
C H A P T E R

Using C Functions

Use library functions.
—Brian Kernighan and P.J. Plauger

Most RPG programmers don’t know the C programming language
and avoid technical articles or discussions that have anything to do

with it. Until 1993, so did I. That year, I took some college classes in
which C was the only language that could be used for assignments. I found
that C was very different from RPG, but writing my own functions was
very appealing. When I returned to an RPG environment in 1994, I as-
sumed that I would not see any C programming again. In late 1994, how-
ever, IBM introduced RPG IV and ILE. At that point, integrating C
functions with RPG IV programs became a possibility.

Why Use C Functions?

The RPG IV language has a rich complement of op-codes and BIFs, so
why would you consider accessing functions designed for the C language?
The answer is that the C language gives you some functions you don’t have
in RPG, as well as functions that are more efficient than native RPG opera-
tions. Integrating C functions with your normal RPG code is easy, giving
you the best of both languages.

To access a C function, you need to know the function’s interface, includ-
ing its name, number of parameters, parameter data types, and return value,
if any.

3

To see why C functions might be useful to RPG programming, let’s look at
a few examples. Let’s start with the C function Rand, which is used for ran-
dom number generation. It has to be initialized with another function,
called Srand, which “seeds” the random number generator. The notion of
seeding is to set an initial value that is kept in the system somewhere. The
Rand function cannot be used without first doing Srand, which must be run
only once.

Here are a few technical details to keep in mind when using these functions:

● Srand requires an unsigned integer parameter, and there is no return
value.

● Rand has no parameters, and returns an unsigned integer return
value.

You’ll see examples that use both the Rand and Srand C functions later in
this chapter.

Now, let’s look at another C function, Strtok. This function is called
string-token, and it is a string parser. For example, consider the string “The
cat is gray.” This string can be broken into separate tokens of “The,” “cat,”
“is,” and “gray” by using this function repetitively.

Here are few technical details to keep in mind when using this function:

● Strtok requires a string parameter and a delimiter character.

● The return value for Strtok is a pointer to a token (a character string
up to the first delimiter), or a null pointer.

● It is common practice to use a blank as the delimiter, but other
characters can be used.

You’ll find an example that uses the Strtok function later in the chapter.

Now, let’s consider a higher math function, Sin (the trigonometric function
sine). Here are few technical details to keep in mind when using this
function:

● The Sin function has one parameter, the angle in radians.

● It must be defined as a floating-point data type, either 4f or 8f.

● The return value is also floating-point.

Chapter 3: Using C Functions20

Review the IBM reference manual ILE C/C ++ Runtime Library Functions
Reference for details on these or any other C function you might be inter-
ested in. The document number is SC41-5607. This IBM publication can
be viewed on the web at the following link:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/
topic/books/sc415607.pdf

How C Functions Work with RPG IV
Using a C function within an RPG IV program requires the use of a proto-
type. The prototype defines to RPG IV the function’s return value (if any)
and the parameters needed for the function.

For example, consider this use of the Sin function:

dsin pr 8f extproc(‘sin’)

d angle 8f value

The prototype name is made the same as the C function. The return value
definition of 8f is specified, and the external procedure name is specified
(‘sin’). On the second line, the name angle is optional, since names on pro-
totype parameters are not required. The 8f is the definition of the parame-
ter, and the keyword value is used, since parameters in C functions expect
parameter passing by value.

The call interface is the same as for any external procedure. The CallP oper-
ation can be used if no return value is needed. The implicit call (which
works just like a BIF) is used when the C function has a return value. As
you will see throughout this book, the implicit call is emphasized as a pre-
ferred method.

Let’s add a few more lines of code to the example above:

dSinans s 8f

dAngleF s 8f

dAngleP s 7p 2 Inz(1.0456)

/free

AngleF = %float(AngleP);

SinAns = sin(AngleF);

How C Functions Work with RPG IV 21

Three fields are defined:

● SinAns will hold the answer.

● AngleF is a floating-point work field.

● AngleP is the input angle, in packed-decimal format.

The first new line of code uses the %float BIF to convert the
packed-decimal AngleP field to floating-point, and then assigns the value to
the work field AngleF. The next line of code calls the function Sin implic-
itly, passing the work field AngleF as a parameter.

