, whether to submit
data to another program or, in some cases, to retrieve data
into a program.

EGL also supports Generalized Sequential Access Method
(GSAM) files, which are sequential files accessed by way of
DL/I calls. Those calls allow processing to resume, after a
failure, from the middle of a file rather than from the start.

GSAM files are available to BMPs and on z/OS batch.

EGL supports access of two file types that are specific to IBM i:
physical files, each of which contains data, and logical files, each of
which provides a subset of the data in a physical file.

User Interface

With EGL, developers can create applications that interact with users in one
of several ways, depending on the target system where the code runs. EGL

web20.book Page 89 Wednesday, April 22, 2009 8:05 PM

90 Chapter 5: EGL Scope

supports a Web-based interface; a traditional character-based interface (for
CICS COBOL, IMS COBOL, IBM i COBOL, and Java applications); and a
more interactive, largely character-based interface (for Java applications
migrated from Informix 4GL).

Web-Based Interface

EGL supports Web-based interactions in three ways: first, by providing Rich
UI, which is a new technology for writing Rich Internet Applications that will
be deployed on JEE-compliant application servers or on JSE Web servers;
second, by providing support for JavaServer Faces (JSF), which is a
technology that runs on JEE; and third, by offering a migration path for the
VisualAge Generator Web transaction, which also runs on JEE but is older
and less flexible than the alternatives.

Each of the three mechanisms allows for elementary processing. The user can
receive a Web page, type input into a form, and click a button to provide data
for subsequent processing by application logic. Also, each mechanism allows
a division of labor. A graphics designer who has minimal knowledge of
software can create a Web page by dragging controls from a palette, dropping
them on a drawing surface, and customizing them in a variety of ways.

Rich UI. In Rich UI, the application logic is EGL-generated JavaScript that
runs in a browser. The developer writes the code in EGL.

For advanced purposes, the developer can write custom JavaScript
or use JavaScript libraries instead of relying on the default behavior
provided by EGL. For example, the developer can use Rich UI to access
the following software:

• The Dojo Toolkit (http://dojotoolkit.org/)

• Microsoft® Silverlight (http://silverlight.net/)

We describe Rich UI in Chapter 6.

JavaServer Faces (JSF). Many Web applications are not based primarily on
client-side processing; instead, they are server-centric. Logic on a server
guides the construction of a stream of HTML and transmits that stream to the
browser. The user periodically submits data back to the server, which
processes the input as appropriate and responds with another HTML stream.

web20.book Page 90 Wednesday, April 22, 2009 8:05 PM

Supported Technologies 91

An important technology for developing server-centric Web applications
is JavaServer Faces (JSF). We describe JSF in Chapter 14.

Web transactions. As mentioned earlier, EGL also provides a third, less
flexible way of serving business data to Web browsers. The developer in this
case writes a program called a Web transaction, which is a pre-set flow of
logic that transmits Web pages and receives data back. A JEE-compliant
application server is required. The primary purpose of Web transactions is to
migrate code from IBM VisualAge Generator.

Text UI

EGL-generated programs can process business logic and periodically display
a text form—a set of character-based fields that are presented at a standalone
terminal or in a workstation window. After displaying the form, the program
waits for user input. A particular keystroke (ENTER or a specified function
key) causes the program to receive the user’s input and continue processing.

This interface technology is called Text UI. It provides support for interactive
COBOL applications running on CICS, IBM i, or IMS. Text UI is also
available for interactive Java applications; specifically, for JSE applications
and JEE application clients. Use of this technology in Java is primarily to
migrate code from IBM VisualAge Generator.

Console UI

EGL offers a user-interface mechanism called Console UI, primarily for code
migrated from Informix 4GL. In this case, the users interact with buttons,
drop-down lists, and the like, in a workstation window. Console UI is
available for JSE applications and JEE application clients.

Support for Service-Oriented Architecture

EGL strongly supports the business use of service-oriented architecture
(SOA) and includes a construct that helps the developer to create a service,
which may be deployed in one of three ways:

• As a Web (SOAP) service, which exchanges data in a text-based
format called SOAP. We refer to this kind of service as a SOAP
service. The Workbench also provides ways to create and use a Web

web20.book Page 91 Wednesday, April 22, 2009 8:05 PM

92 Chapter 5: EGL Scope

Services Description Language (WSDL) file, which tells how to
access a SOAP service.

An EGL-generated SOAP service can be deployed on any of three
platforms: WebSphere Application Server, Apache Tomcat, or CICS.
This kind of service can be accessed by many kinds of logic,
including EGL-generated Java code, Rich UI applications, and
EGL-generated COBOL code running on CICS or IBM i.

• As a Web (REST) service, which provides a simple way of exchanging
data in a variety of text-based formats. We refer to this kind of service
as an EGL REST service.

