
2C H A P T E R

DB2 for z/OS Overview

This chapter reviews the tasks, services, structure, architecture, and
components of DB2 9 for z/OS that constitute required knowledge for a DB2

system administrator.

CSECTs and Subcomponents

Let’s begin with a short overview of how the DB2 code is structured internally:

In DB2, each object module contains a single control section (CSECT). ●

A CSECT typically performs one function, and the object module and ●

CSECT have the same name.

Member ● DSNWMODS in library SDSNSAMP contains the readable data set
associated with a CSECT for DB2.

CSECT names and message identifi ers begin with the letters “DSN” in DB2. ●

The fourth character of a DB2 CSECT name identifi es a subcomponent. For ●

example, the prefi x DSNJ indicates the recovery log manager subcomponent,
and these letters are used for the module and message prefi xes related to that
facility.

DB2 subcomponents are groups of closely related DB2 for z/OS modules
that work together to provide a general function. There are three groups of
subcomponents in DB2:

Chapter 2: DB2 for z/OS Overview6

System services ●

Database services ●

Distributed Data Facility (DDF) services ●

DB2 Resource Managers

The software that comprises the DB2 resource managers is usually responsible
for managing a specifi c resource. The resource being managed can be physical
or logical. DB2 usually has one subcomponent per resource manager, but
exceptions exist. For example, the precompiler is not a resource manager, and the
instrumentation facilities subcomponent contains two resource managers.

A resource manager identifi er (RMID) identifi es a resource manager. The RMID
indicates the source of diagnostic output in your dumps. For your reference, the
appendix at the end of this book provides a list of subcomponents and identifi ers.

Address Spaces

In DB2, there are four major address spaces, some of which are known by several
diff erent acronyms:

The main address space (● DSN1MSTR), also known as the system services
address space (SSAS) or the Data Systems Control Facility (DSCF)

The data manager address space (● DSN1DBM1), also known as the database
services address space (DBAS or DSAS) or the Advanced Database
Management Facility (ADMF)

The Distributed Data Facility address space (● DSN1DIST)

The Internal Resource Lock Manager address space (● IRLMPROC)

System Services

System services manage logs, agent services, and more by executing various
subcomponents in the system services address space. This address space is also
called the Data Systems Control Facility space.

Address Spaces 7

Here are a few of the subcomponents that execute in the SSAS:

System parameter manager ●

Recovery manager ●

Recovery log manager ●

Group manager ●

Distributed transaction manager ●

Storage manager ●

Agent services manager ●

Message generator ●

Initialization procedures ●

Instrumentation facilities ●

General command processor ●

Subsystem support ●

Database Services

Database services use system services and z/OS to handle the actual database
structures. The database services address space consists of three main components:

Buff er manager ●

Data manager (DM) ●

Relational data system ●

The function of the DBAS is to manage the physical structures and data, execute
SQL, and manage the buff ers. Even though these are independent components,
they work together to make a proper subsystem of z/OS. The database services
address space is also referred to as the Advanced Database Management Facility
address space.

Chapter 2: DB2 for z/OS Overview8

Subcomponents of interest that execute in the DBAS are:

LOB manager ●

Service controller ●

Stored procedures manager ●

Data space manager ●

Utilities (these work with associated code in an allied address space) ●

Distributed Data Facility Services

Running as an additional address space in DB2, the DDF services consist of one
subcomponent called the Distributed Data Facility. DDF controls the connecting
of distributed applications to DB2 for z/OS. The naming convention for this
subsystem is xxxDIST.

Four resource managers are associated with DDF:

Data Communications Resource Manager ●

Distributed Data Interchange Services ●

Distributed Relational Data System Manager ●

Distributed Transaction Manager ●

These subcomponents execute in the DDF address space.

DB2 Distributed Relational Data Architecture (DRDA) subsystems and other
relational databases can communicate with DDF by using Transmission Control
Protocol/Internet Protocol (TCP/IP) or Virtual Telecommunications Access
Method (VTAM) on the same network. DDF supports two network protocols,
Systems Network Architecture (SNA) and TCP/IP, as well as the DRDA database
communications protocol.

DRDA is set of database protocols that describe the architecture that allows
connection and access to distributed relational data in multiple database systems.
DRDA defi nes what must be exchanged and how it must be exchanged and then

Address Spaces 9

coordinates the communications between systems. Three components make up
DRDA:

Application requestor ●

Application server ●

Database server ●

Internal Resource Lock Manager

DB2 also requires the address space subsystem services of the Internal Resource
Lock Manager (IRLM), which resides in its own address space. (Note that this
“IRLM” is diff erent from the Information Management System, or IMS, Resource
Lock Manager.) The lock manager works with DB2 to serialize access to data.
DB2 requests locks from IRLM to ensure data integrity when applications,
utilities, and commands all attempt to access the same data.

In DB2 9, you must continue to specify the IRLM-related subsystem parameters
PC and MAXCSA, but their values are no longer used. IBM has retained these
parameters for compatibility reasons. Specifi c system site specifi cations now
determine the amount of available storage for IRLM private control blocks,
including locks. All IRLM locks are in the IRLM private address space; locks are
no longer placed in the extended common service area (ECSA). IRLM control
block structures are estimated at 540 bytes per lock and reside above the 2 GB bar.
DXB, not DSN, is the prefi x for IRLM.

Other Address Spaces

DB2 communicates with other address spaces, known as allied address spaces, in
the z/OS environment. DB2 communicates with these “allied agents” to facilitate
requests. Here is a list of allied agents with which DB2 communicates:

Time Sharing Option (TSO) attachment facility ●

Subsystem support ●

Message generator, stand-alone only (● DSN1SDMP)

IMS attachment facility ●

Chapter 2: DB2 for z/OS Overview10

Call attachment facility ●

Customer Information Control System (CICS) attachment facility ●

Resource Recovery Services (RRF) attachment facility ●

Utilities ●

Connections or threads to these allied agents are controlled through the subsystem
parameter CTHREAD (which defaults to 200, has a maximum value of 2000, and
is updatable online). The CTHREAD setting defi nes the number of concurrently
allocated threads for local connections. If you fi nd that you are waiting for a
connection to access the DB2 subsystem, you might need to increase the number
of allied connections specifi ed through CTHREAD.

The CTHREAD setting, along with the MAXDBAT DSNZPARM, protects the virtual
storage allocation. Be careful not to overcommit your virtual storage resources.
If the number of remote threads is queued with work waiting, you might need to
increase the MAXDBAT value.

Utilities use parallelism, so you will have one thread for each utility and an
additional thread for each subtask. Thus, a single utility may be using many
threads. You need to make sure to specify a CTHREAD value that will accommodate
utility parallelism.

Non-allied address spaces do not communicate with DB2. Several subcomponents
execute in non-allied address spaces:

DB2 does not communicate with the DB2 precompiler (PRE), but the ●

precompiler may require an allied address space, depending on the
precompiler options you have selected.

The full message generator for DB2 resides in the system services address ●

space. The message generator can also run stand-alone in allied or non-allied
address spaces.

Portions of the instrumentation subcomponent run in a non-allied address ●

space.

DB2 stand-alone utilities run in non-allied address spaces. ●

Work Requests in DB2 11

Work Requests in DB2

DB2 tasks and agents are subcomponents that run in an allied address space. Each
DB2 work request is represented by an agent. Several classes of agents exist:
system agents, allied agents, and database access agents. DB2 tracks the agent (the
work) using an agent control element (ACE). Each ACE is associated with one or
more execution blocks (EBs).

A one-to-one relationship exists between a z/OS execution unit and an execution
block. An EB is used to describe each unique unit of dispatch work, which can be
dispatched in either task control block (TCB) or service request block (SRB) mode
in z/OS. All allied agents to which the primary EB is related point to the user’s
home address TCB.

In the DB2 address space, when execution units are created in TCB mode, they are
known as service tasks. Resource managers in DB2 can dynamically delete and
create service tasks. When you initialize DB2, service tasks are created, and these
usually exist until DB2 is stopped. The service tasks remain idle until their services
are needed in DB2.

Examples of permanent service tasks include the following:

System service tasks ●

Log manager ●

Recovery manager ●

Database services tasks ●

Buff er manager ●

Data manager ●

DDF tasks ●

Distributed transaction manager ●

Chapter 2: DB2 for z/OS Overview12

DB2 9 System Structure Basics

Figure 2.1 provides an overview of the DB2 subsystems.

Figure 2.1: Subsystem overview

DB2 uses several types of private address spaces, each requiring storage:

DB2 system services address space (● DSN1MSTR)

DB2 database services address space (● DSN1DBM1)

DB2 DDF address space (● DSN1DIST)

IRLM address space (● IRLMPROC)

DB2 allied agent address spaces ●

DB2 stored procedures address spaces (established by the Workload ●

Manager, or WLM)

DB2 administrative scheduler address space ●

When you start your DB2 subsystems, there is a recommended dispatching priority
for these address spaces in z/OS: Without locking to protect your resources, you

Attachment Facilities 13

cannot begin, so IRLM is started fi rst. Next, you start the DB2 performance
monitors, then the DBM1 address space, and then the MSTR address space.

Attachment Facilities

An attachment facility provides the interface between DB2 and another
environment, such as TSO. In TSO and your batch environments, you can use the
TSO, call, and Resource Recovery Services (RRS) attachment facilities to access
DB2. Other attachment facilities, including those for CICS and IMS, are DB2
subcomponents that run in the user’s address space.

Figure 2.2 depicts how the various attachment facilities interact with DB2.

Figure 2.2: Attachment facilities

Call Attachment Facility

For TSO and batch applications that require tight control over their session
environment, DB2 provides the Call Attachment Facility (CAF) as an option for
connection. Programs can explicitly control the state of their connections to DB2
by using connection functions supplied by CAF.

First, make available the CAF load module, DSNALI. Once this language interface
module is available, your program can use CAF to connect to DB2 by including

Chapter 2: DB2 for z/OS Overview14

SQL statements or Instrumentation Facility Interface (IFI) calls in your program.
You can also access CAF by writing explicit CALL DSNALI statements.

Resource Recovery Services

DB2 supports Resource Recovery Services, which is a newer implementation of an
attachment capability. This z/OS system feature coordinates the two-phase commit
processing of recoverable resources.

RRS runs in its own address space and can be started and stopped independently
of DB2. Once z/OS RRS is started, you can run the Resource Recovery Services
Attachment Facility (RRSAF) application. RRS needs to be at an equal or higher
priority than the dispatching priority of DB2.

After RRS is started, you can start or restart an RRSAF connection. The RRSAF
language interface load module, DSNRLI, must be available. Your program can
then use RRSAF to connect to DB2 by using SQL statements or IFI calls in the
program or by using a CALL DSNRLI statement to invoke RRSAF connection
functions to establish a connection between DB2 and RRS and allocate DB2
resources.

Stored procedures running in a WLM address space require the RRS attachment
facility. Resources such as SQL tables, Data Language/I (DL/I) databases,
MQSeries message programs running in batch or TSO, and recoverable Virtual
Storage Access Method (VSAM) fi les within a single transaction scope can use the
RRS attachment facility. Keep in mind that the DB2 command DISPLAY THREAD
will include the RRS unit of recovery (UR) IDs for DB2 threads.

Threads

When a thread is allocated, the storage used by that thread is held until de-
allocation. The CONTSTOR parameter in macro DSN6SPRM controls each active
thread’s working storage area. The default value for CONTSTOR is NO. If you are
experiencing a high private virtual storage usage in DBM1, setting CONTSTOR to
YES may reduce the unused storage. This setting enables DB2 to periodically check
the thread storage that is unused from a committing process and return that storage

Storage 15

to the operating system. You can set the CONTSTOR parameter dynamically using
the DB2 SET SYSPARM command.

DB2 will examine the thread use of the storage pool, and if the thread has used
more than 2 MB or if there are more than 50 commits, the storage blocks that have
been used and are no longer in use are freed and returned to the operating system.
This procedure can reduce the amount of virtual storage used in DBM1, especially
for long-running threads. However, you incur associated CPU overhead from
GETMAIN and FREEMAIN requests to the operating system, so you need to carefully
consider the benefi ts.

One other thing to keep in mind: Use of the RELEASE(DEALLOCATE) parameter
on the BIND command requires more virtual storage due to the increase in
the size of the package or plan that occurs with this parameter. Specifying
RELEASE(DEALLOCATE) nullifi es the process of using CONTSTOR YES, and no
storage contraction will take place. That is because a COMMIT does not trigger the
CONTSTOR YES processing. Until the thread is actually deallocated, it just keeps
getting bigger.

Storage

DB2 allocates diff erent subpools for storage. Storage pool 229 (SP229) is storage
acquired by a GETMAIN request and released by a FREEMAIN request in DBM1.
Allied and database access threads are users of this storage.

The z/OS Resource Measurement Facility (RMF) tracks how much virtual storage
you are using and reports this information in the Virtual Storage Private Area
Report (VSTOR) in System Management Facility (SMF) type 78-2 records.
To get an idea of the total virtual storage consumption, you can set the option
REPORTS(VSTOR(D, xxxxDBM1)). In DB2, you can use Instrumentation Facility
Component Identifi ers (IFCIDs) 217 and 225 to view the consumption of virtual
storage in DBM1.

Real and Auxiliary Storage

DB2 uses the extended common service area of z/OS virtual storage and the z/OS
Shared Memory Facility. In z/OS, the 64-bit address space includes a virtual line at

Chapter 2: DB2 for z/OS Overview16

the 16 MB address and a virtual line called “the bar” that marks the 2 GB address.
Storage below the 2 GB address is referred to as “below the bar,” and storage
above this address is “above the bar.” The area above the bar is intended for data,
and no programs run above the bar. Figure 2.3 depicts the memory areas of z/OS.

Figure 2.3: z/OS memory

There is no area above the bar that is common to all address spaces, and no system
control blocks exist above the bar. There is also an IBM reserve area of storage
above the bar for special uses.

You can set a limit on how much virtual storage above the bar each address space
can use. This limit is represented by the MEMLIMIT keyword on the JOB and EXEC
statements. The MEMLIMIT setting limits the total amount of usable virtual storage
above the bar for a single user:

If you do not set a ● MEMLIMIT, the system default is 0, meaning that no
address space can use virtual storage above the bar.

If you want to use virtual storage above the bar, you must set a ● MEMLIMIT
explicitly. You can set an installation default MEMLIMIT through SMF
member SMFPRMxx in PARMLIB.

You can also set a ● MEMLIMIT for a specifi c address space either in the JCL
that creates the address space or by using SMF exit IEFUSI.

Distributed Data Facility 17

The default takes eff ect if a job does not specify ● MEMLIMIT on the JCL JOB
or EXEC statement or set REGION=0 in the JCL.

The ● MEMLIMIT specifi ed in an IEFUSI exit routine overrides all other
MEMLIMIT settings.

If ● REGION=0 is specifi ed in the JCL and the IEFUSI exit limits the REGION
size but does not set MEMLIMIT, MEMLIMIT defaults to the REGION size
above 16 MB.

Distributed Data Facility

The DDF address space is started as part of the startup procedure in the DSN1DIST
address space. The DB2 9 improvements for DDF are available in all modes, and
DDF now uses 64-bit storage.

Processing Flow

DDF reduces the CPU processing time by using service request blocks rather than
task control blocks. Tasks can request that an SRB be scheduled that requests a
service to take place. The SRB can be in the same address space or a diff erent one.
The data that is shared by the task and the service must reside in common storage.

Enclave

An enclave is an independent, dispatchable unit of work that can span multiple
address spaces and can include multiple SRBs and TCBs. The enclave is an anchor
for accumulating the resources consumed by a transaction regardless of where it
may be executing. It provides a way to account for resources consumed by multiple
work units, even across multiple address spaces. The MVS System Resource
Manager (SRM) manages enclaves separately according to their goals or priorities.

DB2 owns all the enclaves coming into the system through DDF, and they are
created by DDF on the incoming connection when the fi rst SQL statement starts to
execute:

1. A connection request comes to DDF, associated with a DBAT.

Chapter 2: DB2 for z/OS Overview18

2. At the fi rst SQL statement, DDF calls WLM to create the enclave.

The enclave is the basis for assigning resources to the DDF transaction. »

You assign performance goals to enclave transactions. ●

The enclave is the basis of reporting thread performance. »

3. WLM manages the enclave based on assigned workload characteristics.

Deletion of an enclave depends on whether the DBAT can become pooled:

If the DBAT becomes pooled, the enclave is deleted. ●

If the DBAT cannot become pooled; the enclave is deleted only at thread ●

termination time.

If the DBAT becomes type 1 inactive (private protocol connection), the ●

enclave is deleted.

When a request comes in over TCP/IP using DRDA, DB2 schedules an SRB.
DB2 then creates an enclave for each transaction and classifi es the request. When
queries access DB2 via DRDA over TCP/IP, connections are dispatched within z/
OS as enclave SRBs. A portion of each enclave SRB work can be directed to a z/
System Integrated Information Processor (zIIP) engine. Only DRDA work coming
from TCP/IP is zIIP engine eligible. DB2 notifi es the WLM that an enclave is
eligible to direct a portion of the work to a zIIP processor. WLM, along with the z/
OS dispatcher, dispatches the work to a zIIP or to a general processor.

Management of the work to DDF is done with the use of MVS enclaves to
exchange data across address spaces and the WLM. Running in DDF, these
processes can access the database address space by using cross memory services
(CMS). Through CMS, the data and programs can be synchronously accessed in
diff erent address spaces.

The DDF, DBM1, and IRLM address spaces allocate control blocks above the 2 GB
bar in 64-bit addressing mode.

DDF and z/OS Shared Virtual Memory 19

Other DDF Information

Native stored procedures invoked from DRDA over TCP/IP, or queries that access
DB2 via DRDA over TCP/IP, are dispatched in z/OS as enclave SRBs, and a
portion of their work can be directed to the zIIP engine.

If DRDA work is requested via SNA, it will not be zIIP-eligible. Some batch and
non-native SQL stored procedures are not implemented in SRB mode or in enclave
SRBs that would not be eligible for zIIP processing.

In DB2 9, you can also still communicate using private protocol from DB2 to DB2,
although this method is not recommended. You should take a look at the tools
provided in DB2 9 to help you migrate away from private protocol. One of those
tools is the private to DRDA protocol REXX tool, DSNTP2DP. During migration,
the customized DSNTIJPD job invokes the DSNTP2DP tool. You can no longer BIND
plans and packages for private protocol because DSN6SYSP.DBPROTCL in the
DSNZPARMs has been eliminated. To help with the migration task, the generic
collection ID DSNCOLLID is defi ned to maintain collections of remote packages.

