
PREFACE

hat could be more exciting than learning the cool subfi le concepts and 
techniques provided in the fi rst edition of this book? Learning more in 
this new edition, of course! Actually, subfi le concepts haven’t changed 

much from their inception in 1981, but the RPG language has changed, and changed 
drastically at that. Therefore, I felt it was time to update my previous book, Subfi les 
in RPG IV, to keep up with the new, hip version of RPG, as well as to take the 
opportunity to clean, tighten, and spit-shine, where needed. (Don’t worry, no real spit 
was used in the creation of this book.)

The most signifi cant change to the RPG language, and the focus of this edition, is the 
introduction of free-format RPG in the spring of 2001, with the release of V5R1. Yes, 
the publication of this book coincides with the tenth anniversary of free-format RPG! 
Although I use free-format RPG almost exclusively in the examples in this book, my 
purpose here is not to teach you how to use free-format RPG, nor to compare free 
format to its RPG predecessors. If you would like to learn more about free-format RPG 
on its own, Jim Martin’s great book, Free-Format RPG IV (MC Press, 2005), provides 
everything you need to know about the latest, and defi nitely greatest, modifi cation to 
the RPG language.

All that said, one advantage of free-format RPG is that it is easier to read than the 
prior versions of the language. So, even if you haven’t coded much in free-format 
RPG, but are seasoned in one of the prior fl avors of the language, you should be 



2 • Subfi les in Free-Format RPG

able to understand what is going on. That, combined with my excellent program 
documentation (ahem), should make understanding my code a piece of cake.

There are a few examples in this book that I decided to keep as they were in the 
previous edition, rather than rewrite for free-format RPG. Specifi cally, in Chapter 
5, I kept the original RPG code instead of prototyping the message API call statements 
for free-format RPG. In Chapter 8, I also retained the original RPG code around the 
embedded SQL statements. Because there is no way to code embedded SQL in free-
format RPG, I kept the RPG surrounding the embedded SQL statements in column-
based RPG, so as not to confuse the issue . . . much like I may have confused the issue 
here in my explanation!

In addition to converting most of the original programs into free-format RPG, I also 
cleaned things up a little in this edition. Over the years, some “undocumented 
features” (errors) have been found in the code and text from the fi rst edition. I took 
this opportunity to fi x those things, and to generally rewrite and tighten some of the 
code from the fi rst edition. In a few places, I realized that the free-format language 
enabled me to do things in new ways, so I decided to experiment a little, while keeping 
the original subfi le-related content intact. How could I pass up a chance to use a For 
loop in RPG? Come on, you would have done the same thing. I also reread the whole 
book and added further explanations where I thought it necessary. (I just wanted you to 
know that, so you’d be impressed.)

I made a few other changes in the areas where I refer to the machine or the operating 
system. The term “OS/400” has been replaced with “IBM i” and “AS/400” with 
“System i.” To be frank, I do not like the new names. I would have loved to stick with 
“OS/400” and “AS/400,” but I had to roll with the times; however, if you happen to 
see one of these beloved terms in this book, do not consider it an error. Instead, know 
that it is my way of going “old school,” showing you that some habits die hard.

Last, with this edition, you can view and download the complete source for all 
examples at http://www.mc-store.com/5104.html.



INTRODUCTION

ou may ask yourself, “Why another book on subfi les? Have subfi les changed 
since their inception on the System/38, in 1981? Can’t I read the IBM manuals 
and previously written subfi le books and get along just fi ne?” Of course you 

can! The basic concepts of subfi les haven’t changed much, and yes, you can read the 
IBM manuals and previously written materials to learn about subfi les.

“So what’s with the new book?” you might ask. Well, even though the basic concepts 
of subfi les haven’t changed much over the years, there have been some additions and 
improvements, including new Data Description Specifi cations (DDS) keywords and 
their related implementation techniques. Also, the language surrounding subfi les has 
changed drastically since those early days. The reconstruction of RPG in the form 
of RPG IV, along with the introduction of the Integrated Language Environment 
(ILE), has signifi cantly changed how we create applications and has pushed the IBM 
midrange development environment closer to more of an object-oriented approach.