An EGL REST service can be deployed on any JEE-compliant
application server and, at this writing, is accessible only to a
Rich UI application.

• As an EGL service, which uses a proprietary format for data
exchange. The main benefits of using an EGL service are first, it
gives faster response than is possible with either kind of Web service,
and second, it reduces your company’s need to maintain WSDL and
related files.

An EGL service can be deployed on and made available to almost any
EGL target platform. One exception is IMS. A second exception
relates to an EGL Rich UI application. The Rich UI application can
access SOAP or REST services from any source, but cannot access
the EGL services that exchange data in a proprietary format.

Last, you can expose the logic in an IBM i called program or service program
as if that logic were provided from a SOAP service or EGL REST service.

web20.book Page 92 Wednesday, April 22, 2009 8:05 PM

Supported Technologies 93

Network Communication

EGL lets your company avoid some of the effort
needed to integrate logic that runs on different
platforms. Specifically, your organization has less
need to write interface code, which is software whose
purpose at run time is illustrated in Figure 5.2.

Interface code transfers application data to and from
communications software, which in turn transmits the
data from one platform to another. Your organization
avoids the burden of writing interface code when
EGL-generated Java logic calls a remote program
deployed on IBM i, CICS, or IMS. Supported
communications software for IBM i is IBM Toolbox
for Java; for CICS, CICS Transaction Gateway; and
for IMS, IMS Connector for Java.

Report Production

The EGL developer code can create output reports using either of several
tools: Business Integration and Reporting Tools (BIRT), EGL text reporting,
and print forms.

Business Intelligence and Reporting Tools (BIRT))

Business Intelligence and Reporting Tools (BIRT) is a reporting technology
that delivers formatted business data to printers and screens. The technology
produces sophisticated output in PDF or HTML format, including graphics,
tables, charts, and graphs. The developer can sort and otherwise manipulate
data from databases, variables, or Web services. For additional background
details, see http://www.eclipse.org/birt.

An EGL program invokes the BIRT report engine to create the report. The
engine can then invoke EGL functions used as event handlers, which are
logical units that respond to a particular kind of runtime event. For example,
the engine might invoke one event handler at the start of the report, one event
handler at the start of a predefined report group (such as the sales data for a
single type of product), and another event handler at the end of the report. For
another example, an event handler might change the color of report text in

Figure 5.2: Interface Code

web20.book Page 93 Wednesday, April 22, 2009 8:05 PM

94 Chapter 5: EGL Scope

response to a value received into the report from the EGL program or from a
database or file.

BIRT reports are available for logic that runs under JSE or JEE.

EGL Text Reporting

EGL text reporting creates reports that deliver the output of sophisticated
business processes when you need neither graphical content nor an HTML-
or PDF-formatted deliverable. The benefit is speed at both development and
run time.

Several details described for BIRT reporting also hold true for text reporting.
A text report can include values submitted by the EGL program that drives the
report-creation process; EGL functions can act as event handlers; and EGL
text reporting is available for logic that runs under JSE or JEE.

Print forms

An EGL print form is a set of character-based fields that a program writes
periodically to a printer, either directly or by way of a file. Print forms are
available for COBOL programs, JSE applications, and JEE application clients.

Integration with Existing Code

Your company can integrate EGL-generated code with existing software.
EGL-generated COBOL code can interact with native (non-generated)
programs on the same platform, whether the platform is CICS, IBM i, IMS,
or z/OS batch. Similarly, EGL-generated Java code can call local, native
programs written in C, C++, or Java; and can call remote CICS, IBM i, or
IMS programs.

EGL provides two additional ways to integrate EGL-generated and native
Java code. First, EGL lets you access a native Java interface or class from
within your EGL code. You’re able to use EGL syntax to work with the
Java-based logic.

Second, you can cause a native Java class to call an EGL-generated program.
This kind of integration involves a Java wrapper, a set of Java classes that will

web20.book Page 94 Wednesday, April 22, 2009 8:05 PM

Integrating Multiple Products that Support EGL 95

be deployed with the native class. The Java wrapper acts as an intermediary
between the externally created code and the EGL-generated program.

Figure 5.3: Use of a Java Wrapper at Run Time

As suggested in Figure 5.3, the EGL technology hides the details of data
conversion. The native code invokes the Java wrapper, submitting data for
transfer to the program. The wrapper then calls the program, which may be on
a remote platform. The wrapper accepts the data returned from the program
and relays the data back to the native code.

The Java wrapper is specific to the EGL-generated program being called, and
the wrapper and program can be generated at the same time (Figure 5.4).

Figure 5.4: Generation of a Program and a Related Java Wrapper

Integrating Multiple Products that Support EGL

You can install an IBM Rational product that supports EGL and also install
compatible products on the same machine. You have the option of working in
a single, integrated development environment for all products.

web20.book Page 95 Wednesday, April 22, 2009 8:05 PM