DDF and z/OS Shared Virtual Memory

DB2 9 for z/OS supports 64-bit addressability in DDF using z/OS shared virtual
memory (SVM). SVM is a new virtual storage type that permits multiple address
spaces to share storage. The shared memory exists only once in z/OS instead of in
each address space. SVM is available to address spaces that are registered with z/
OS as being able to share this storage.

Before DB2 9, when DDF invoked DB2 to process a request, the data was copied
from the DDF address space to the DBM1 address space and then copied back to
DDF at the completion of the request using cross-memory (XM) moves. Virtual
storage in the DBM1 address space below the 2 GB bar is reduced in DB2 9 by
running DDF in 64-bit mode and accessing the SVM areas. This new virtual
storage type lets multiple address spaces share storage, is always addressable,
avoids access register (AR) and XM moves between DDF and DBM1, reduces data
formatting and data movement, and improves performance.

Chapter 2: DB2 for z/OS Overview20

The database services address space creates a new virtual shared object (VSO) in
shared virtual memory at DB2 initialization time. As the DBM1, MSTR, and DIST
address spaces go through their local storage initialization, they are registered to
use this VSO.

DB2 startup requires 128 GB of 64-bit shared private storage for each DB2
subsystem above the 2 GB bar for shared memory objects. The default size is 2
TB; DB2 requires a minimum of 128 GB.

All DB2 address spaces for the subsystem are registered with z/OS to access the
virtual shared object. The address spaces are registered with z/OS to be able to
share this storage and also have visibility to this storage.

A memory object in SVM is a contiguous range of virtual addresses:

These pages are allocated by programs as a number of application pages. ●

The pages are in 1 MB multiples on a 1 MB boundary. ●

They exist once for each address space. ●

At the time each address space is terminated during shutdown, it requests that its
interest in the VSO be deleted. At DB2 termination, the shared memory object
is freed. It is interesting to note that almost all the control blocks for DDF have
moved from ECSA to shared memory.

The DB2 utilities CHECK INDEX, LOAD, REBUILD, REORG, and RUNSTATS also
take advantage of the DB2 VSO. The use of shared memory objects avoids the
movement of rows between the batch and DBM1 address spaces and reduces CPU
usage. The environmental descriptor manager (EDM) pool also takes advantage of
VSO.

Shared Memory Objects

The size of the shared memory addressing area is between 2 TB and 512 TB.
To use this memory, an address space must be registered; there is no automatic
addressability or access to it. The macro IARV64 in z/OS provides virtual storage

DDF and z/OS Shared Virtual Memory 21

services for DB2. The z/OS parameter HVSHARE in member IEASYSxx in library
PARMLIB registers and controls the address spaces.

In the IARV64 macro, parameter HVSHARE governs how much virtual storage can
be shared and permits multiple address spaces to share virtual storage above 2
GB. Be sure to defi ne a high enough value for HVSHARE to satisfy all component
requests for shared memory within your z/OS image.

To see the current defi ned storage and how much total storage is currently
allocated, you can issue this z/OS command:

Two IARV64 macro parameters allocate and allow access to data in a shared
memory object:

IARV64 GETSHARED ●

The shared memory object is allocated by the » GETSHARED service.

This service creates a memory object that can be shared across multiple »
address spaces.

IARV64 SHAREMEMOBJ ●

Parameters defi ne the program request to the » SHAREMEMOBJ service to
get access to the shared memory object.

An address space can issue more than one » SHAREMEMOBJ request for the
same memory object.

You separate each request for the same memory object by specifying a »
diff erent user token.

IFCIDs 217 and 225 track the space usage in DDF. In both 217 and 225, fi elds
have been added to record the amount of virtual shared storage used by the
ssnmDBM1 address space. In 225, the trace records are changed from SMF type
102 to SMF type 100 subtype 4. To obtain this information, you need to make sure
that statistics class 6 is activated. For each DB2 subsystem above the 2 GB bar,
DB2 requires 128 GB of 64-bit shared private storage.

DISPLAY VIRTSTOR,HVSHARE

Chapter 2: DB2 for z/OS Overview22

Shared Memory Storage Requirements Restriction

When using shared memory, you should see a decrease in overall storage allocation
to DSN1DIST. Note that shared memory is not charged against the MEMLIMIT of an
address space.

The shared memory storage enhancement requires

z/Architecture, z/OS 1.7 or later ●

Enablement of 64-bit virtual shared storage ●

Suffi cient shared private storage confi gured to allow all shared storage ●

exploiters on the logical partition (LPAR) to allocate their shared objects

Figure 2.4 depicts multiple address spaces sharing storage. This confi guration
reduces data movement and data formatting and decreases virtual storage because
the data exists only once. The data in the shared area can be shared across address
spaces X, Y, and Z.

Figure 2.4: Data shared area

Informational APAR II14203 describes the TCP/IP and z/OS prerequisite APARs
that are required to enable the shared memory enhancement. To take advantage
of this functionality, make sure TCP/IP and z/OS have the required maintenance

Distributed Thread Processing 23

before migrating to DB2 9 for z/OS. Shared virtual memory resides above the 2
GB bar in z/OS and is organized as a virtual shared object that programs create.

Distributed Thread Processing

Database access threads in the DBM1 address space are distributed thread
connections. DB2 for z/OS supports thread pooling, which is actually inactive
connections waiting for more work and associated with a remote requester.

An inactive DBAT (formerly called a type 1 inactive thread) has the same
characteristics as the inactive threads that were available in releases before DB2
9. Inactive DBATs require a large number of threads to support a large number of
connections. We refer to inactive type 1 DBATs as “real DBATs.” These threads are
idle between units of work. They use private protocol and the old style of inactive
processing.

The MAXTYPE1 parameter in macro DSN6FAC defi nes the number of inactive
DBATs permitted by DB2. Be careful when setting this parameter because over-
allocation can adversely aff ect system performance.

An inactive connection (previously called a type 2 inactive thread) uses less
storage than an inactive DBAT and as such is preferred, but not all threads can be
inactive connections. These connections are disassociated from the thread.

Threads that are not currently processing a unit of work are called pooled threads.
Pooled threads can be reused for other connections, either new or inactive. Pooled
threads typically represent a small number of threads that can be used to service a
large number of connections and provide better resource utilization.

These DDF threads are defi ned in macro DSN6FAC by parameter CMTSTAT. To see
the inactive type 2 DBATs in your system, use this DISPLAY THREAD command:

The purpose of a DBAT is to reuse an existing connection in DBM1. Without this
pooling, each new connection request would create a new thread (DBAT) in DBM1
each time. A pool of DBATs is created and maintained dynamically for use by any

-DISPLAY THREAD TYPE(INACTIVE)

Chapter 2: DB2 for z/OS Overview24

inbound DRDA connection. When work is committed, the DBAT is released back
to the pool. With or without connection pooling, DDF creates a new connection
when an application or agent request is made to DDF in DB2.

There is a separation of connections in DDF from the DBATs in DBM1. This
separation results in no repeated creation and destruction of DBATs, which saves
CPU time and reduces the memory requirements for DBATs and virtual storage.
See PK75626 for this reference; PK77228 provides further information.

DSNZPARM Values to Control Threads

Several subsystem parameters work in conjunction with parameter MAXTYPE1 to
handle distributed thread processing support:

CMSTAT ● : The CMSTAT parameter (fi eld DDF THREADS on installation panel
DSNTIPR) specifi es the status a thread should take after a commit or rollback
or when it no longer holds cursors against resources. The default value
is ACTIVE. Change this setting to INACTIVE to enable DBAT pooling for
DRDA access and more eff ective WLM classifi cation per unit of work.

POOLINAC ● : The POOLINAC parameter (fi eld POOL THREAD TIMEOUT
on installation panel DSNTIP5) sets a timeout value for the automatic
termination of idle DBATs. The default setting is 120 (seconds).

MAXDBAT ● : The MAXDBAT parameter (fi eld MAX REMOTE ACTIVE on
installation panel DSNTIPE) specifi es the maximum number of concurrently
active DBATs. As you fi nd threads queued for remote work, this value
should increase. The default value is 200, and the setting cannot exceed
2000. If you raise or lower the MAXDBAT value, you also raise or lower the
storage requirements below the 2 GB bar in DBM1.

CONDBAT ● : The CONDBAT parameter (fi eld MAX REMOTE CONNECTED on
installation panel DSNTIPE) sets a limit on the total number of inbound DDF
connections. It is highly recommended that the setting for MAXDBAT be less
than that for CONDBAT.

A rule of thumb is to set CMTSTAT to INACTIVE, adjust CONDBAT to the
maximum number of connected DBATs that provide good performance, and set
MAXDBAT to the maximum acceptable number of active DBATs.

Private Protocol Access 25

To determine the total number of threads that can access data in DB2, add
the values of MAXDBAT and CTHREAD. IFCID 225 provides details for major
consumers. If you overextend the number of threads, you can potentially
overextend virtual storage and cause DB2 to abend with abend code 878 (no
storage available).

To help you monitor these situations and choose values for MAXDBAT
and CTHREAD, IBM provides a no-cost program that writes to a comma-
delimited trace output data set from IFCID 225 (SMF 102) for analysis. You
can obtain this utility by going to http://www-03.ibm.com/support/techdocs/
atsmastr.nsf/WebIndex/PRS3431 (document ID PRS3431 by Judy Ruby-Brown
at IBM).

Depending on the communications protocol used, each DDF connection consumes
approximately 7.5 KB of memory inside the DIST address space. In addition, each
active DBAT consumes about 200 KB of memory at a minimum, depending on the
type of SQL activity requested.

Private Protocol Access

We know that private protocol is going away in a future DB2 release. In
your eff orts to move away from it, you need to determine which applications
use private protocol access and which sites those applications access. To
obtain this information, run the following performance trace for IFCIDs 157
and 168:

The trace report will show:

SQL statements that reference aliases before they have been resolved ●

Whether the package or plan that the statement is running under was bound ●

with DBPROTOCOL(PRIVATE)

The aliases that are referenced in the statement ●

-START TRACE(PERFM) CLASS(30) IFCID(157,168) DEST(GTF)

Chapter 2: DB2 for z/OS Overview26

To display additional details about the DDF environment, enter this command:

Native Stored Procedures in DB2 9

Native stored procedures — that is, those whose bodies are written entirely in SQL
— are eligible for zIIP engine processing if they are invoked from DRDA TCP/IP
connections. SQL queries that access DB2 via DRDA over TCP/IP connections are
dispatched within z/OS as enclave SRBs, and z/OS directs a portion of this work to
the zIIP. DRDA work that is requested via SNA is not zIIP-eligible. Native stored
procedures are stored in the DB2 directory.

Database Management

The DB2 catalog is a database called DSNDB06 that contains table spaces that
refl ect your objects, security, and access packages and plans. Most DB2 system
table spaces use the naming convention SYSIBM.SYSxxxxxx — for example,
SYSIBM.SYSTABLESPACE.

You can have the catalog and user-defi ned databases, table spaces, and index
spaces start automatically when DB2 is started. To specify this, use the RESTART
option and the object defi nition ALL on the DSNTIPS installation panel.

Indexes on the DB2 catalog or directory tables are no diff erent from indexes on
any other tables created in DB2. DB2 catalog data can be accessed via indexes and
links; there are no hashes in the catalog.

Before migration to DB2 9 for z/OS, a REORG of your catalog is recommended.
You should increase the size of the underlying VSAM clusters/linear data sets for
the catalog and directory before migrating.

In DB2 9, you can defi ne up to 500 indexes against DB2 catalog tables. Each
release of DB2 increases the number of table spaces, tables, and indexes in
the DSNDB06 database, so you always need to keep in mind the new space
requirements for these additional objects.

-DISPLAY DDF DETAIL

Database Management 27

Sizing of the catalog has also increased. The default sizes for an installation are
specifi ed in megabytes and range from a small-site size of 199 MB to 747 MB for
an extra-large site.

Even though the ALTER statement has become a powerful tool for online schema
changes, you cannot alter any column of the DB2 catalog.

Because of object changes in DB2 9 (e.g., the maximum number of partitions
supported in a table space), IBM has made adjustments to the catalog tables. For
example, catalog tables have been changed to refl ect the MAXPARTITIONS setting
in SYSIBM.SYSTABLESPACE, which is the value you specifi ed in the CREATE or
ALTER statement. Be careful, because this setting does not refl ect the physical
number of existing partitions. You can fi nd the allocated number of partitions in the
PARTITION column; for example, you would look for a G for partition-by-growth
table spaces.

Regardless of the number used for the MAXPARTITIONS parameter, only one row
is added to SYSIBM.SYSTABLEPART when you create the table space. Additional
rows are added to this catalog table as your table grows, and additional partitions
are allocated if the amount of data exceeds the associated data set size (DSSIZE).

Three new SYSIBM.SYSSTOGROUP columns — DATACLAS, MGMTCLAS, and
STORCLAS — contain the storage management subsystem (SMS) classes used on
the CREATE STOGROUP or ALTER STOGROUP statement. If these new parameters
are not defi ned, DB2 uses the management class and storage class assigned to the
corresponding automatic class section (ACS) routine.

DB2 9 Catalog Tables

Table 2.1 describes the catalog tables that are new in DB2 9 for z/OS.

Table 2.1: New catalog tables in DB2 9 for z/OS

Table Description

SYSIBM.SYSCONTEXT Contains one row for each trusted context.

SYSIBM.SYSCONTEXTAUTHIDS Contains one row for each authorization ID with which the trusted
context can be used.

Chapter 2: DB2 for z/OS Overview28

2.1: New catalog tables in DB2 9 for z/OS (continued)

Table Description

SYSIBM.SYSCTXTTRUSTATTRS Contains one row for each list of attributes for a given trusted
context.

SYSIBM.SYSDEPENDENCIES Records dependencies between objects.

SYSIBM.SYSENVIRONMENT Records environment variables when an object is created.

SYSIBM.SYSINDEXSPACESTATS Contains realtime statistics for index spaces.

SYSIBM.SYSJAVAPATHS Records the complete Java archive (JAR) class resolution path and
the dependencies that one JAR has on the JARs in its Java path.

SYSIBM.SYSKEYTARGETS Contains one row for each key-target that is participating in an
extended index defi nition.

SYSIBM.SYSKEYTARGETSTATS Contains partition statistics for selected key-targets. For each
key-target, a row exists for each partition in the table. Rows are
inserted when the RUNSTATS utility collects indexed key statistics
or non-indexed key statistics for a partitioned table space. No row
is inserted if the table space is non-partitioned.

SYSIBM.SYSKEYTARGETS_HIST Contains rows from the SYSKEYTARGETS table. When rows are
added or changed in SYSKEYTARGETS, the rows are also written
to this table.

SYSIBM.SYSKEYTGTDIST Contains one or more rows for the fi rst key-target of an extended
index key.

SYSIBM.SYSKEYTGTDISTSTATS Contains zero or more rows per partition for the fi rst key-target
of a data-partitioned secondary index. Rows are inserted when
RUNSTATS scans a data-partitioned secondary index. No row is
inserted if the index is a secondary index.

SYSIBM.SYSKEYTGTDIST_HIST Contains rows from the SYSKEYTGTDIST table; whenever rows are
added or changed in SYSKEYTGTDIST, the rows are also written to
this table.

SYSIBM.SYSOBJROLEDEP Lists the dependent objects for each role.

SYSIBM.SYSROLES Contains one row for each role.

SYSIBM.SYSROUTINESTEXT Serves as an auxiliary table for the TEXT column of SYSIBM.
SYSROUTINES and is required to hold the large object (LOB) data.

SYSIBM.SYSTABLESPACESTATS Contains realtime statistics for table spaces.

SYSIBM.SYSXMLRELS Contains one row for each XML table that is created for an XML
column.

SYSIBM.SYSXMLSTRINGS Contains rows that each hold a single string and its unique ID that
together are used to condense XML data. The string can be an
element name, attribute name, name space prefi x, or namespace
uniform resource identifi er (URI).

SYSIBM.XSRCOMPONENT Serves as an auxiliary table for the binary large object (BLOB)
column COMPONENT in SYSIBM.SYSXSROBJECTCOMPONENTS.
It is located in LOB table space SYSXSRA3.

Database Management 29

Realtime Statistics Tables in DB2 9

During DB2 enable-new-function (ENF) mode processing, job DSNTIJEN moves
the realtime statistics data from your user-defi ned tables to the catalog tables
SYSIBM.SYSTABLESPACESTATS and SYSIBM.SYSINDEXSPACESTATS. After the job
moves the data to the catalog tables, you can drop the user-defi ned tables.

In conversion mode (CM), the realtime statistics data remains in the user-defi ned
tables. If you revert to conversion* (CM*) mode, DB2 keeps the realtime statistics
data in the catalog tables and does not use the user-defi ned tables.

Object Management in the Catalog

In DB2, the data manager handles the manipulation of the system catalog
tables. The DM relies on database descriptors (DBDs) to manage data. Each
DBD corresponds to a single database and contains subdescriptors called object
descriptors (OBDs). The internal structure of a DBD is a complicated hierarchical

2.1: New catalog tables in DB2 9 for z/OS (continued)

Table Description

SYSIBM.XSROBJECTS Contains one row for each registered XML schema. Rows can be
changed only using static SQL statements issued by the DB2-
supplied XML schema repository (XSR) stored procedures.

SYSIBM.
XSROBJECTCOMPONENTS

Contains one row for each component (document) in an XML
schema. Rows in this table can be changed only using static SQL
statements issued by the DB2-supplied XSR stored procedures.

SYSIBM.XSROBJECTGRAMMAR Serves as an auxiliary table for the BLOB column GRAMMAR
in SYSIBM.SYSXSROBJECTS. It is located in LOB table space
SYSXSRA1.

SYSIBM.
XSROBJECTHIERARCHIES

Contains one row for each component (document) in an
XML schema to record the XML schema document hierarchy
relationship. Rows in this table can be changed only using
static SQL statements issued by the DB2-supplied XSR stored
procedures.

SYSIBM.XSROBJECTPROPERTY Serves as an auxiliary table for the BLOB column PROPERTIES
in SYSIBM.SYSXSROBJECTS. It is located In LOB table space
SYSXSRA2.