What follows from the changes to the system, to RPG, and to subfi les are new design 
fashions and programming techniques that must be consumed to fully take advantage 
of the environment, allowing us to create the best possible software solutions. A 
subset of this understanding is learning how to best employ subfi les in this modern 
environment. It’s one thing to learn the basic concepts of subfi le programming; 
it’s quite another to learn how to program them in ways that allow them to work in 
harmony with today’s surroundings. Reading previously written materials may satisfy 
part of the equation, but those resources won’t teach you about what’s new or about 



4 • Subfi les in Free-Format RPG

the most effective and effi cient ways to incorporate subfi le programming into today’s 
development environment.

About This Book

So yes, this is another book on subfi les. But this one will provide you with the 
concepts, styles, and advanced topics of subfi le programming, using RPG IV and ILE 
as its media. It will provide easy-to-understand explanations of subfi le concepts, a 
bounty of practical examples, and some advanced techniques seldom seen in previous 
subfi le books.

This book will take you on a journey from the very beginnings of subfi le programming 
all the way to advanced techniques practiced by only those with a solid grasp of 
subfi les and the programming techniques and features of RPG IV and the ILE. More 
than simply getting you started with subfi les, it’s meant to be a comprehensive 
resource that’s used over and over again as you advance from very basic usage to guru-
like practices.

This isn’t a textbook—there are no exercises and exams at the end of each chapter 
to test what you’ve learned—but it certainly can be used as one. Each chapter builds 
upon the next so that you start with a solid base and build on that base as you proceed 
through the book. The purpose of this approach is to provide concepts, explanations, 
and practical examples you can use as templates for further development. The examples 
are available for download at http://www.mc-store.com/5104.html, so don’t worry about 
having to rekey the code. Some basic knowledge of RPG IV and DDS is assumed. The 
contents of this book are there for the fi ne-tuning and enhancements of your skills.

What Does It Mean for Your Career?

Mastering subfi les has often been the defi ning moment in an RPG programmer’s 
career. You might have been the best RPG II programmer in the world coming off 
the System/36, but if you didn’t know subfi les, you were probably dismissed as an 
intermediate and told to “learn subfi les.” Whether this is justifi able is another issue, 
but it’s a widely accepted fact that until you know subfi le programming, you can’t say 
you’re an expert.



Introduction • 5

When I interviewed for new jobs, the big question was always, “Do you know 
subfi les?” Not until I could confi dently answer yes to that query and eagerly await the 
subfi le-related questions that would surely follow did I know I had arrived. Armed 
with the formidable subfi le power, I couldn’t wait to go on interviews. Once hired as a 
programmer with subfi le experience, I was looked at in an entirely new light.

This phenomenon is less apparent now for three reasons. First, subfi les have been 
around for many, many years now, and programmers entering the IBM i world 
today are being exposed to subfi le programming. Second, the intervening years have 
swallowed up many a System/36 programmer, so there are mighty few programmers 
coming from a system where subfi les weren’t available. Third, and most disturbing, 
is the perception that more RPG programmers know subfi les. I’ve worked in shops 
where this perceived knowledge spread throughout the programming staff like the 
plague. The problem was only partly the programmers’ doing. They were assigned 
to programming projects that required subfi les and, using existing subfi le programs 
as templates (as we’ve all done), would merrily code away. Well, simply cloning a 
subfi le program doesn’t make you knowledgeable in subfi le programming. The other 
problem was with the code being used as a template. As you’ll see later, there are a 
variety of subfi le types, and each is used in a certain circumstance. Understanding this 
determination is paramount to writing good subfi le programs.

What is still happening today in some shops is that the proper subfi le techniques aren’t 
being used in the correct circumstances. Worse still, there’s some bad code out there, 
even if it is employing the appropriate technique. If someone clones a subfi le program 
but doesn’t know subfi les, he may not know it’s bad or inappropriate code. Once he 
uses bad or inappropriate subfi le code as a template, some people might assume he 
knows subfi le programming when all he really knows is how to clone bad subfi le 
programs. The proliferation of subfi le programs in this manner can be hazardous to 
your IT shop’s health.

Don’t follow in that vein. Come learn some basic and advanced techniques for yourself 
so you can stop bad subfi le programming in its tracks. And take the time to learn how 
to use subfi les with other IBM i tools such as recursion, data queues, and embedded 
SQL to create very powerful and effi cient applications.