SYSIBM.XSRPROPERTY Serves as an auxiliary table for the BLOB column COMPONENT in
SYSIBM.SYSXSROBJECTCOMPONENTS. It is located in LOB table
space SYSXSRA3.

Chapter 2: DB2 for z/OS Overview30

network of OBDs that are chained together. Each OBD has a unique identifi er
called an object identifi er (OBID). The chain pointers that are used are the actual
OBIDs, and DB2 employs an algorithm to locate an OBD within a DBD.

Management of the Catalog

In the day-to-day administration of the catalog, various utilities and jobs help you
manage the physical structure and organization of the catalog.

To improve query performance, you should reorganize the indexes on the
catalog tables to reduce table size and improve performance. You generally do
not reorganize the entire set of catalog tables unless you are migrating to a new
release of DB2. You might reorganize your catalog tables once a year, if that often.
If you do decide to reorganize the catalog tables, keep in mind that there may be
associated directory table spaces that also should be reorganized.

Table 2.2 lists the catalog table spaces and the corresponding directory table spaces
that would require reorganization. For example, if you reorganize the SYSPLAN
catalog table space, you would also reorganize the directory table space SCT02.

Remember to always take a full image copy before and
after you reorganize catalog or directory objects. In
addition, if you should need to recover the catalog or
directory objects, you must do so in a particular order.

All table spaces associated with the directory and the catalog
must be recovered to the same point in time.

Some utilities that support the catalog, such as COPY, LOAD, REBUILD INDEX,
RECOVER, REORG, and TABLESPACE have been updated to refl ect changes in

Table 2.2: Catalog and directory table spaces

Catalog table space (DSNDB06.xxxx) Directory table space (DSNDB01.xxxx)

SYSDBASE DBD01

SYSPLAN SCT02

SYSPKAGE SPT01

Database Management 31

DB2 9, such as the new partition-by-growth table space structure. The following
utilities and installation jobs have also undergone changes:

DSN1COPY ● : You can now use the DSN1COPY DB2 stand-alone utility to
copy VSAM data sets. Remember that the row format (RRF or BRF) must
be the same for the data set from which or into which you are copying.
Using the utility’s CHECK option, you can check each page of a data set.

DSNTIJID ● : The DSNTIJID installation job initializes the system data sets
associated with the bootstrap data set (BSDS), catalog, directory, and active
logs.

DSNTIJTC ● : Installation job DSNTIJTC invokes the CATMAINT utility to
tailor your catalog. CATMAINT updates the catalog during the migration or
installation of a new release of DB2. DSNTIJTC contains jobs that perform
tailoring of the catalog. It also creates and updates indexes on catalog tables.

DSNTIJIC ● : The DSNTIJIC job also provides an image copy of the catalog
and directory for backup, enabling recovery of the catalog and directory. In
DB2 9, the job has been modifi ed to copy to disk instead of to tape, but it is
limited to two disk volumes. You will have to make modifi cations to the job
to change the number of disk volumes.

DSN1CHKR ● : The DSN1CHKR stand-alone utility is a service aid used for
verifying the integrity of the DB2 catalog and directory table spaces for
potential data inconsistencies. It checks for broken links, or chains and
records that are not part of any chain or link. The utility executes outside
the control of DB2. Its use requires a detailed knowledge of DB2 data
structures.

DSNTIJEN ● : In ENFM* or ENFM, job DSNTIJEN invokes the CATENFM
utility to update the catalog for the new release. If this job does not complete
successfully, job DSNTIJNF, which is used to put DB2 into NFM, will return
an error. After DSNTIJEN fi nishes, the catalog conversion is complete. See
PK7728 for command list (CLIST) changes to job DSNTIJEN.

Chapter 2: DB2 for z/OS Overview32

DB2 Directory

DSNDB01 is the name of the DB2 directory database. This underlying VSAM
data set should be in your primary Integrated Catalog Facility (ICF) catalog. You
cannot access the information in the directory using SQL. No descriptions of these
structures are provided in the catalog for you to see.

The DSNDB01 database consists of the fi ve table spaces DBD01, SCT02, SPT01,
SYSLGRNX, and SYSUTILX. Each table space is contained in a VSAM linear data
set. An example of the naming convention is DSNDB01.DBD01. The size of the
EDM pool (both above and below the bar) that supports the DBD01, SCT02, and
SPT01 table spaces is calculated during the installation process and displayed on
the DSNTIPC panel. The general recommendation is to make the EDM pool 10
times the size of the largest DBD or plan, whichever is greater.

EDM Pool

The EDM pool is a system buff er pool that minimizes I/O against the catalog
and the directory. It contains the database descriptor, the cursor table (CT), the
package table (PT), the skeleton cursor table (SKCT), the skeleton package table
(SKPT), the plan and package authorization cache, and a dynamic SQL skeleton
for dynamic SQL caching. These are separate areas of storage, not part of one
contiguous EDM pool. CTs and SKCTs result from a static BIND of a PLAN. PTs
and SKPTs result from a static BIND of a PACKAGE (use of ACQUIRE(USE) is
implied).

DB2 9 introduces some changes to the storage in the DBM1 address space.
A portion of the CTs and PTs are now above the 2 GB bar, along with a new
component above the bar for SKPTs and SKCTs, called the EDM skeleton pool.
This skeleton pool is set by a new parameter on installation panel DSNTIPB.

In DB2 9, DBM1 below-the-bar storage relief for heavy package and plan activity
is signifi cant. To take advantage of all the improvements, you must perform a DB2
9 rebind. An average estimated reduction is from 20 percent to 90 percent. During
the monitoring of your EDM pool pages in use, if this statistic is steadily less
than 50 percent, your EDM pool size is probably too large. In general, EDM pool
utilization should be around 80 percent.

EDM Pool 33

In DB2 9 new-function mode, native SQL procedures are converted to a
representation that is stored in the database directory as other SQL statements
are. The stored procedure parameter list options are stored in the database catalog
tables as in previous DB2 releases.

When you call a native SQL procedure in DB2 9, the procedure is loaded from the
DB2 directory, and the DB2 engine then runs the procedure. Several additional
functions and extensions in DB2 9 provide consistency with the SQL standards
and the rest of the IBM DB2 family.

In DB2 9, the DB2 catalog and directory use buff er pool BP0. If the structure to
process a statement is not already present, it is read into database buff er pool BP0
in 4 KB pages and copied from there into the EDM pool areas. Where the sections
are placed in the EDM pool depends on whether a package (SKPT, PT) or a plan
(SKCT, CT) is being processed, as Figure 2.5 illustrates.

Figure 2.5: EDM pool

SKCTs and SKPTs are now above the 2 GB bar. The static SQL sections (CT/PT)
are split between above and below the 2 GB bar. Distributed applications and some
storage acquired for dynamic SQL statement execution (which includes the parse
trees and a portion of runtime blocks) has also moved above the 2 GB bar. Tables,
object blocks, and mapping blocks that are associated with the EDM fi xed storage
pools have moved above the bar. Fixed storage pools contain the larger object

Chapter 2: DB2 for z/OS Overview34

identifying control blocks and the small mapping control blocks that map each
block of EDM storage above or below the bar.

EDM Statement Cache

The EDM global dynamic (SQL) statement cache resides above the 2 GB bar in
the EDM pool. It consists of a pool of pages used for prepared (PREPARE) SQL
statements in the DBM1 address space and contains either the prepared SQL
statement (called a short prepare) or a full prepare.

The global dynamic statement cache includes a statement cache table, DSN_

STATEMENT_CACHE_TABLE, that is used by the EXPLAIN STMTCACHE ALL
statement that was introduced in DB2 8 for z/OS. The contents of the cache table
are nearly identical to IFCID 316 and 317 statistics. The EXPLAIN STMTCACHE

ALL statement extracts all the statements from the global cache and inserts one row
into the table for each entry. You can also extract a single statement from the global
dynamic statement cache by using the EXPLAIN STMTCACHE STMT_ID statement.

DB2 9 provides four caching options:

Local dynamic statement caching ●

Global dynamic statement caching ●

Full caching ●

No caching ●

Caching of dynamic SQL statements and statement text typically reduces the
PREPARE operations required for those statements. You control the local and
dynamic cache using DSNZPARMs, BIND options, and application constructs.

To enable local statement caching, use the KEEPDYNAMIC(YES) option of the BIND
command, which will keep a copy of the prepared statement and the statement
string. The MAXKEEPD DSNZPARM controls the maximum number of prepared
statements to keep past a commit point. The statement text is always kept. The
implicit PREPARE eliminates the need for an application to execute multiple
PREPAREs for the same statement.

EDM Pool 35

To enable global statement caching, set the CACHEDYN DSNZPARM to YES.
Global statement caching permits the reuse of prepared statements across units of
work within the program and across program executions. The prepared statements,
called skeleton dynamic statements (SKDSs), are cached in the global dynamic
statement cache. These statements can be copied into local storage when possible;
such statements, known as short prepare statements, are dynamic statements in the
global cache. You can monitor the global statement cache using IFCID 316 and
IFCID 317.

Full caching is a combination of local and global statement caching that provides
the ability to avoid prepare operations completely (a feature known as prepare
avoidance). Statements kept in local thread storage are not invalidated across
commits. To enable full caching, set CACHEDYN=YES, KEEPDYNAMIC(YES), and
MAXKEEPD>0.

SCT02: Skeleton Cursor Table

When you bind a plan, DB2 creates a structure called a skeleton cursor table in the
SCT02 table space. The SKCT contains the internal form of the SQL statements
that are in your application program. As a plan is executed, DB2 uses this
information to access the data it needs. In DB2 9, the SKCTs move above the 2 GB
bar in the EDM pool.

SKCTs are stored as a sequence of SKCT sections because a single SKCT can be
longer than the maximum record length supported by DB2. These sections begin
with a skeleton cursor table parent record (SCTR), which contains as much of the
SKCT section as the record can fi t. The SKCT section is stored in this record if it
fi ts; if it does not fi t, it is stored in one or more SCTRs. Each SCTR is identifi ed by
a unique section/sequence number.

SPT01: Skeleton Package Table

A skeleton package table is created when you BIND a package. It contains the
internal form of the SQL statements in your application program. In DB2 9, these
structures move above the 2 GB bar in the EDM pool. When initially loaded to
execute, they are copied to buff er pool BP0 and then into the EDM pool in sections.

Chapter 2: DB2 for z/OS Overview36

These sections can include a header and other sections that are the SQL statements
to execute.

Parameter EDM_SKELETON_POOL (fi eld EDM SKELTON POOL SIZE on installation
panel DSNTIPC) determines the minimum size of the EDM skeleton pool.

Table space SPT01 is used to store SKPTs. These tables store the access paths to
DB2 data. DB2 uses this information to access the data it needs when a package is
executed.

Because a single SKPT can be longer than the maximum DB2-supported record
length, SKPTs are stored as a sequence of SKPT sections. The skeleton package
table parent record (SPTR) contains as much of the SKPT section as the record can
fi t. It is possible that the entire SKPT section can be stored in this single record.
If the record cannot hold the entire SKPT section, the rest of the SKPT is stored
in one or more SPTRs records. Each SPTR is identifi ed by a unique section or
sequence number.

APAR PK80375 enables compression of the SPT01 table space. As you use plan
stability and increase the space requirements, this capability will help you manage
storage consumption. Be aware that the 64 GB limit can be a constraint if you
enable plan stability.

DBD01: Database Descriptors

Database descriptors uniquely represent databases within DB2, including user
databases, DSNDB06, and DSNDB07. A one-to-one relationship exists between the
database structures and a DBD. The descriptors of objects such as fi les, page sets,
fan sets, and records are contained in each DBD format.

The DBD contains object identifi ers (OBIDs) that defi ne the objects within the
database to DB2. Each CREATE statement for databases, table spaces, and tables is
given a unique internal number, or OBID.

In DB2 9, the DBDs are above the 2 GB bar. This area is used for the defi nitions
of objects located in user databases, starting with the database, table space, tables,
and so on. The OBIDs are strung together in a hierarchical list of dependencies that

EDM Pool 37

identifi es each database. For each database, you will have a construct to describe
the objects based on the OBIDs. The CLIST calculates the DBD cache size; the
default size is 11,700 KB.

Services are available to maintain the DBDs as well as to access these internal
objects within DB2. These services provide the following functions and services:

Retrieve, insert, replace, and delete the internal objects in ● DSNDB01

Retrieve and update data stored in the system directory ●

Maintain DBDs ●

Maintain and retrieve SKCT blocks and SKPT blocks ●

DM data manipulation services ●

DM database descriptor management ●

Many other DM services for access to DBDs ●

Services used by the service controller subcomponent ●

DBDs do not require contiguous storage, but they do require 34 KB pieces. The
data manager environmental descriptor manager function provides services, such
as access and management, to the internal objects. DBDs are stored in the DBD01
page set in chained records. A parent, called a DBDR, is connected via a link to a
child records, called DBDSs.

DBDs can have many sections. A DBD is a contiguous block of information
representing a database that contains OBDs for various DM objects within the
database. Each object’s object identifi er represents the name of the object that was
defi ned with Data Defi nition Language (DDL) statements.

To reclaim the storage in the DBD, you can use the MODIFY RECOVERY utility.

Chapter 2: DB2 for z/OS Overview38

Fact Summary About Pages in the EDM Pool

EDM Relational Data Server (RDS) pool (CT and PT sections reside
above and below the bar):

Each executing user application must have a CT or a PT with access paths to ●

execute.

Each user has a working copy (CT or PT) of the SKCT or SKPT that is ●

executing. The CT or PT does not have to have contiguous storage. These are
sections of copies of the SKCT or SKPT that are chained together.

CT pages (cursor tables in use): ●

Stored in sections »

Contain a working copy of an SKCT »

PT pages (package table sections in use): ●

Can already be in the EDM pool, no I/O »

Stored in sections »

Contain a working copy of an SKPT »

The authorization cache is in the RDS pool. ●

EDM skeleton pool (both completely above 2 GB):

The EDM skeleton pool is new in DB2 9. It is defi ned in the DSNZPARMs as ●

EDM_SKELETON_POOL. This parameter, which specifi es the size of the EDM
skeleton pool, defaults to 5,120 KB in size at install time.

The pool space is not automatically increased or decreased. To override the ●

current value, use the SET SYSPARM command.

The EDM skeleton pool is used for skeleton cursor tables (SKCTs) and skeleton ●

package tables (SKPTs). It also has control blocks used for fi xed pools,
mapping blocks, object blocks and hash tables.

SKCT pages (skeleton cursor table): ●

Shared by users »

Created in » SCT02 when you bind a plan

EDM Pool 39

Describes the structure of the SQL statements in application plans and »

consists of executable SQL and RDS control structures related to access
paths

As each SQL call is made, the required sections are loaded into

the pool. They remain there until a BIND REPLACE, FREE, or REBIND
command is executed or until least-recently-used (LRU) replacement
takes place.

Stored in a sequence of SKCT sections that are loaded for execution »

The first section, called an SCTR, is a parent record. If additional

space is required to store the sections, one or more SCTRs,
each identified by a unique section or sequence number, are
chained.

SKPT pages (skeleton package table): ●

Created in » SPT01 when you BIND a package

Applies to packages, which are shared among the plans that reference »

them

Describes a collection of packages grouped by a » BIND PACKAGE with a
collection ID

Contains a directory, header, and one or more sections of SQL »

EDM database descriptor pool (above the bar) in DBD01:

The EDM database descriptor pool contains the database descriptor (DBD) ●

pages.

A DBD is created whenever the ● CREATE DATABASE statement is executed.

Database structures are cached here. ●

Each DBD describes a database and all its objects and contains access ●

information.

DB2 uses an algorithm to locate an object descriptor (OBD) within a DBD. There ●

are two descriptions for a database. One is in the catalog, and the other is the
internal representation of the data in the DBD in the directory. This is a one-to-
one relationship.

Chapter 2: DB2 for z/OS Overview40

The OBD has subdescriptors of all the objects contained in the database, ●

including table spaces, tables, indexes, constraints, and relationships with the LOB
columns.

Internally, there are six types of OBDs: fi le, page set, record type, fan set, check ●

constraint, and auxiliary relationship. The OBDs contain information about how
the records are organized, stored, and accessed and represent the internal
representation of the objects.

You can fi nd object identifi ers in the DB2 catalog under the object table defi nitions. ●

Columns in them will have DBID, PSID, OBID, and ISOBID for database, table spaces,
tables, and indexes.

A DBD starts as a single block. As it grows due to objects being defi ned with ●

CREATE, additional blocks can be added. It is read from DASD as a chain of blocks
into storage.

If you use the ● DROP statement to remove an object from the database, the object
identifi er is not automatically removed from the DBD hash chain.

SYSUTILX

For every utility job running in DB2, a row is placed in table space SYSUTILX in
the DB2 directory. This row is used if you have to restart the utility. When the
utility fi nishes running, the row is removed. Information for a copy of SYSUTILX is
located in the log.

Keep in mind the following points related to SYSUTILX:

You cannot ● REORG the SYSUTILX table space.

The ● SYSUTILX table is a dependent of the SYSUTIL table.

Rows in ● SYSUTILX are uniquely identifi ed by a utility identifi er and sequence
number.

When information in the parent record exceeds the record size of table ●

SYSUTIL, a record is created in the SYSUTILX table.

SYSLGRNX 41

The SYSUTIL table stores the status of DB2 utilities that are stopped or started.
Each record in the table is uniquely identifi ed by a utility identifi er. Each row
contains the information for one utility execution step. When a utility fi nishes
running, the corresponding entries in the SYSUTIL table are deleted.

SYSLGRNX

The DB2 MODIFY utility checks user authorization, issues appropriate messages,
deletes specifi ed records, and updates the SYSIBM.SYSLGRNX table in the DB2
directory. SYSLGRNX is a log range table space that tracks the opening and closing
of table spaces, partitions, and indexes. DB2 tracks the information by the relative
byte address (RBA) that is written in the log after the most recent copy, reducing
the amount of time required to recover an object.

The directory table spaces and associated indexes do not have entries in SYSIBM.

SYSLGRNX, even if they were defi ned with COPY YES.

The size of the directory depends on the number of user databases, packages,
plans, and tables in DB2. At installation, the DSNTINST CLIST calculates the sizes
of the EDM pools (above and below the 2 GB bar), the EDM statement cache,
the EDM database descriptor cache, and the EDM skeleton pool. Look at your
calculated sizes on the DSNTIPC installation panel.

When a table space is open for updates, or when an index is defi ned with COPY

YES, DB2 records the recovery log range times in SYSLGRNX. This information
provides an effi cient way for DB2 to access the appropriate log records for
recovery, without having to scan every record in the recovery log for a specifi c
table.

Catalog/Directory Access Methods

The DB2 directory uses links that exist between the DBD parent record for a given
DBD and the database child record records.

Another access path to data in the DB2 catalog or directory is called a link. A link
consists of a record identifi er and a hash, which are, respectively, a page number

Chapter 2: DB2 for z/OS Overview42

and an off set to an anchor point. A link is a parent/child relationship between two
tables or records. There are links that exist between rows of tables in the DB2
catalog.

Hashing Algorithms

The method of hashing is used to access data only in the DB2 directory and in
the DBD01 page set. A database descriptor is created when you issue the CREATE

DATABASE statement. The DB2 data manager allocates 4 KB of storage initially
and formats a DBD.

The hash key for ● DBD01 is the database identifi er (DBID).

Index ● DSNSCT02 is used to access data in the SCT02 DB2 directory
page set.

Indexes ● DSNSPT01 and DSNSPT02 are used to access data in the SPT01
page set.

Table space ● SYSUTILX uses indexes DSNLUX01 and DSNLUX02 to
access data.

Table space ● SYSLGRNX uses indexes DSNLLX01 and DSNLLX02 to
access data.

DSNZPARMs for the EDM Pool

The following table provides a simple key to relate the various terms involved with
the EDM pool to the subsystem parameters associated with the pools in the EDM
pool:

Term Related DSNZPARM

RDS pool EDMPOOL

DBD pool EDMDBDC

Statement pool EDMSTMTC

Skeleton pool EDM_SKELETON_POOL

You also have subsystem parameter EDMBFIT; specify NO (the default) to optimize
performance or YES to optimize storage utilization. Parameter EDMBFIT controls

Storage Above and Below the Bar 43

how space is freed for EDM pools that are greater than 40 MB. YES specifi es a
better-fi t algorithm to handle EDMPOOL full conditions for these large pool sizes.
NO specifi es a fi rst-fi t algorithm, usually for smaller EDMPOOLs, and is set when
class latch 24 contention starts to exceed 500 contentions per second. Latches are
used to serialize access to many memory resources. The object of a latch is a page
in DB2. Latch class 24 is used for the EDM pool least-recently-used (LRU) chain
and the buff er manager page unlatch and prefetch. You can fi nd the description of
each class in the DSNDQVLS macro in SDSNMACS.

Storage Above and Below the Bar

Virtual Storage Constraint Relief (VSCR) below the bar in the DBM1 address
space is achieved by moving the plan and package skeletons completely above
the bar into their separate EDM pools. In DB2 9, the EDM fi xed storage pools
(FSPs) are moved above the bar; they include all the hash tables, mapping blocks,
and object blocks. This area contains small mapping control blocks that map
each block of EDM storage both above and below the bar and the larger object
identifying control blocks. By moving these control blocks above the bar, scaling
of the number of EDM objects can occur without aff ecting below-the-bar storage
usage.

The last control block in DB2 9 that is associated with each dynamic SQL
statement is moved above the bar. The EDM statement cache pool can expand
above the bar without increase to any statement cache control blocks below the bar.

Dynamic SQL statements now have a larger portion split above the bar than for
static SQL in DB2 9 plans or packages. This split has to do with the extra storage
required in dynamic statement storage for DESCRIBE column information and
PREPARE options. These options, of course, do not exist as part of the statement
storage for static statements. The DESCRIBE and PREPARE storage is now all above
the bar. Individual statement storage is generally larger for dynamic SQL than for
static SQL.

The moving of some short-term control blocks above the bar has reduced peak
storage usage for BIND dynamic PREPARE. This short-term storage (called parse
tree storage), which is held during a full prepare of SQL statements, has decreased

Chapter 2: DB2 for z/OS Overview44

signifi cantly. Some estimates of peak storage usage for full prepares have been
reduced by 10 percent.

Other items that have moved above the bar are some tracing storage and mini-plan
storage. Stack storage, system thread storage, and user thread storage usage has
remained about the same, but some of the savings may be off set by increases in
other areas.

To reduce the EDM latch class 24 serializations, the below-the-bar EDM pool
cache now has no LRU objects. You must size the below-the-bar EDM pool for
peak usage. No automatic expansion of this storage pool occurs, and the possibility
of an EDM pool full condition exists. You modify this setting via a DSNZPARM
change and activate the change using the SET SYSPARM LOAD statement.
Parameter EDMPOOL in DSN6SPRM is the value associated with below-the-bar 2
GB bar storage.

You should carefully size the below-the-bar EDM pool to accommodate peak
usage plus a cushion for fragmentation. Best practices dictate that the size of the
EDM pool storage below the bar be between 110 percent and 130 percent of peak
usage. This sizing will take into account any pool fragmentation and the need to
allocate contiguous storage for any section.

If you do experience EDM pool full situations, IFCID 31 will identify the object
type, size, and requestor. If this IFCID is active, it produces trace records only
when the EDM pool full situation occurs.

In addition, IFCID 02 collects EDM statistics. Take a look at member DSNWMSGS
in library SDSNSAMP for fi eld defi nitions of this and other trace records.
DSNDQISE and DSNDQWS1 contain the fi eld defi nitions for this trace record.

It is a good idea to add 10 percent to 30 percent to your initial estimate, just to
have a cushion of storage in case you need it. The number of dynamic statements
that are active below the bar can cause this critical shortage. The only way to
increase this area is by using the SET SYSPARM statement.

A new DB2 9 subsystem parameter, CACHEDYN_FREELOCAL in macro
DSN6SPRM, can free cached dynamic statements to relieve the shortage

Storage Pools 45

below the bar. This setting applies only if you have activated the BIND option
KEEPDYNAMIC(YES).

The CACHEDYN_FREELOCAL parameter is changeable online via the SET

SYSPARM RELOAD statement. Changing the value of this parameter changes the
triggering level at which DB2 9 tries to free local SQL cache storage below the bar.

The values 0 (zero, the default in DB2 8) through 3 are available to represent
the trigger levels DB2 uses to reclaim local SQL cache below-the-bar storage.
Specifying 1 (one), the default in DB2 9, causes DB2 to free some cached dynamic
statements if the storage usage is high. If you specify 0, no cached dynamic
statements are freed. The built-in DBM1 storage monitor writes information to the
console to let you know how much storage is currently consumed as limits are met.
The IFCID 225 trace record also collects information about the cache storage.

If you size the EDM storage pools too small, you could see increased I/O on the
DBD01, SPT01, and SCT02 directories, along with increased response times and a
smaller number of threads running concurrently because of lack of storage.

To achieve the above- and below-the-bar storage for PTs and CTs, you must rebind
your plans and packages in DB2 9 to move the relevant sections of these objects to
64-bit storage addressing.

Storage Pools

Dynamic SQL execution storage can be extensive and can be one of the largest
factors driving DBM1 below-the-bar virtual storage constraints. Two new IFCIDs,
217 and 225, collect information about storage above and below the bar. Statistics
about the storage manager pools are produced at the interval specifi ed by
parameter STATIME in the DSNZPARMs.

DB2 8 introduced 30 global variable-length storage pools that contain the dynamic
SQL statement storage used for statement execution in below-the-bar storage. In
DB2 9, the individual statement storage is split between above-the-bar and below-
the-bar portions. We use these values instead of pool totals to understand how
peaks in the cached SQL statements drive the total storage use in DBM1.

Chapter 2: DB2 for z/OS Overview46

To collect IFCID 217 and IFCID 225 records, you must activate the DB2 STATIME
interval. This parameter specifi es the number of minutes between statistics
collections. The default interval for STATIME is now fi ve minutes (5).

IFCID 225 provides a summary report of the storage being used in the DBM1
address space, and IFCID 217 produces a detail report of activity. IFCID 225
records collect data on the fi rst failure.

IFCID 217 produces SMF type 102 storage detail data records. IFCID 225 is
added to STATISTICS trace class 1, and its statistics are written as SMF type 100
with a subtype of 4 records. DB2 keeps an internal cache of IFCID 225 records so
that storage changes over time can be evaluated during dump analysis. No separate
instrumentation fi elds for the accumulated size of the 30 statement cache pools
are kept.

You can activate collection of these statistics using the following command:

MAXKEEPD

You use the MAXKEEPD subsystem parameter to limit the number of dynamic
statements that are held in the cache after a commit point. These locally cached
statements can consume large quantities of DBM1 virtual storage. This setting
applies to full caching only. If a large number of PREPARE operations are occurring
on a system and application logic is not committing frequently, MAXKEEPD can be
exceeded before the release of the cached statements can occur.

Stored Procedures

Native and external SQL procedures can be called in DB2 9 in new-function mode.

The PL/SQL native logic for the SQL is stored in the DB2 directory. ●

Native SQL procedures are executed entirely in the DB2 ● DBM1 engine and
should outperform external SQL procedures.

Native SQL procedures can be created starting in DB2 9 NFM: ●

-START TRACE(GLOBAL) IFCID(217)

DSN1CHKR 47

You use the » CREATE PROCEDURE statement to create a native SQL
procedure.

The » FENCED or EXTERNAL keyword cannot be used.

Above-the-bar storage is used for native stored procedures. »

External SQL procedures will continue to work in DB2 9 either in conversion
mode or NFM.

You use the ● CREATE PROCEDURE statement to create an external SQL
procedure.

The ● FENCED or EXTERNAL keyword is required.

External SQL procedures from prior releases are executed in the WLM
environment. DSNTPSMP is an SQL procedure processor you can use to prepare the
external procedure. DSNTPSMP requires DB2 for z/OS REXX language support
and WLM stored procedure address space (SPAS) with the setting NUMTCB=1.
This procedure can be invoked only by an SQL call from an application program
or from IBM DB2 Data Studio Developer.

DSN1CHKR

If you suspect that data inconsistencies exist in the link or hash chains in the pages
of the DB2 catalog or directory, you can run the DSN1CHKR stand-alone utility to
validate one or more data pages in question in the DB2 catalog or directory.

BINDNV DSNZPARM

The new DSNZPARM BINDNV controls the authority needed to add a new package
in DB2. When BINDNV is set to BIND, the creation of a new package requires only
the BIND privilege. With this privilege, if a user has BIND authority on a package,
he or she can create a new VERSION of a package. If you set the BINDNV parameter
to BINDADD, only users with BINDADD authorization can add a new VERSION.

Chapter 2: DB2 for z/OS Overview48

RID Pools

The row identifi er (RID) pool is an area of local storage reserved for sort
processing of record identifi ers from an index or indexes (multiple index
processing). A RID is made up of a page number and a row identifi er that defi nes
the row in the data page of the table for that key value. In general, there are
multiple LEAF PAGEs in the index structure containing multiple entries of RIDs for
each row in a table.

RIDs are stored in leaf index pages and identify the records stored in data pages.
A RID can be a four- or fi ve-byte page number followed by a one-byte page ID
map. Five-byte RIDs are associated with large table spaces that are defi ned with a
DSSIZE that is 4 GB or larger or with LOBs (auxiliary tables). Four-byte RIDs are
associated with all other table space defi nitions; these identifi ers consist of a three-
byte page number and a one-byte ID pointer.

Each RID describes a page number and an ID that points to a row in the table
space. Figure 2.6 shows the relationship between the RID and the row of data in
the table.

Figure 2.6: Relationship between RID and data row

The MAXRBLK subsystem parameter in macro DSN6SPRM defi nes the number of
RID blocks allocated for the RID pool storage. MAXRBLK is stored internally as a
number that is divided by 32 because DB2 allocates RID blocks in 32 KB chunks.

RID Pools 49

The DSNTIPC migration panel displays the RID POOL SIZE fi eld, whose default
is 8,000 KB. Acceptable values are 0 KB or a setting between 128 KB and
10,000,000 KB. A single RID list maximum size would be approximately 26
million RIDs.

During processing, the index RIDs are selected and sorted in the RID pool
according to page number within RID. This list of RIDs, in page number order,
provides access to the data pages within the table space in order. DB2 uses this
sorted list to access the table rows by reading 32 pages per I/O operation and
trying to read ahead one block of 32 pages as well.

The RID pool is split into two parts. The area below the 2 GB bar (approximately
25 percent) stores the RID maps, and the area above the 2 GB bar (approximately
75 percent) contains the RID list. No space is actually allocated in the pool until
RID storage space is needed. At that point, the space is allocated in 32 KB RID
blocks as needed. Each new agent requesting RID pool usage is given two 32 KB
blocks, one for the RID list and one for the RID map, for a total of 64 KB per
agent.

The RID pool is used in hybrid joins, multiple index processing, list prefetching,
and the enforcement of unique keys during row updates. If the RID pool runs
out of space, the SQL statement reverts to sequential processing at the point of
failure. The more common RID pool failures can also be caused by not running
RUNSTATS. When enabling list prefetch, the optimizer sets a threshold of 25
percent of the number of rows in the table. If the RIDs exceed this number,
processing reverts to sequential processing.

RID sorts occur totally in memory. You can track RID list processing with IFCID
003 and IFCID 002. You can also determine whether list prefetch has ended
if more than 25 percent of the rows in table are accessed with IFCID 125 in a
performance trace.

Optimistic locking also uses the RIDs and a change token to ensure integrity of the
data being read.

DB2 9 uses dynamic prefetch more frequently, and the formula for tracking
pages now tracks the cluster ratio with prefetch quantity and buff er pool size

Chapter 2: DB2 for z/OS Overview50

considerations. The algorithm has been enhanced to count each RID in the
CLUSTERRATIO formula rather than just the distinct key values. In addition, a
new column in SYSINDEXES called DATAREPEATFACTOR tracks whether rows
are found on a page other than the current one. This information, along with the
CLUSTERRATIO, can distinguish between dense and sequential rows.

The DB2 9 enhancement of star join group or pair-wise join depends on the
resources of the RID pool. Using this join method requires a one-column index on
a fact table that supports each dimension table join column. Don’t forget that list
prefetch is disabled on a VOLATILE table. Also, OPTIMIZE FOR 1 ROW will avoid
RID processing. RID is also a new built-in function that returns the RID of a row.

Although there is no RID list in the EXPLAIN tables, a column PREFETCH type of L
indicates that RIDs are being processed to read data pages.

Physical Rows and Pages for Table Spaces

The physical structure of a table space consists of 4 KB pages. Each table space
type has a specifi c structure. Figure 2.7 shows the basic format of the table space
pages. In DB2 8, the table space structure added a system page to support online
schema versioning.

Figure 2.7: Table space pages

Physical Rows and Pages for Table Spaces 51

Header Page

The fi rst page in any table space type or index is a header page. All header pages
have the format shown in Figure 2.8.

Figure 2.8: Header page format

Bit Maps or Space Maps

There are actually six space maps, or bit map formats, but we will look at only
two here. The two types of bit maps inside the structure of a table space are one
map type for segmented table spaces and one for nonsegmented table spaces. The
bit map page distinguishes which data pages have free space to accommodate
additional row inserts. Each space or bit map covers a specifi c range of pages,
based on the page size and whether the table space is a segmented or a non-
segmented table space.

Figure 2.9 depicts the structure of the segmented bit map.

Figure 2.9: Segmented bit map

Chapter 2: DB2 for z/OS Overview52

In the segmented bit map, each four-bit entry indicates the amount of free space
remaining in the corresponding data page. Table 2.3 describes the binary values in
the four-bit entries.

Table 2.3: Binary values for segmented bit map

Binary entry Meaning

B’0000’ Page is empty — not formatted.

B’0001’ Page is empty — caused by a mass delete statement.

B’0010’ Page is empty — typically caused by normal delete functions.

B’0010’ Page has free space greater than or equal to the maximum record size.

B’0100–B’1010’” These bit settings are for variable-length records.

B’1011’ Space is less than, greater than, or equal to minimum size of record.

B’1111’ Page is full.

Space or bit maps associated with nonsegmented table spaces have a diff erent
layout. The nonsegmented, or partitioned, space map (Figure 2.10) covers a fi xed
number of pages. Each two-bit entry corresponds to a page within the range that
the space map covers.

Figure 2.10: Nonsegmented bit map

So, as an example, the number of pages per space map would be as follows:

A 4 KB page size for any type or partition would cover 10,764 pages. ●

An 8 KB page size for any type or partition would cover 21,680 pages. ●

Physical Rows and Pages for Table Spaces 53

A 16 KB page size for any type or partition would cover 43,528 pages. ●

A 32 KB page size and number of pages would depend on the number of ●

partitions and whether a table space is associated with a member cluster.

You can fi nd more information about sizing in the DB2 Diagnosis Guide and
Reference (LY37-3201).

The two bits describe how much free space is left in the corresponding data page.
Table 2.4 lists the four possible values.

Table 2.4: Binary values for nonsegmented bit map

Binary value Meaning

B’00’ Free space is greater or equal to maximum record size.

B’01’ Free space is greater or equal to average record size.

B’10’ Free space is greater or equal to the minimum record size.

B’11’ Free space is less than the minimum — full page.

The modifi ed page indicators in the second part of the nonsegmented or partitioned
space map indicate whether the page has changed since the last time the COPY
utility was run. Interestingly enough, this information is available only if the table
space was created or altered with the TRACKMOD YES option. Whenever a full
image COPY is run or an incremental copy is made, the bits are reset to 0.

Large objects have two types of space maps, and index spaces have a space map
entries page, but in an index space map there are two diff erences: First, there is one
bit to each corresponding page, and second, there are no modifi ed page indicators.

Dictionary Pages

If you have compression set on in your table space, you will have dictionary
pages. The dictionary pages will come after the fi rst space map and before the
data pages. There can be up to sixteen 4 KB pages in your table space structure
to form the dictionary pages. These dictionary pages are created with the LOAD
or REORG utility, using the proper settings, to build new dictionary pages or to
keep the already-built dictionary pages built for compression. When the table
space is accessed, the compression dictionaries are stored above the 2 GB bar.

Chapter 2: DB2 for z/OS Overview54

The SQL statement to turn on compression is CREATE (or ALTER) TABLESPACE ...

COMPRESS YES.

Remember that you can run the DB2 stand-alone utility DSN1COMP to estimate
the amount of compression. The unit of compression in ESA is a table row. This
type of compression is not used in work fi les, the catalog, the directory, LOB table
spaces, or table indexes.

Data Pages

The data pages (Figure 2.11) all start with one page header followed by rows
with a row header and then the row data. One byte in the row header supports the
“version” of the row.

Figure 2.11: Data page

System Page

A system page helps with the management of online ALTER schema changes or
versions of the object. The system page tracks format changes to the rows in a
table space. System pages are inserted in the table space as you make versioning
changes. The COPY utility gives you a choice of whether to copy these pages or
not; the default is YES.

SYSIBM.SYSOBDS in DSNDB06 contains one row for each table space or index
that can be recovered to an image copy that was made before the fi rst version

Base and Clone Tables 55

was generated (version 0, unaltered objects). The SYSODBS table contains the
information listed in Table 2.5.

Table 2.5: SYSIBM.SYSODBS table space

Column name Defi nition

CREATOR Authorization ID

NAME Object name

DBID Internal database ID

PSID Internal table space or index space ID

OBID Internal table/index ID

OBDTYPE Object type

VERSION Version when altered

CREATDTS Timestamp

OBD (varchar 30000) OBDREC

IBMREQD IBM fl ag

If you look in SYSIBM.SYSTABLESPACE, you can also fi nd entries for the DBID,
OBID, and PSID for identifi cation of the internal defi nition of your databases,
tables, and index spaces.

Base and Clone Tables

DB2 9 provides support for fast replacement of tables. You generate a copy of the
base table by building a clone. You can insert or load data into the clone table and
use the SQL EXCHANGE statement to perform a fast replacement of the original
data. Interestingly, the table space name is the same for both the base and the clone
table. The RUNSTATS utility does not collect statistics on clone tables.

SYSIBM.SYSCOPY will refl ect the CREATE of a clone with the new ICTYPE of C.
Revisions to columns in the DB2 catalog include new column descriptions and
values and changed data types, column lengths, or both.

In DB2 9, a new column of interest is the INSTANCE column, which always has a
value of 1 or 2. This column has been added to some DB2 catalog tables to refl ect
the base versus the clone data sets.

Chapter 2: DB2 for z/OS Overview56

Universal Table Spaces

DB2 9 features new table spaces to provide key functions of both segmented and
partitioned table spaces. This combination of features is called a universal table
space (UTS). There are two types of UTSs:

Partition by growth (PBG) ● : These table spaces allow segmented tables to be
partitioned as they grow without the need for key ranges.

Partition by range (PBR) ● : These table spaces are just like the existing
partition table spaces but are segmented.

Partition-by-Growth Table Spaces

Partition-by-growth is now the default table space type in DB2 9. A partition-
by-growth table space is very useful for table spaces whose tables lack a suitable
partitioning key but are expected to exceed the 64 GB limit. You do not defi ne a
partitioning key with PBG. Each PBG table space holds a single table.

If you plan to make changes to DSSIZE and SEGSIZE, you will need to do a DROP
to change your table space; there is no ALTER option. A partition-by-growth table
space can grow up to 128 TB; the MAXPARTITIONS, DSSIZE, and page size values
determine the maximum size.

The following restrictions apply when using PBG:

The ● LOAD utility does not allow the LOAD PART option for partition-by-
growth table spaces.

Only non-partitioning indexes are allowed with PBG, and the table spaces ●

must be storage-group–controlled.

The ● REORG utility does not delete the existing partitions, even if they are no
longer needed.

A PBG table space is incompatible with the ● ADD PARTITION and ROTATE

PARTITION options of the ALTER TABLE statement.

Index Structure 57

Partition-by-Range Table Spaces

Segmented table spaces that are approaching the 64 GB limit can be converted
to partition-by-range universal table spaces that support up to 128 TB. You can
choose your DSSIZE parameter value. If you specify LARGE, the size is limited to
64 partitions. To move above this range, you will need DSSIZE. Parameter DSSIZE,
the page size, and the number of partitions determine the maximum size of the
table.

PBRs off er better space management and improved delete performance due to the
segmentation bit map structure that was originally used in segmented table spaces.
To specify a PBR, you use the parameters NUMPARTS and SEGSIZE in one CREATE

TABLESPACE statement. These types of table spaces still require a partitioning
column.

Index Structure

Tables support multiple indexes in DB2, and each index has a format consisting of
a B-tree structure. The data row diagram that we looked at previously (reproduced
in Figure 2.12) depicts a clustering index.

Figure 2.12: Index structure

In this clustering index structure, each block represents a 4 KB page. The fi rst, or
highest, level is the root, followed by multiple non-leaf pages, and then the leaf
pages, which contain the key and row ID that point to the data in the table.

Chapter 2: DB2 for z/OS Overview58

The contents of the root and non-leaf pages are the highest key and a pointer to the
next level. The contents of the leaf pages are the full key and the address location
of the associated row in the table space (RID).

DB2 supports clustering indexes, unique indexes, non-unique indexes, partitioning
indexes, partitioned indexes, and no indexes at all on tables.

BRF and RRF Formats and Logging

Up to now, table row formats in DB2 have been what we call basic row format
(BRF). DB2 9 introduces a new row format, called reordered row format (RRF),
for user data. In DB2 9, the catalog and directory tables remain in basic row
format.

If you are in NFM and your table space does not use an EDITPROC or VALIDPROC
routine and you use either the REORG or LOAD REPLACE utility, the row format
will be changed from BRF to RRF.

During migration from DB2 8 to DB2 9, DB2 by default ignores the
KEEPDICTIONARY parameter of the LOAD and REORG utilities when converting
tables from BRF to RRF. If you want the KEEPDICTIONARY parameter to be
honored, you must set the subsystem parameter HONOR_KEEPDICTIONARY to YES.

In RRF, if a table contains any varying-length columns (with or without nulls),
all fi xed-length columns are placed at the beginning of the row, followed by the
off sets to the varying-length columns, followed by the values of the varying-length
columns.

ROWID and indicator columns are treated like varying-length columns. Row
IDs are VARCHAR(17). A LOB indicator column is VARCHAR(4), and an XML
indicator column is VARCHAR(6). The LOB indicator column is stored in a base
table in place of a LOB or XML column and indicates whether the LOB or XML
value for the column is null or zero in length.

You use the DSN1COPY stand-alone utility to populate one table space to another
table space. Be aware that the row formats of the two table spaces must match.
If they do not, the utility will fail, or unpredictable results may cause integrity

Index Compression 59

problems. Use the following SQL statement to check the row format of your table
space before executing DSN1COPY:

If the FORMAT column in the SYSTABLEPART catalog table has a value of R, the
table space or partition is in RRF. If the FORMAT column contains a blank value,
the table space or partition is in BRF.

Figure 2.13 illustrates the two row formats in DB2.

Figure 2.13: Row formats

Index Compression

DB2 9 provides index compression, but this compression does not use a dictionary.
Index compression occurs at the page level via software compression, but only for
the leaf level in the index structure. The pages are compressed at write time and
are decompressed during reading. This technique to compress the index keys and
RIDs is called prefi x compression.

The index keys are composed of two parts: the key of the index and associated
page number and an off set to the data. The key map, associated with each entry

SELECT DBNAME, TSNAME, PARTITION, FORMAT FROM SYSIBM.SYSTABLEPART ...

Chapter 2: DB2 for z/OS Overview60

on the leaf, is not compressed. This information is actually rebuilt at the time of
decompression.

To work with compression, DB2 transparently manages an I/O work area that
is separate from the buff er pool. DB2’s deferred write engine asynchronously
compresses a leaf page from a buff er into an I/O work area and then writes the
page to disk. Compression begins immediately on the contents of the index if you
use the following statement:

This compression cannot be activated at the partition level; it is for the whole
index. The compression occurs, not key by key, but by the leaf page level. There is
no ability to randomly fi nd a key in the index and decompress that key. A random
probe of the index requires a B-tree search. There are no compression dictionaries;
this is compression done on-the-fl y at the page level.

The index page size must be larger than 4 KB, and the index data is compressed
“down” to 4 KB size on disk.

You can have 32 KB, 16 KB, or 8 KB index page sizes for indexes in NFM of
DB2 9. Turning on compression can save you up to eight times the disk space
and reduce the frequency of index page splits. IBM’s estimates for compression
savings run from 25 percent to 75 percent disk savings. To see whether you should
compress your indexes, run DSN1COMP; this utility has been enhanced in DB2 9 to
provide information about possible page sizes.

Note that an IMAGE COPY of a compressed index creates an uncompressed output
fi le. In addition, the log records for the index keys are not compressed.

Asymmetrical Split on Index Pages

Support for asymmetrical splitting of index pages is a new feature in DB2 9. In
earlier releases, when all the RID space of an index leaf page is consumed during
inserts, page split processing takes places, and DB2 allocates a new page in the
index, moving half of the entries from the old page to the new index page. If you

ALTER INDEX COMPRESSION YES

Active Logs 61

are performing sequential inserts and adding index keys in ascending order, the
freed space in the old page of the index will never be reused.

With this enhancement, DB2 detects various insert patterns in an index and
chooses an algorithm from several available to DB2 to use for page splitting.
These asymmetrical algorithms are available in NFM of DB2 9. Asymmetric page
splitting, along with an increase in the index page size from 4 KB to 8 KB, 16 KB,
or 32 KB, provides better space use and also reduces contention in the index.

Active Logs

DB2 uses dual logging for the active log, archive log, and bootstrap data sets.
When the active log is offl oaded to the archive log, the fi rst information that goes
to tape or disk is a copy of the BSDS.

The primary function of the dual active logs is to provide recoverability by
recording the changes to your data within the system. DB2 uses automatic
offl oading of these logs to the archive logs to establish a baseline for user data
recoverability.

Once DB2 is started, the logs remain allocated exclusively to DB2 until DB2
terminates. The active logs are defi ned in the BSDS and are allocated dynamically
for use. You defi ne the number and size of the log data sets on installation panel
DSNTIPL. A DB2-provided offl ine utility, DSNJU003 (change log inventory), lets
you add new logs or replace an active log. To use this utility, you must stop DB2,
make your changes, and then restart the DB2 subsystem.

To minimize the fi lling and “spilling” of logs to archive logs, make sure the active
log data sets are large enough to avoid frequent offl oading. In addition, be sure to
set the OUTBUFF DSNZPARM value large enough so that log buff ers can avoid the
need to wait for a buff er to become available. OUTBUFF specifi es the output buff er
size used in writing active log data sets.

The BSDS should be converted in DB2 9, so you will have 93 active logs available.
These are VSAM linear data sets stored as dual sets for log recoverability. The
DSNTIPL installation panel’s NUMBER OF LOGS fi eld permits a maximum entry
of 31, the traditional number supported in the BSDS. Check APAR PK77228 in

Chapter 2: DB2 for z/OS Overview62

DB2 9 for a fi x that updates this maximum to 93 to match the new BSDS format
required by DB2 9.

Records in the dual active log show the activity for updates, deletes, and inserts to
table spaces, index spaces, and system events. When log records are written, they
are broken into segments. Records are fi rst written sequentially into the output log
buff ers located in the system services address space before they are written into the
active logs. These records are VSAM-formatted control intervals (CIs), which have
been assigned an ever-increasing RBA or, in a data-sharing environment, a log
sequence number (LRSN) that is written to the active log.

Output log buff ers collect the activity against data and system events. When these
buff ers become full, or when DB2 forces them at commit time, they are written
to the active log set. You could thus have log records written several times. The
system services address space handles the log buff ers, and they are defi ned with
the installation CLIST.

As the dual active log sets fi ll, they automatically spill or roll off to the assigned
archive log sets in a process called offl oading. The next set of active logs continues
to record system information while this offl oading occurs. Active logs are “wrap-
around,” provided the fi rst log has been archived. DB2 does support striped active
log data sets.

Log Defi nition

Entries on the DSNTIPL installation panel describe the logging environment.
Macros DSN6LOGP and DSN6ARVP contain the parameters that control logging.

The system uses the UPDATE RATE and ARCHIVE LOG FREQ fi elds of the
installation CLIST to calculate the data set size of each active log data set. Your
management of the logs and the archives is used in system recoverability.

A log record is identifi ed by an RBA in the fi rst byte of its header. This number
uniquely identifi es this record.

The log print record is split into four parts: summary information, log record
header, log record sub-header, and logged data. To understand more about the

Active Logs 63

formats of the logs, look at the mapping information in member DSNDQJ00 in the
SDSNMACS library. Log records include undo/redo records, in-place updates that
represent both the before and after images, and partial image records.

Each log record has a header that indicates its type and the DB2 subcomponent
that made the record. Log records can contain compressed data if a table contains
compressed data. Reading compressed data requires access to the data dictionary.

When a change is made to a database, DB2 writes a unit of recovery log record
that describes the change. These rows, which are logged in the active log, are
called undo/redo records. Also written is a Begin UR (begin a unit of recovery)
record, which records the fi rst request to change a database. If a unit of work is
committed or rolled back, you will see also an End Phase 2 record to refl ect that
the work has been completed. Exception records can also be written. These are
registered as database exception table (DBET) log records to record database
exception states when any database table space, index space, or partition is in an
exception state.

Checkpoint log records are written when the checkpoint frequency specifi ed by
the CHECKPOINT FREQ fi eld on panel DSNTIPL is reached. Many records can be
written for a single checkpoint. The checkpoint will log the current status of DB2
and register the log RBA of the checkpoint in the bootstrap data set.

Log Data Capture

DB2 log data is available for recovery purposes in real time through the log capture
exit routine. This online exit captures the data that DB2 writes to the active log, but
it does not return data or enter data to DB2.

It is better to use the Instrumentation Facility Interface rather than the log capture
exit to read data from the log. You can also read the records with IFI while DB2
is running. Doing so requires a program that uses the IFI commands READA and
READS to capture the log information into a buff er. (You can return the records
directly to the program.) To gather the information, you would fi rst run a START

TRACE command, using IFCID 126 to accumulate active log records into a buff er.
This will cause records to be recorded into the buff er as well as to the active log

Chapter 2: DB2 for z/OS Overview64

in DB2. Use the following command to start the performance trace to collect the
records:

If you set the DATA CAPTURE CHANGES option on a CREATE TABLE or an ALTER

TABLE statement, you can retrieve the log information using programs such as
Remote Recovery Data Facility (RRDF) or DB2 DataPropagator.

Recovery Log Manager

Within DB2, the recovery log manager (RLM) maintains the DB2 recovery log by
writing log records and retrieving log information in response to resource manager
requests. RLM maintains the DB2 BSDS that contains linkage information
pointing to all the DB2 log data sets, and it controls the movement of full active
log data sets to the archive log. It supports other DB2 resource managers by
reading and writing data on the DB2 recovery log. RLM also copies active log data
sets to archive log data sets when they become full.

Log records are assigned ascending RBAs and are mapped into physical data sets
as described in the BSDS. DB2 data-sharing log records are read from the data-
sharing group (or from selected members of the data-sharing group) in merged
LRSN sequence.

The recovery log manager provides:

The ● RECOVER BSDS command.

The ● ARCHIVE LOG command (the change log inventory utility job that
updates the BSDS).

Print log map utility: Produces a listing showing the log RBAs and LRSNs ●

contained in each log data set. All active and archive data sets that contain
log data are included in the listing, as well as all active log data sets that
are available for use, all conditional restart control records, the subsystem
checkpoint queue, and the DDF communications record.

-START TRACE(P) CLASS(30) IFCID(126) DEST(OPX)

Active Logs 65

DB2 stand-alone log services: Provide an assembler language macro ●

capability that enables user-written application programs to read the DB2
log from a z/OS job environment.

Log format utility: Pre-formats new active log data sets. ●

Log I/O Enhancements

DB2 9 for z/OS provides the following enhancements for log I/O:

The number of active log input buff ers is increased from 15 to 120. ●

Archive log fi les are now read using Basic Sequential Access Method ●

(BSAM) instead of Basic Direct Access Method (BDAM).

Archive log fi les can use Data Facility Storage Management Subsystem ●

(DFSMS) striping and compression.

Archive log fi les input buff ers are increased from 1 to ● N, where N is
proportional to the number of stripes. For each stripe, DB2 uses 10 tracks’
worth of buff ers, regardless of the block size.

Archive log buff er processing is converted from ● AMODE(24) to AMODE(31),
so DB2 can now move these buff ers above the 16 MB line, enabling them to
be much larger.

By exploiting z/OS 1.7 ● DSNTYPE=LARGE disk data set support, installations
can have 4 GB DASD archive logs. Active logs no longer require multi-
volume allocations.

Installation Panel DSNTIPL

The system services address space in DB2 uses two log buff er areas: one for input
and one for output to the active log. You defi ne these log buff er areas, along with
other key components, on installation panel DSNTIPL. In DB2 9, the panel provides
the following fi elds associated with logging:

OUTPUT BUFFER

The OUTPUT BUFFER fi eld specifi es the size of the output buff er that is to be
used for writing active log data sets. Acceptable values range from 40 KB to
400,000 KB.

Chapter 2: DB2 for z/OS Overview66

Log writes can be synchronous and asynchronous. The logs are written
synchronously at commit time. If you reach the write threshold specifi ed in
OUTBUFF for the log buff er, the fl ushing is asynchronous. If your performance
traces report log buff er write failures greater than zero, set OUTBUFF higher; it is
not large enough. This setting is updatable using subsystem parameter OUTBUFF in
macro DSN6LOGP.

NUMBER OF LOGS

This fi eld defi nes the number of data sets to be established for each copy of the
active log. If you have converted the BSDS, the number of logs can be defi ned
from 2 to 93.

ARCHIVE LOG FREQ

This fi eld sets the interval (number of hours) to be used in offl oading the active
log. The default is 24, which ensures that the log is offl oaded at least once each
day.

UPDATE RATE

The default UPDATE RATE setting assumes that 400 bytes of data will be logged
for each update, insert, or delete. When the CLIST is run, this fi eld and the
ARCHIVE LOG FREQ fi eld together determine the size of the logs.

LOG APPLY STORAGE

This fi eld sets the maximum amount of DBM1 storage used by the fast log apply
process. During restart, this process is always enabled. This setting is updatable
using subsystem parameter LOGAPSTG in macro DSN6SYSP.

CHECKPOINT FREQ

This fi eld specifi es the interval (in minutes or in number of log records) that will
start a new checkpoint in DB2. The default setting for the CHKFREQ subsystem
parameter in macro DSN6SYSP is 500,000 records. Use the SET LOG command to
change the time or number of records between checkpoints in DB2.

Active Logs 67

FREQUENCY TYPE

This fi eld indicates whether the units specifi ed for checkpoint frequency represent
a number of log records (LOGRECS) or time (MINUTES).

UR CHECK FREQ

This fi eld specifi es the number of checkpoint cycles DB2 goes through before
issuing a warning message to the console. The value of your checkpoint interval
divided by your limit for issuing commits is the best value to use for the system.
This setting is updatable using subsystem parameter URCHKTH in macro
DSN6SYSP.

UR LOG WRITE CHECK

This fi eld indicates how many log records are to be written by an uncommitted
unit of recovery before a warning message is issued, providing a good indicator of
long-running URs. This setting is updatable using subsystem parameter URLGWTH
in macro DSN6SYSP.

LIMIT BACKOUT

This fi eld indicates whether to postpone backward log processing. Possible values
are AUTO (the default), YES, and NO. This setting is updatable using subsystem
parameter LBACKOUT in macro DSN6SYSP.

BACKOUT DURATION

This fi eld defi nes how much log to process for back-out when the LIMIT BACKOUT
fi eld is set to YES or AUTO.

RO SWITCH CHKPTS

This fi eld defi nes the number of consecutive checkpoints permitted after a partition
or page set is updated. When this threshold is reached, DB2 will convert the
partition or page set to read-only status. Table spaces for which NOT LOGGED has
been specifi ed are always converted to read-only after one checkpoint. The default
RO SWITCH CHKPTS value is 5 (fi ve checkpoints). This setting is updatable using
subsystem parameter PCLOSEN in macro DSN6SYSP.

Chapter 2: DB2 for z/OS Overview68

RO SWITCH TIME

Specifi ed in minutes, this fi eld’s value works with that of the RO SWITCH CHKPTS
fi eld to change the partition or page set from read-write to read-only status. For
infrequently used table spaces, this setting can reduce the recovery and logging
process. The default value is 10 (minutes). For NOT LOGGED table spaces, DB2
converts the partition or page set after one minute, regardless of this fi eld’s value.
The RO SWITCH TIME setting is updatable using subsystem parameter PCLOSET in
macro DSN6SYSP.

LEVELID UPDATE FREQ

This fi eld controls how often (in number of checkpoints) the level ID of a table
space set or partition is updated. It also controls how often the value that the
RECOVER LOGONLY utility uses as a starting point for log apply is updated. The
default is 5 (checkpoints). This setting is updatable using subsystem parameter
DLDFREQ in macro DSN6SYSP.

Notes on Logs

Some additional points to note related to the active logs:

DB2 must pre-format a VSAM control area before writing the active log ●

records the fi rst time. Use the DSNJLOGF stand-alone utility to pre-format
the active log data sets before they are used by DB2.

If you compress your data, the log information about that data is also ●

compressed. However, any indexes you compress are not logged as
compressed records.

Logging rates have improved in DB2 9, and striping is supported for archive ●

logs.

The DB2 ● ARCHIVE LOG command truncates the current active log data sets.
This operation runs an asynchronous offl oad and updates the BSDS with a
record of the offl oad.

The ● SET LOG command fl ushes only the log buff ers.

The ● STOP DATABASE command makes certain the active log is not allocated
to DB2. You can then use the DSN1LOGP utility to read the active log.

Active Logs 69

Choices in DB 9 include ● LOG YES or LOG NO for logging attributes on the
CREATE TABLESPACE and ALTER TABLESPACE statements. You can have
diff erent logging attributes for partition table spaces. Specifying LOG NO for
a segmented table space that contains multiple tables aff ects all the tables
in that segmented table space. You can fi nd the setting in the catalog in the
SYSIBM.SYSTABLESPACE LOG column. Use the LOG NO option with caution.

It is no surprise that SYSLGRNX (system log range) records are not kept for NOT

LOGGED table spaces. Note in SYSCOPY that the column LRSN indicates the point
in the log where the logging attribute was changed. A new column, LOGGED, has
been added to the SYSCOPY. The value Y indicates logging, N is for no logging,
and a blank indicates the row was built before DB2 9.

The Log Itself

The VSAM control interval holds 4,089 bytes of DB2 log information. This is
what is referred to as the physical record. When information is written, this is the
logical record, and its length depends on the space available in the CI.

All logical records have a header, called a log record header (LRH), that contains
control information. A suffi x, called the log control interval defi nition (LCID),
describes how the record segments are placed into the physical control interval.

Each log record has a code or type that describes the event that recorded the
record. There are also subtype codes to produce a more in-depth event description.

You can use mapping macros provided in macro DSNDQJ00 in the SDSNMACS
data set to interpret the log record formats for records and subtypes. Each macro is
self-documenting with notes. You can also acquire log statistics from your monitor
to calculate the minimum megabytes per second required to write to the active log
data set to understand your logging requirements.

Size of the Active Log Data Sets

The frequency of offl oading to the archive is key to determining the size of the
logs. The CLIST uses the UPDATE RATE and ARCHIVE LOG FREQUENCY fi elds
on installation panel DSNTIPL to determine the disk space required by the logs.

Chapter 2: DB2 for z/OS Overview70

Basically, the size is calculated as follows to fi nd the hours in the archive period
for one log; you would double this result for dual logging:

Disk space required by logs = (Data change log record size) * (Data change rate
per hour) * (Hours in archive period)

Log Utilities

DB2 9 includes enhancements to several stand-alone utilities related to the logs.

DSN1LOGP

The DSN1LOGP utility, which formats the contents of the recovery log for display,
now detects possible erroneous recovery information. If you attempt to print a
range of records but the range is no longer in the BSDS because the archive logs
have rolled off , error message DSN1224I indicates that the range could not be
found and returns an RC4.

When you specify the utility’s SUMMARY(YES) option, the report shows whether
objects are logged or not logged. This option might not be available if the specifi ed
range of log records does not include the Begin UR log record.

Note that a clone table’s object identifi er will have the eighth, or high-order, bit
set on, so the OBID for the clone might be x’8xxx’ and the base table would have
x’0xxx’ as the OBID. When reading the output of the DSN1LOGP utility, you need
to be aware of this clone naming convention.

DSNJU003

You use the change log inventory utility, DSNJU003, to create conditional
restart control records. In DB2 9, you can now use timestamps for your normal
conditional restart and for the RESTORE system utility.

DSNJU004

The print log map utility, DSNJU004, runs as a batch job. You can use it to print
the BSDS contents and the conditional restart record. You can also use this utility
to determine the current log confi guration. Each checkpoint that is displayed now
shows the stored clock value in the checkpoint queue section. Each log record

Active Logs 71

includes a suffi x that describes how the record segments are placed in the physical
control intervals.

The print log map utility output has changed regarding DDF. Several keywords
related to request identifi cation have been added. These changes are refl ected in
the output of utility DSNJU003. DSNJU004 now prints the DDF information at the
beginning of the output, before the log information.

To determine how much space is left in the log, obtain the high-written RBA
in the log and then subtract it from x’FFFFFFFFFFFF’. If you have applied APAR
PK27611, use RBA x’FFFF00000000’ instead.

DSNJU004 provides an assortment of data you will fi nd very useful. Its information
includes:

Names of active and archive log sets ●

BSDS information ●

Active logs available, log starting/ending RBA values ●

Checkpoint record contents in BSDS ●

System-level backup information (new in DB2 9) ●

Checkpoint queue contents ●

Utility and system timestamps ●

Conditional restart control records ●

Information in the system Coded Character Set Identifi er (CCSID) ●

System Checkpoints

When you have a long-running unit of recovery, DB2 records a large number of
log records from the beginning to the end of the transaction. Usually, the jobs
running are doing a large number of updates without proper committing within the
program. The DSNTIJUZ job includes a parameter, URLGWTH, that deals with long-
running reader threshold. The parameter’s default value is 0 (zero), which means
that long-running UOR checking is not activated by default.

Chapter 2: DB2 for z/OS Overview72

Installation panel DSNTIPN provides the value for checkpoint frequency (in the
CHECKPOINT FREQ fi eld). In DB2 9, system checkpoints now store information
at the table level to track segmented table spaces independently. Stored in the
UR checkpoint record along with table space and partition level, the checkpoints
record information about each modifi ed object uncommitted unit of recovery. This
process assists in the back-out processing at start-up time.

In DB2 9, the updating of SYSLGRNX entries is deferred beyond the start-
up, allowing faster restart of DB2. The entries are updated at the fi rst system
checkpoint that follows the restart.

Archive Logs

The archive logs are sequential data sets and support up to 10,000 archive log data
sets per log copy. In DB2 9 CM, all active logs support BSAM to read the archive
data sets. In NFM, archive logs can be defi ned as extended format (EF) data sets
and must be SMS-managed. As a result of the extended formatting, compression
and striping are allowed.

Conversion of Archive Log Processing from AMODE(24) to AMODE(31)

Before DB2 9, some customers reported running short of storage below the 16 MB
line in the MSTR address space during archive log processing. Storage constraint
relief and increased archive log processing are a result of converting using 31-bit
mode in DB2. In addition, DB2 9 moves these buff ers above the 16 MB line and,
when possible, uses dual buff ering for archive log reads or writes. This support is
available starting in DB2 9 CM.

Bootstrap Data Set

The bootstrap data set is an inventory manager for the active and archive logs,
passwords for the directory and catalog, and conditional restart and checkpoint
record information. The BSDS is the only VSAM key-sequenced data set (KSDS)
in DB2. It contains name and status information for DB2 and RBA range
specifi cations for all active and archive log data sets.

Each time an active log is archived, a copy of the BSDS goes along with it. The
BSDS is the fi rst entry on the tape or disk archive log backup. You need take no
special steps to keep the BSDS updated with records of DB2 logging events; the
system handles this task automatically.

Active Logs 73

Each BSDS requires 3.5 MB of space. DB2 automatically allocates two BSDS
copies at installation time. When moving to DB2 9, make sure you convert your
BSDS by running the DSNJCNVB conversion utility, which is part of job DSNTIJUZ.

To migrate to DB2 9, your BSDSs must be in the new expanded format, which
supports up to 10,000 archive log volumes and up to 93 active log data sets for
each copy of the log. This new format became available beginning with DB2 8
NFM. When executing the job, expect a return code of 888 from this step if your
BSDSs have already been converted. Job DSNTIJUZ accepts return codes of 0 and
888 from the DSNTCNVB step.

Your shop might require changes to active or archive logs that necessitate a
corresponding change to the contents of the BSDS, such as:

Adding more active log data sets ●

Recovering a damaged BSDS ●

Discarding outdated archive log data sets ●

Copying active log data sets to newly allocated data sets ●

Moving log data sets to other devices ●

Adding or changing the DDF communications record ●

Creating or canceling control records for conditional restart ●

The DB2 batch change log inventory utility, DSNJU003, lets you change the
contents of the BSDS.

Do not run utility DSNJU003 when DB2 is active. DB2
must be inactive, or unpredictable results may occur.

To change the BSDS:

1. Make sure you have a backup of the BSDS.

2. Issue the STOP DB2 MODE(QUIESCE) command to stop the DB2 subsystem.

3. Run utility DSNJU003.

4. Restart DB2 with the START DB2 command.

Chapter 2: DB2 for z/OS Overview74

Using the Access Method Services (IDCAMS) REPRO command, you can copy an
active log data set, but only when DB2 is down. DB2 allocates the active log data
sets as exclusive (DISP=OLD) at DB2 start-up.

Virtual Buffer Pools

Buff er pools are memory allocations for the storage of pages of information
from table spaces and index spaces. The total storage in all buff er pools should
not exceed 1 TB. In DB2 9, buff er pools have moved above the 2 GB bar. Make
sure your buff er pools are backed up by real storage. Buff er pools are located and
managed by the DBM1 address space.

During installation or migration, you specify a name and size for each buff er pool.
An operator command, ALTER BP, is available in case you need to change these
values.

Buffer Pool Defi nition

Panel DSNTIP1 (Figure 2.14) is the fi rst of two installation/migration CLIST panels
that deal with the buff er pools.

Figure 2.14: Installation panel DSNTIP1 – Buffer pool sizes (panel 1)

Virtual Buffer Pools 75

Here, you specify the default buff ers for user data, LOB and XML data, and
indexes in DB2 9. These settings apply to objects that are created implicitly and to
objects that are created explicitly without the BUFFERPOOL clause. Table 2.6 lists
the subsystem parameters and default values associated with these entries.

Table 2.6: Buffer pool size DSNZPARMs

DSNZPARM Description Acceptable values Default

DSN6SYSP
TBSBPOOL

Default 4 KB buffer pool for user data Any 4 KB buffer pool name BP0

DSN6SYSP
TBSBP8K

Default 8 KB buffer pool for user data Any 8 KB buffer pool name BP8K0

DSN6SYSP
TBSBP16K

Default 16 KB buffer pool for user
data

Any 16 KB buffer pool name BP16K0

DSN6SYSP
TBSBP32K

Default 32 KB buffer pool for user
data

Any 32 KB buffer pool name BP32K

DSN6SYSP
TBSBPLOB

Default buffer pool for user LOB data Any 4 KB, 8 KB, 16 KB, or 32 KB
buffer pool name

BP0

DSN6SYSP
TBSBPXML

Default buffer pool for user XML data Any 16 KB buffer pool name BP16K0

DSN6SYSP
IDXBPOOL

Default buffer pool for user indexes Any 4 KB, 8 KB, 16 KB, or 32 KB
buffer pool name

BP0

Figure 2.15 shows the second installation/migration CLIST panel where you defi ne
the buff er pools, DSNTIP2. You use this panel to specify the total number of buff ers
for a given virtual buff er pool from BP30 to BP32K9.

Figure 2.15: Installation panel DSNTIP2 – Buffer pool sizes (panel 2)

Chapter 2: DB2 for z/OS Overview76

Remember that the total amount of your buff er pool storage cannot exceed 1 TB.
In the 64-bit addressing space, DB2 can have up to 16 exabytes of virtual storage
addressability by a single DB2 address space.

Buffer Pool Management

You can manage the buff er pools yourself through tuning and monitoring, or you
can use the services of dynamic buff er pool size adjustments so that the system’s
memory resources can be more eff ectively used to achieve workload performance
goals. This new service is available in conversion mode in DB2 9.

DB2 9 supports Workload Manager–assisted buff er pool management with z/OS
1.8. This WLM service assists in making dynamic buff er pool size adjustments on
realtime monitored workloads. With dynamic buff er pool assist, a DB2 subsystem
on the same LPAR might have non-critical buff er pools decreased in size while
those pages are reassigned to a critical subsystem.

The automatic management of buff er pool storage provides sizing information to
WLM. Buff er pools are registered with WLM, and DB2 communicates with WLM
every time an allied agent encounters delays relating to read I/O and periodically
reports the buff er pool size and random read hit ratios to WLM.

WLM projects the eff ect of making a change to the size of the buff er pool over
time from collected data maintained in a histogram. It plots the size and hit ratio
over time to determine whether work is achieving its goals and then determines the
appropriate course of action.

WLM decides whether increasing the buff er pool size could help achieve the
performance goal if I/O delays are occurring. If suffi cient storage is available,
WLM could decide to increase a buff er pool or even decrease one buff er pool and
increase another. If the adjustment is made, the results will be just as though you
had issued an ALTER BUFFERPOOL VPSIZE command.

To enable this feature, use the AUTOSIZE(YES) setting on the CREATE TABLESPACE
command. You can modify individual buff er pools by using the ALTER

BUFFERPOOL command with AUTOSIZE(YES/NO). The default for automatic buff er
pool adjustment is off (NO).

Virtual Buffer Pools 77

To summarize, DB2 takes the following steps to perform automatic management
of buff er pool storage:

1. Registers the buff er pool with the WLM

2. Provides the sizing information to WLM

3. Communicates to WLM each time allied agents encounter delays due to
read I/O

4. Periodically reports buff er pool size and random read hit ratios to WLM

Buffer Pool Details

Buff er pools temporarily store pages of data from table spaces or indexes in
storage. DB2 buff er pool pages are not paged out; the EDM pools and the
sort pool are held in real storage. For the DB2 buff er pools, the EDM pool,
and working storage, the amount of real storage must be the same as the
amount of virtual storage. Paging activity in the buff ers is an indication of a
problem.

DB2 lets you use up to 50 diff erent 4 KB buff ers and up to 10 diff erent buff er pools
each for 8 KB, 16 KB, and 32 KB buff ers. You can set the size of each of these
buff er pools separately during installation.

As of DB2 9, using above-the-bar real storage enables the use of very large buff ers.
As a result, applications can avoid a substantial amount of read and write I/O.

The following points summarize the process fl ow of an application with respect to
the buff er pools:

1. The program accesses a row of a table.

2. DB2 places the page that contains that row in a buff er.

3. Is the data already in a buff er? If so, the application program does not have
to wait for it to be retrieved from disk.

4. Has the row been changed? If so, data in the buff er must be written back
to disk eventually. A write operation might be delayed until DB2 takes a

Chapter 2: DB2 for z/OS Overview78

checkpoint or until one of the related write thresholds is reached. (The data-
sharing environment writing mechanism diff ers somewhat.)

5. The data remains in the buff er until DB2 decides to use the space for another
page. Data can be read or changed without a disk I/O operation until written.

Buffer Pool Analyzer and ALTER BUFFERPOOL Statement

You can use the Buff er Pool Analyzer for z/OS to obtain recommendations about
buff er pool allocation changes and perform “what if ” analysis of your buff er pools.
To change the size and other characteristics of a buff er pool or to enable DB2
automatic buff er pool size management for a buff er pool, you use the DB2 ALTER

BUFFERPOOL command. You can issue this command at any time while DB2 is
running.

In DB2 9, you can specify 4 KB, 8 KB, 16 KB, or 32 KB buff er pools for user
indexes. Indexes that are created during conversion mode require a 4 KB buff er
pool. If you do not specify a 4 KB buff er pool in the BUFFERPOOL clause when
you create an index in CM, DB2 issues the following error:

Work File Database

The work fi le database is the only temporary database in DB2 9. It is used for
all temporary tables. In DB2 9, the work fi le database merged with the TEMP
database; the TEMP database is no longer used. Job DSNTIJTM creates data sets for
the work fi le database.

The work fi le database DSNDB07 houses work fi le table spaces that are logical
work fi les used in sorting. This sorting could be the result of an SQL ORDER BY,
GROUP BY, DISTINCT, JOIN, or other request. Multiple table spaces are defi ned
for 4 KB and 32 KB sizes in DB2 9, requiring buff er pools to be assigned to these
table spaces as well.

You should increase your space for 32 KB work fi les. You can reallocate the
space by stopping the DSNDB07 database, deleting the old work fi le data sets, and
redefi ning the work fi le data sets as larger or increasing the number of data sets.

SQLCODE = -676, ERROR: ONLY A 4K PAGE BUFFERPOOL CAN BE USED FOR AN INDEX

Work File Database 79

Next, issue the CREATE TABLESPACE statement for each new work fi le. Then, start
the DSNDB07 database.

When allocating multiple table spaces in the sort work fi le database, keep in mind
that DB2 9 gives preference to the least recently used table space whose secondary
quantity (SECQTY) is 0 (zero). It is advisable to allocate multiple work fi le table
spaces with a SECQTY of 0 to facilitate effi cient concurrent I/O.

When allocating the table spaces in the work fi le database for use by declared
global temporary tables (DGTTs) in your applications, defi ne the table spaces
with a non-zero secondary quantity (SECQTY>0) in the work fi le. DGTTs do not
span multiple table spaces; they are limited to one table space. Allocating your
work fi les this way will minimize the contention for space in the work fi les. You
will need to monitor and tune your defi nitions of the table spaces in the work fi le
database to ensure effi cient space use. For more information, see IBM Tech Note
1386786 and maintenance PK70060/UK46839 and PK67691/UK47354.

Utilities do not run against the work fi le database. Statistics are kept on the table
spaces in columns NACTIVE, SPACE, and EXTENTS in the database.

When sorting begins, rows are written to work fi les. At the end of the input phase,
the rows are sorted. If multiple work fi les are used, they are merged together to
produce one work fi le at the end of the input phase.

When an application needs to sort data, the work fi les are allocated on a least
recently used basis for a particular sort. These work fi les are logical work fi les
(LWF) that reside in the work fi le table spaces in DSNDB07 in a non–data-sharing
environment. DB2 uses a buff er pool when writing to the LWF.

Only the buff er pool size limits the number of work fi les that can be used for
sorting. DB2 can support large sorts by allocating a single logical work fi le to
several physical work fi le table spaces. Very large buff er pools can also help avoid
disk I/O.

If you think global temporary tables are monopolizing your sort pool, take a
look at performance class 8 using IFCID 0311. Various factors can impact the
performance of the sort process, such as the size of the sort pool, the size of the

Chapter 2: DB2 for z/OS Overview80

row being sorted, and whether I/O contention is occurring. Keep your work fi les in
buff er pools separate from other data.

Things to Know About Work Files

DB2 uses 32 KB work fi le data sets when the total work fi le record size, which
includes the record overhead, exceeds 100 bytes.

You can use the sort summary trace record (IFCID 0096) to show the number of
sorted records, the record size, and whether a merge phase was required.

Using Parallel Access Volume (PAV) disk devices is a way to minimize I/O
contention.

As I/Os occur in the merge phase of a sort, DB2 uses sequential prefetch to bring
eight pages into the buff er pool. If there are insuffi cient pages in the work fi le
buff er pool, DB2 reduces the prefetch quantity to four or less and might disable
prefetching entirely.

In the buff er pool that supports only 4 KB or 32 KB work fi les, set VPSEQT (the
sequential steal threshold) to 99 percent to avoid overwriting space maps. The
default setting is 80 percent, which means 20 percent of the buff ers can go unused.

If you have SQL that uses an in-memory sparse index scan as an access method,
know that in-memory sparse index is based on the sorted work fi le. DB2 uses the
sparse index to fetch records from the work fi le rather than a table space scan.

Increase the DWQT (deferred write threshold) and VDWQT (vertical deferred
write threshold) values. If you reach the threshold set for these values, writes are
scheduled.

You cannot use RECOVER on the DSNDB07 work fi les (except in a data-sharing
environment).

If DSNDB01.DBD01 is stopped or inaccessible, the descriptor is not loaded into
main storage, and the work fi le will not be allocated. To get around this situation,
stop and restart the work fi le database after DBD01 is available.

Work File Database 81

Remember that the default buff er pool for 4 KB sorting in DB2 is BP0. You should
change the default from BP0 to BP07 or your choice of buff er pool.

During an INSERT statement, a temporary work fi le result table is populated, and it
uses work fi le space. Until this work fi le space goes away, no other process can use
that same work fi le space. The space can be released by the program at commit,
rollback, or deallocation time. Use IFCID 0311 in performance trace class 8 to
distinguish these tables from other uses of the work fi le. This IFCID is the global
temp table usage trace. Among other things, it gives you the program name and
information about the package that uses the global temporary table.

In prior releases, if you granted privileges on the TEMP database, you have to
grant those privileges on the work fi le database to avoid authorization errors.

In DB2 9, the DSNTIJTM job creates the default storage group SYSDEFLT, defi nes
the database that is for temporary work fi les, and binds DB2 REXX Language
Support. By changing the parameters in the last step of installation job DSNTIJTM,
you can specify a diff erent user-managed storage group. You can create additional
work fi le table spaces after running DSNTIJTM by using the DSNTWFG exec
program in job DSNTIST. Check the comment block in this job step for information
about the parameters for DSNTWFG.

If storage space is not a problem, wait to drop the temporary database. Falling back
to DB2 8 will require you to re-create it.

You must defi ne at least one of the table spaces in the work fi le database with
a page size of 32 KB. Static scrollable cursor result tables and declared global
temporary tables both require a 32 KB work fi le database table space. There are no
8 KB or 16 KB table spaces in the work fi le database. You will fi nd a sample query
to check your work fi le database in SDSNSAMP member DSNTESQ.

Rows of a declared global temporary table reside in a table space in a work fi le
database. DB2 will not create an implicit table space for the DGTT table.

There cannot be more than 500 table spaces in the work fi le database for 4 KB or
32 KB work fi les.

Chapter 2: DB2 for z/OS Overview82

For all agents on the local DB2, the number of declared global temporary table
indexes cannot be greater than 10,000.

DB2 9 lets you use the installation CLIST to add table spaces to the work fi le
database as part of the MIGRATE process. Earlier releases allowed this process
only in INSTALL mode. The segment size of the table spaces is restricted to 16
until DB2 enters new-function mode. During migration, job DSNTIJTC creates and
updates indexes on the catalog tables. The migration job will fail if you do not have
enough storage.

Your buff er pool hit ratio for the work fi le buff er pool is a measure of how often a
page access (a getpage) is satisfi ed without requiring an I/O operation. Make your
buff er pools large enough to increase the buff er hit ratio.

Sort Pool

The sort pool is part of the database services address space. DB2 uses a
tournament sort; in this technique (depicted in Figure 2.16), the algorithm
produces logical work fi les called runs. These runs are intermediate sets of ordered
data. If suffi cient room exists, sorting is done in the sort pool; otherwise, the work
fi le database is used.

Figure 2.16: Sorted output

The SORT POOL SIZE fi eld on installation panel DSNTIPC (or the subsystem
parameter SRTPOOL in macro DSN6SPRM) sets the amount of storage required for
the sort pool.

System Error Reporting 83

The buff er pools, sort pool, and RID pool have been moved above the 2 GB bar
and are no longer included in the region size calculation. Local storage for the sort
pool is created above the 2 GB bar at allocation time. The above-the-bar sort pool
contains sort tree nodes. This local sorting can be invoked when a cursor within a
program requires a sort; this usually is prompted by an ORDER BY clause.

DB2 allocates 240 KB as a minimum and 128 MB as a maximum for each
concurrent sort. The default size of the sort pool is 2 MB. DB2 starts with 240 KB
and then adds more storage until either the limit is reached or a maximum number
of nodes is populated in the sort tree (32 KB). The DB2 in-memory sort work area
maintains the storage boundaries for each concurrent sort operation.

You can change the sort pools and other CLIST calculations on installation panel
DSNTIPC (Figure 2.17). Using the SORT POOL SIZE fi eld, you can make the sort
pool as large as possible. The default value, as previously noted, is 2 MB.

Figure 2.17: Installation panel DSNTIPC – CLIST calculations

To investigate further, take a look at IFCID 217 (storage sizes) to fi nd out the total
amount of storage available for storage manager pools.

System Error Reporting

In MVS, most messages are issued from the JES2/JES3 subsystems, Data Facility
Product (DFP), various system products, and application programs. The locations

Chapter 2: DB2 for z/OS Overview84

of these messages can be found at the console, hard-copy log, job log, or SYSOUT
data set. Other messages can be found in the MVS system log data set (SYSLOG).
In z/OS, the job log is used to show the start sequence of DB2.

The DB2 system administrator has the responsibility to debug problems within
DB2. Sometimes these problems may be the DB2 software, a user job, or a
transaction. To aid in determining which component has failed, you capture the
memory contents in a dump. There are diff erent ways to take these dumps and
diff erent data sets that store this information.

Dumps, along with other information (e.g., the console log), can provide
information about where the components have failed. The information you collect
can be written by MVS in four types of system data sets. Figure 2.18 shows the
four types of error data that can be collected.

Figure 2.18: Locations of error data collected

SMF data produces analysis reports, LOGREC data contains statistical data about
machine failures such as I/O errors, SYSLOG data (which resides in the JES2/3
spool space), holds console messages and other system communications, and
DUMP data sets record areas of virtual storage.

System Display and Search Facility

The z/OS System Display and Search Facility (SDSF) lets you monitor, manage,
and control z/OS. You can control job processing, control output, browse jobs
without printing, and manage system resources. Data is displayed on panels in

System Error Reporting 85

tabular format. You select a desired function on an SDSF panel, or you can enter
SDSF or system commands on the COMMAND INPUT line.

You can manage jobs on the Status (option ● ST) panel. Here, you will see the
status of jobs on any queue, including held and non-held output.

DA ● shows only active jobs (address spaces).

O ● (output) displays information about output that is ready to be printed.

H ● (help output) shows the jobs on hold.

Operators and system programmers have a more robust SDSF Primary Option
menu (Figure 2.19) that includes the system log, WLM resources, and more. You
can use this menu to manage jobs.

Figure 2.19: Expanded SDSF Primary Option menu

Using SDSF, you can view the system log online, view a merged sysplex log
(LOG O), view a separate display of system requests (including action messages
and write to operator with reply messages, or WTORs), and search for specifi c
information using SDSF commands.

The SDSF FIND command lets you search the system log. New log data is added
to the bottom of the log, so you might want to repeat the fi nd or enter a command
that repeats the search at some time interval, such as BOT &20, which goes to the
bottom of the log every 20 seconds.

Chapter 2: DB2 for z/OS Overview86

SYS1.LOGREC

The SYS1.LOGREC data set is a repository of information about system-level
software errors or hardware problems. You can use LOGREC as a starting point
for diagnosing a system problem. You typically look at logs (which can include
SYSLOG, OPERLOG, the job logs, and traces associated with the problem you
are investigating) from the starting time frame of the problem. The problems in
need of investigation can be varied and may include loops, abends, system hangs,
performance problems, and output problems.

DB2 Tools for Problem Diagnosis

Several DB2 commands are available to assist in DB2 problem diagnosis:

DISPLAY DATABASE(*) USE/LOCKS LIMIT(*) ●

DISPLAY UTILITY (*) ●

DISPLAY THREAD(*) DETAIL ●

D A,ALL ● (or D A,ssid* or D A,IRL*)

D GRS,CONTENTION ●

D OPDATA ●

The MVS system log data set (SYSLOG) contains the output from these commands;
be sure to keep this information. The command output is also stored in the master
trace table. The master trace table output in a dump includes the most recently
issued system messages. Use these commands before performing a dump for the
DB2 address spaces to capture information.

Data-sharing environments should fi nd two additional commands useful in
collecting information:

F irlmproc,STATUS,ALLI ●

F irlmproc,STATUS,ALLD ●

DB2 Tools for Problem Diagnosis 87

Running the DB2 DIAGNOSE utility with the MEPL option produces a Module
Entry Point Listing, which shows the PTF level of the DB2 modules. The DB2
MSTR dump will contain this data as well.

If the DB2 subsystem or the MSTR address space is hung, the DISPLAY commands
will not produce a response. In that case, the only other option is a dump of the
related DB2 address spaces.

Dumps

Certain codes and messages generated by DB2 require you to dump the DB2
address spaces. You typically will dump the DBM1, MSTR, or IRLM address space.
You may be asked to provide a DDF, DIST, or SPAS dump. When problems occur,
look for all available diagnosis information, which might include traces, dumps,
SYS1.LOGREC entries, error messages, hardware device problem information, and
any other information you can assemble to help diagnosis the issue.

Several dump types are provided in z/OS:

Abend ●

Snap ●

Stand-alone ●

Supervisor call (SVC) ●

Transaction ●

The type of dump you select depends on the problem you are experiencing and the
data you may need to acquire.

If you experience a program problem or an abnormal end to an authorized
program, you can request an abend dump. Three types of abend dumps can be
produced:

SYSABEND ● is the largest of the abend type dumps.

SYSUDUMP ● is the smallest of the abend dumps.

Chapter 2: DB2 for z/OS Overview88

SYSMDUMP ● is the only abend dump you can format using the Interactive
Problem Control System (IPCS). It contains a summary of the failing
program and some system data relating to the task.

If you are testing a problem program and need a dump while the program is
running, a snap dump is appropriate. This type of dump shows one or more virtual
storage areas that a running program requests. Snaps are preformatted; you cannot
use IPCS to format a snap dump.

A stand-alone dump is called for when a system problem occurs — for example,
when system processing is slow or stops or when the system is in a wait or a loop.

If you have a system problem but the system continues to process, a supervisor
call dump is recommended. There are two ways to use SVC dumps:

When the system experiences an unexpected system error but continues ●

to process

When an operator or an authorized program requests an SVC dump ●

An SVC dump produces a summary dump with control blocks and system code
and can be analyzed using IPCS.

A transaction dump is a CICS formatted dump for the program that was active at
the time the dump was requested. A transaction dump indicates where the error
occurred within the program.

Based on the error you receive (e.g., 04E or 04F abends), you may be asked to
obtain a dynamic dump, which is sent to the SYS1.DUMPxx data set. You might also
be requested to copy the BSDS using the DSNJU004 utility.

Under z/OS, DB2 supports IPCS and the DB2 dump formatter/printing routine,
DSNWDPRD. To invoke DSNWDPRD, use the following command:

DB2 VERBEXIT DSNWDMP

DB2 Tools for Problem Diagnosis 89

The DB2 Diagnosis Guide and the z/OS dump and printing documentation provide
more information about this control statement.

SMF

A DB2 trace produces SMF records. The DB2 Instrumentation Facility Component
(IFC) provides a trace facility. The analysis of the trace records must take place
outside DB2.

You can send data to SMF in several ways:

By writing an application to read and report information from the SMF ●

data set

By using OMEGAMON to format, print, and interpret DB2 trace output ●

By using Tivoli Decision Support for z/OS to collect data and create reports ●

SMF must be operational before you can send data to it. You use member
SMFPRMxx in SYS1.PARMLIB to activate SMF and indicate which types of records
SMF will accept. Be sure to specify the ACTIVE parameter and the proper TYPE
sub-parameter.

The EREP Program

The z/OS error facilities can collect information about hardware and software errors
in the form of an error log. You can then use the Environmental Record Editing
and Printing (EREP) program to produce reports from this data. The error log can
be written to an MVS data set or, in a Sysplex environment, to a log stream in the
coupling facility. Or, you may instead decide not to record the error log at all.

The LOGREC parameter of the IEASYSxx member of SYS1.PARMLIB defi nes
the location of the error log. The ICFEREP1 utility offl oads the log to a history
data set, which you can then use to make periodic tape backups and to print
reports. Another utility, IFCOFFLD, lets you perform an emergency offl oad of
the EREP data set. This alternative is quick but does not record any statistical
information. If the data set fi lls up, recording stops and Z/OS continues with no
error log recording. The manuals detail the recommended methods for coding and
scheduling the offl oad and reporting jobs.

Chapter 2: DB2 for z/OS Overview90

When an internal error occurs, DB2 records it in SYS1.LOGREC — known as the
“logrec” or the Error Recording Data Set (ERDS). You typically obtain a listing of
SYS1.LOGREC data sets by executing program IFCEREP1, the EREP job. The EREP
program can format error reports.

A downloadable tool called the Logrec Viewer lets you view the LOGREC using
the Interactive System Productivity Facility (ISPF). For more information and
the download link for this tool, go to http://www-03.ibm.com/systems/z/os/zos/
downloads/logrec_viewer.html.

IPCS VERBX

You can use the EREP program or the IPCS VERBX LOGDATA command to format
software records recorded in SYS1.LOGREC. The IPCS diagnostic tool is provided
in MVS to help diagnose software failures. Its facilities include formatting and
analysis support for the traces and dumps produced by MVS, program products,
and applications running on MVS.

MVS dumps fall into two categories: formatted dumps and unformatted dumps.
You can use IPCS to format and analyze unformatted dumps. IPCS does not work
with formatted dumps.

IPCS services provide a tool to format dumps and traces in both batch and online
mode. Commands provided by the facility let you interrogate components to
review storage locations or control blocks. The most common IPCS command is
VERBX (Verb Exit), which formats data by product. DB2 dumps that use IPCS can
be processed with the VERBX DSNWDMP IPCS command, which formats the DB2
dump data.

IPCS LOGDATA

When searching the data, you can use IPCS subcommands to pinpoint the problem
(e.g., a wait, loop, or abend), or you might look for a CSECT name or component
name that, through systems and messages, directs you to the problem.

Before you can use the data, you need to format the dump. The VERBX LOGDATA
command formats SYS1.LOGREC records from the storage buff er. Input to IPCS
is either an unformatted stand-alone or SVC dump. Be aware that it must be a
complete dump.

DB2 Tools for Problem Diagnosis 91

LookAt

IBM’s LookAt facility runs on VM, TSO, and Microsoft Windows and takes the
user directly to an online reference that opens to the section addressing a subject
message ID. For more information about LookAt, go to http://www.ibm.com/
eserver/zseries/zos/bkserv/lookat.

DB2 Start-Up and Shutdown Messages

Console messages for the active address spaces provide an incredible amount
information. You can view these messages using SDSF.

Prefi xes on the messages indicate the component associated with the problem,
such as DFH for CICS or DSN for DB2. Figure 2.20 shows an example of messages
issued upon DB2 start-up, beginning with the job initiator message $HASP373.

Figure 2.20: DB2 start-up system messages

SYS1.DUMPxx

The DUMP command requests a system dump (SVC dump) of virtual storage.
The data set can be a pre-allocated dump data set named SYS1.DUMPxx, or you
can automatically allocate a dump data set based on your installation’s specifi ed
naming convention. As previously noted, diff erent types of dumps are available to
analyze problems. The processes to acquire these dumps are discussed in a series
of IBM Redbooks called the ABCs of z/OS System Programming.

If you are looking at an SVC dump of a DB2 address space, examine the LOGREC
symptom string to help determine the failing DB2 component.

Chapter 2: DB2 for z/OS Overview92

MVS Tracing

There is only one way to activate a Generalized Trace Facility (GTF) trace: you
must enter the START GTF command from the console that has master authority.
You select your cataloged procedure or IBM-supplied procedure for GTF. The IBM
GTF cataloged procedure in located SYS1.PROCLIB. It defi nes the GTF operation,
how much storage you will need, the output destination, and the trace data sets.

A GTF trace shows the system processing events over time. This type of trace uses
more CPU time than a system trace. The trace operates in its own address space as
a system task.

DB2 Tracing

To run a DB2 trace, you can issue the START TRACE command from an MVS
console, a DB2I command panel, a DSN session, a CICS or IMS terminal, or an
IFI program. You must have the proper authorization of SYSADM, SYSCTRL, or
SYSOPR. The command must include a trace type option of PERFM, STAT, AUDIT,
ACCTG, or MONITOR. For example:

DB2 Trace Output

The START TRACE command’s DEST option specifi es where the trace output is to be
recorded. You typically will request that the trace be sent either to GTF or to SMF.

The MVS GTF record identifi er for DB2 trace records is X’0FB9’. The SMF
record type depends on the IFCID record:

IFCID record SMF record type

1 (system services statistics) 100

2 (database services statistics) 100

3 (agent accounting) 101

202 (dynamic system parameters) 100

230 (data sharing global statistics) 100

239 (agent accounting overfl ow) 101

All others 102

-START TRACE (PERFM) DEST(GTF) PLAN(plan_name, ...) CLASS(class)

Storage Management Subsystem 93

To trace all performance class records and write to GTF, you would start the trace
as follows:

Chapter 6 provides more information about tracing.

Storage Management Subsystem

Disk storage has changed rapidly over the past few years, resulting in the delivery
of new functions and improved performance. To keep pace and make use of these
disk improvements, DB2 has undergone many changes.

Extended Address Volume (EAV)

An Extended Address Volume (EAV) supports 223 GB per volume on z/OS 1.10
and the IBM System Storage DS8000 to address the problem of running out of z/
OS addressable disk storage due to the four-digit device number limit. An EAV
is 65,536 cylinders or larger. Data sets on an EAV are eligible to have extents in
the extended addressing space. This includes the VSAM data types for DB2, both
SMS and non-SMS managed. EAV provides constraint relief for DB2 applications
that use large VSAM data sets.

Parallel Access Volume

DB2 9 also continues to use Parallel Access Volume and Multiple Allegiance
features of the IBM TotalStorage Enterprise Storage Server (ESS) and DS8000.
PAV enables more than one I/O operation to be processed on a single logical 3390
volume, signifi cantly reducing device queue delays. This is done by assigning
multiple addresses to volumes. Implementing PAV devices is accomplished using
static or dynamic alias management.

With this support, your careful data set placement methodology of the past can
be replaced with the use of PAV and SMS group policies for data separation.
PAV reduces I/O responses by reducing I/O supervisor queue (IOSQ) time, and
SMS can be used to “spread” data for partitions across volumes. Together, the two
reduce I/O contention.

-START TRACE(PERFM) DEST(GTF) CLASS(*)

Chapter 2: DB2 for z/OS Overview94

In addition, the SMS groups provide eff ective organization of data for
recoverability when you use the BACKUP and RESTORE system utilities. SMS
grouping can also aid in the cloning of systems.

PAV requires a fi ber channel connection (FICON) attachment feature. It is possible
to vary the number of parallel accesses to a PAV.

DSVCI

DB2 8 introduced the ability to have control interval sizes that are the same size
as the page being allocated. You enable this support through the online updatable
DSNZPARM DSVCI. Making the CI size the same as the page size allows for
data integrity because you can be sure that the whole row is intact when it is
externalized.

Before this enhancement, there were some instances of data integrity exposures
for 8 KB, 16 KB, and 32 KB objects when writing to disk at the extent boundary.
The integrity exposure caused DB2 not to allow these objects to use VSAM
multi-striping and required you to run a SET LOG SUSPEND command when doing
split mirror design backups. In addition, concurrent copy required SHRLEVEL

REFERENCE for 32 KB pages and did not allow CHANGE. With DSVCI, the integrity
issue has been resolved, and these functions are now available for all page sizes.

SMS Storage

SMS storage lets the operating system take over storage tasks that we usually do
manually. To implement SMS, you defi ne a volume pooling structure made up of
storage groups. Routines are executed by the system to control the allocation of the
storage groups. Automatic class selection (ASC) routines defi ne which data sets
can be allocated in which storage group.

DFSMS implements the policies put in place regarding how hardware resources
and space should be handled. Installation panel DSNTIPA3 (Figure 2.21) lets you
defi ne the SMS data class, management class, and storage class associated with
your data sets in DB2.

Storage Management Subsystem 95

Figure 2.21: Installation panel DSNTIPA3 – SMS data parameters

SMS Classes and Groups

The constructs within the basic structure of SMS consist of classes and groups:
data class, management class, storage class, storage group, aggregate group, tape
library, optical library, and optical drives, as well as a base confi guration for the
systems and groups.

Data classes actually apply to non-SMS or SMS managed data sets. You can
specify space parameters associated with your data sets.

Storage classes are only for SMS managed data sets, supplying information about
dynamic cache management, concurrent copy, or sequential data set striping.

The management class applies to SMS data sets, which supply a list of migration
information about backup and retention. The DFSMS Hierarchical Storage
Management (DFSMShsm) tool uses these attributes for storage management.

Storage groups apply to SMS and relate to the physical storage for data sets and
objects. The six types of storage groups are pool, object backup, tape, dummy,
VIO, and object.

These classifi cations allow service levels for data sets to be assigned and permit
the system to be managed automatically.

Chapter 2: DB2 for z/OS Overview96

Parallel Sysplex and DB2

Parallel Sysplex is a clustering approach for S/390 systems. A group of IBM
mainframes linked in this type of environment is called a system complex, or
sysplex.

Applications running on more than one DB2 subsystem can write and read to the
same databases concurrently and share the same DB2 catalog. Data sharing gives
the ability to cluster together up to 32 DB2 subsystems to provide shared data,
availability, and workload management and to take advantage of parallel sysplex
on the zSeries and z/OS. The parallelism across participating DB2 members and
the ability to add processors to scale vertically provides a near-linear support.

Coupling Facility

A coupling facility (CF) consists of one or more processors running specialized
code that coordinates events across multiple members of the data-sharing group.
Three structures make up the CF, and all three reside in one or more CFs:

Group buff er pools ●

Shared communications area (SCA) ●

Lock structure ●

The group buff er pools contain data and index pages being accessed across the
data-sharing group. The SCA is for recovery and startup across the group. The lock
structure maintains the integrity of the data across members. Data sharing in DB2
is an option.

Large Mainframe Systems and Hardware Resources

The IBM z9 Integrated Information Processor (zIIP) is a specialty engine for
the System z9 mainframe. The z/OS operating system manages and directs the
work between general-purpose processors and the zIIPs. DB2 9 redirects more
processing to the zIIP engine. The zIIP engine is designed so that a program can
work with z/OS and have all or a portion of its enclave SRB work directed to
the zIIP.

Workload Manager 97

DB2 8 for z/OS was the fi rst DB2 version to exploit the zIIP with System z9 109
and z/OS 1.6 or later. No changes are required for DB2 8 for z/OS applications
to use the zIIP. The PTFs listed in info APAR II14219 provide more information
about the requirements for DB2 8 and DB2 9 of DB2.

Workloads Benefi ting from zIIP

Workloads in DB2 that benefi t the most from the zIIP engines are business
intelligence (BI), enterprise resource planning (ERP), customer relationship
management (CRM), data warehousing, and DB2 utilities.

For data warehousing, those requests that use parallel queries, including star
schemas, benefi t from the offl oading of work to the zIIP. The DB2 utility functions
used to maintain index maintenance structures also benefi t. Applications such
as BI, CRM, and ERP and other applications that use DRDA over a TCP/IP
connection (enclave SRBs, not stored procedures or user-defi ned functions) also
benefi t from the offl oading of work to the zIIP engine.

Estimates show the following possible reductions in Class 1 CPU time with
the zIIP:

REBUILD INDEX ● : 5 to 20 percent

LOAD ● or REORG of a partition with one index only: 10 to 20 percent

LOAD ● or REORG of an entire table space: 10 to 20 percent

REBUILD INDEX ● of a logical partition of a non-partitioning index: 40 percent

REORG INDEX ● : 10 to 20 percent

LOAD ● or REORG of a partition with more than one index: 30 to 60 percent

When » LOAD or REORG is used with many partitions or indexes and CPU
enclave SRB during index rebuild phase: less than 10 percent

Workload Manager

The Workload Manager component of z/OS implements dynamic workload
management. WLM buff er pool management is also available in conversion mode.

Chapter 2: DB2 for z/OS Overview98

In DB2 9, the maximum name length of the default WLM environment (defi ned
in subsystem parameter DSN6SYSP, macro WLMENV) is increased from 18 to 32
characters.

WLM can dynamically redistribute or allocate server resources such as I/O,
memory, and CPU across workloads (groupings of work) based on defi ned goals
and resource demand within a z/OS image.

WLM manages workloads by assigning goal and work priorities based on your
business requirements. WLM uses these goals to dynamically adjust access to
storage and processor resources.

WLM uses several constructs in managing workloads. These include service
defi nitions, service policies, service classes, report classes, and resource groups.

Service defi nitions ● contain a set of classifi cation rules that separate incoming
work into distinct service classes and multiple service policies. A service
defi nition deals with the management of work that needs to be identifi ed and
grouped into classes.

A ● service policy is a named set of goals associated with the service classes.
A policy applies to all work running in a sysplex. You can have one policy
active at a time.

Service classes ● are associated with a base goal.

Report classes ● provide greater granularity than service classes. You can
defi ne up to 999 report classes.

Resource groups ● control the CPU service units per second consumption of a
set of classes. They defi ne a minimum and maximum amount of service that
the service classes should not exceed. Resource groups are not required.

You use the WLM ISPF application panels to defi ne a service defi nition. Then,
from the menus, you create your workloads, policies, resource groups, service
classes, and other defi nitions.

Enclave 99

Service Classes

Service classes are a named collection of work within a workload. They defi ne the
runtime requirements for that work. Assigning an importance to each service class
gives the workloads within it a preference; this is the fi rst step in separating work
into distinct service classes. WLM examines all service classes every 10 seconds
to determine which classes might need help with resources. Be careful not to over-
allocate service classes, or WLM may need to make too many adjustments to your
work assignments.

Each service class is associated with a goal and an importance to manage work.
Goals for service classes can be defi ned as average response time, execution
velocity (the acceptable amount of work delay), percentile response time (ending
work within a certain time limit), or discretionary (when there is no specifi c goal
defi nition or no specifi c importance for work in the service class).

An appropriate installation-defi ned service goal for the DB2 address spaces MSTR,
DBM1, and DIST is a high velocity goal. Most of the DB2 thread work applies to
the user goal. User work runs under separate goals for the enclave.

Work is classifi ed into distinct service classes by subsystem type, which usually
is related to an application. You defi ne the service classes and goals in a service
defi nition.

The two primary system service classes are SYSTEM and SYSSTC. Classify address
spaces that support the system or its operation as service class SYSSTC, and
classify all system-related address spaces as service class SYSTEM.

A third class, named SYSOTHER, is predefined in the
system. You should classify all work so that SYSOTHER
is not used.

Enclave

We previously discussed enclaves as they relate to DDF. DB2,WebSphere, and
other major components and middleware applications on z/OS also exploit enclave

Chapter 2: DB2 for z/OS Overview100

management. In enclave management, all functions are given to the end user in
defi ning goals, monitoring execution, and observing the progress of work in the
system. WLM can manage the enclave directly, independently of the address
spaces where the execution units belong.

Stored Procedures

The stored procedure type dictates the process used to create a stored procedure.
DB2 for z/OS supports the following types of stored procedures:

Native SQL procedure ● : The body of this type is written in SQL, and no C
program is generated by DB2. Native SQL procedures are WLM-managed.

External SQL procedure ● : The body of an external SQL procedure is written
in SQL, and DB2 does generate an associated C program.

External stored procedure ● : These are written in a host language.

In addition, Java stored procedures and user-defi ned functions can contain SQL
statements. A client program written in any supported language invokes the Java
stored procedure. Java Database Connectivity (JDBC) type 4 connections are
recommended to engage the zIIP engine. JDBC requests are sent to DB2 using
JDBC driver type 2 or driver type 4.

Administrative Tasks

You can use the administrative task scheduler to run tasks, which can be JCL jobs
or stored procedures. Once defi ned, these tasks are stored in two redundant task
lists: SYSIBM.ADMIN_TASKS and a VSAM data set defi ned in ADMTDD1.

You manage the scheduler task list using DB2 stored procedures that add or
remove tasks (ADMIN_TASK_ADD and ADMIN_TASK_REMOVE). DB2 also provides
user-defi ned functions that help you monitor the task list (ADMINT_TASK_LIST)
and the status of tasks in DB2 (ADMIN_TASK_STATUS).

The scheduler is a started task named in DB2, and it starts when DB2 is brought
up. The scheduler’s name is ADMTPROC.

z9 Processor and Specialty Engines 101

Because the scheduler manages two redundant task lists, it can continue working
even if one of the task lists becomes damaged or unavailable. If a task list is
corrupted, you will receive the message DSNA679I. You can recover the VSAM
data set for the ADMIN_TASKS task list. As soon as this data set is available, the
scheduler will perform an autonomic recovering of the contents.

z9 Processor and Specialty Engines

IBM’s zIIP specialty engine is a less expensive alternative to CPU costs.
Workloads are eligible to be offl oaded to zIIPs if they run under a z/OS enclave
SRB. Workload Manager in z/OS manages the workloads that are eligible for
offl oading. WLM directs the work between the zIIP and the central processor
without any changes to your programs.

zIIPs and Workloads

Workloads that can offl oad work to the zIIP include native stored procedures,
some portions of star-schema parallel queries, and parts of the index build and
maintenance process of the REORG, LOAD, and REBUILD INDEX utilities. IFI
includes DB2 support to refl ect zIIP- and CPU-related performance information.
WLM algorithms verify the buff er pool size, adjust it (if necessary) to prevent out-
of-storage conditions, and try fi rst to take storage from other buff er pools to make
the adjustment.

WLM Services and zIIP

Stored procedures, DDF, and buff er pools are all managed by WLM. SMF records
for enclave reporting are types 30 and 72:

Type 30: The record contains the resources consumed at the address space ●

level.

Type 72: Have a service class record and a report class if it is in the service ●

policy. So, with WLM, you can separate the enclaves into diff erent classes,
either report or service, to get a better idea how the work is being done in
DDF.

Chapter 2: DB2 for z/OS Overview102

Activating zIIP for DB2

Hardware zIIP engines z9 BC and z9 EC models have the zIIP engines available.
No further action is required to implement zIIP use once the hardware and
software are installed.

RMF

The Resource Measurement Facility Workload Activity report summarizes
resource consumption by workload and by service class periods within workloads.
The PROJECTCPU=YES option enables RMF to monitor DB2 to assess how zIIP
consumption would be used. You can run this projection capability at any time.

The PROJECTCPU=YES option enables z/OS to collect zIIP usage data as though
a zIIP was confi gured when the target workload is being run. When you use this
parameter, RMF and SMF show the calculated zIIP time, which is used to gain an
accurate zIIP projection.

Practice Questions 103

Practice Questions

Question 1

Question 2

Question 3

Name the three major groups of subcomponent code structure in DB2.

A. SSAS, DBAS, DDF

B. SSAS, DBAS, IRLM

C. SSAS, DBAS, SPAS

D. SSAS, DBAS, WLM

At DB2 address space termination, what happens to the DB2 shared memory
object area?

A. It continues to run, but the VSO is deleted.

B. It is freed, and interest in the VSO is deleted.

C. It will continue to be available on the next start-up of DB2.

D. It will not be affected.

An inactive connection in DB2 was previously called:

A. Type 2 inactive thread

B. Inactive DBAT

C. Active DBAT

D. Type 2 active thread

Chapter 2: DB2 for z/OS Overview104

Question 4

Question 5

Question 6

Question 7

When trying to establish the total number of threads that can access data in
DB2, what should you do?

A. Add MAXDBAT and CTHREAD.

B. Subtract CTHREAD from MAXDBAT.

C. Divide MAXDBAT by CTHREAD.

D. Check MAXDBAT only.

Native stored procedures, if invoked from DRDA TCP/IP connections to DB2,
may:

A. Be eligible for zap processing

B. Be eligible for zIIP processing

C. Be eligible for zIIP and zap processing

D. Are not eligible for either zIIP or zap processing

What are the associated pools in the EDM pool (RDS)?

A. EDMDBDC, EDMSTMTC, EDM_SKELETON_POOL

B. EDMDBDC, EDMSTMTC

C. EDMDBDC, EDM_SKELETON_POOL

D. EDMDBDC

The DSNZPARM parameter MAXKEEPD is used to:

A. Limit the number of threads

B. Limit the number of dynamic statements held in the cache

C. Limit the number of statistics kept on dynamic cache

D. Limit the number of threads to keep

Practice Questions 105

Question 8

Question 9

Question 10

Which DSNZPARM defi nes the number of RID blocks in the RID pool
storage?

A. CONDBAT

B. URLGWTH

C. NUMTCB

D. MAXRBLK

What buffer sizes are supported for the DSNDB07 database?

A. 4 KB, 8 KB, 16 KB, 32 KB

B. 4 KB, 32 KB

C. 4 KB, 16 KB

D. 4 KB, 8 KB

What are the types of dumps in z/OS?

A. Transaction, abend, stand-alone

B. SVC, transaction, abend, stand-alone, snap

C. Stand-alone and snap

D. Stand-alone, abend, snap, dump