Random Numbers from C

One of the C functions that you might find useful is the random number
function, mentioned earlier in this chapter. You’ll see a detailed example us-
ing this function later, but for now, let me share the justification for using it
in an application. The following situation occurred a couple of years ago:

I was working on an application to perform testing—giving an exam. The
exam had four parts, with 10 questions in each part. The questions for each
part came from a question pool, with 100 possible questions in the pool.
The program needed to select, at random, 10 questions from each of the
four associated question pools.

RPG IV does not have a random number function, but C does. Upon inves-
tigation, the Rand function in the C language was determined to be the
proper choice. As explained earlier, Rand needs to be initialized by another
C function, Srand.

The output from Rand is an integer between zero and 32,767. For the pur-
poses of this application, I needed to scale that down to a range of zero to
99. A handy way to do this is to divide the return value by 100 (in this
case), and use the remainder.

Because duplicate questions were not wanted in the exam, a check for a du-
plicate random number was needed, and duplicates discarded. The exam
questions were stored in an array with indexes from one to 100, so the re-
sulting random number needed to be incremented by one to match the RPG
array index. Prototyping was needed for the two C functions, Rand and
Srand, as follows:

Chapter 3: Using C Functions22

D Set_random PR Extproc(‘srand’)

D Seed 10u 0

D Get_random PR 10u 0 Extproc(‘rand’)

Notice the use of the Extproc keyword, and the C function name in lower-
case. This is required. For the Set_random prototype, there is no return
value (the “seed” is stored somewhere in the system), but there is an un-
signed integer requirement as the parameter. It is best to make this parame-
ter as random as possible. I have found that using the micro-seconds value
of the current timestamp is fairly random.

Also, ILE needs to locate the procedures rand and srand, so a binding direc-
tory needs to be specified on the H control specification. The H control spec-
ification must be placed first in the source member. Here is an example:

H Bnddir(‘QC2LE’)

Random number setup can be done as follows:

D Seed S 10u 0

D Index S 10i 0

/free

Dou Seed = 0;

Seed = %subdt(%timestamp() : *MS);

If Seed 0;

Set_Random(Seed);

Endif;

Enddo;

// Obtaining the random number,

// then scaling it to 0-99 is done as follow:

index = Get_Random(); // index 0-32767

index = %rem(index:100); // index 0-99

index += 1; // index 1-100

Random Numbers from C 23

The code above sets the seed (in the Dou group), and then uses the random
number function to set an index. The index is used to access an array ele-
ment from a question pool. Additional programming is needed to avoid du-
plicate indexes. The index is used to access a question from a question
array.

Checking for duplicate random numbers and further processing of the ap-
plication is not shown here.

Occasionally, the need for higher mathematical functions comes up. This
might involve the use of trigonometric functions such as sine, cosine, or
tangent. These are not available in RPG IV, but all of them are available
in C.

The following trig functions are available in C:

● Acos calculates the arc cosine.

● Asin calculates the arc sine.

● Atan calculates the arc tangent.

● Atan2 is a variation of Atan() for calculating the arc tangent.

● Cos calculates the cosine.

● Cosh calculates the hyperbolic cosine.

● Sin calculates the sine.

● Sinh calculates the hyperbolic sine.

● Tan calculates the tangent.

● Tanh calculates the hyperbolic tangent.

Using the C run-time library functions and setting up the prototypes for C
functions is an easy way to use features available in the C language.

C Data Types vs. RPG IV Data Types
The data types used by C functions are nearly all integer, float, and
null-terminated strings. RPG IV supports all integer and float data types,
and can convert null-terminal strings to RPG character fields, and vice
versa (using the %str BIF). The integer and float data types available with

Chapter 3: Using C Functions24

RPG IV make it easy to pass variable data back and forth between
RPG IV and C.

One of the hurdles for RPG IV programmers is understanding the data
types used by C, and matching them to RPG IV’s scheme. Typically, RPG
programmers have only used zoned or packed-decimal numeric fields. Ta-
ble 3.1 describes how data types in the two languages relate to each other,
including recommended RPG variable sizes.

Table 3.1: Most Common Data Types for C and RPG IV

C Definition

RPG IV Prototype

Parameter Definition Notes

Int short 5i 0 Signed integer, two bytes

Int long 10i 0 Signed integer, four bytes

Unsigned int 5u 0 Unsigned integer, two bytes

Unsigned int long 10u 0 Unsigned integer, four bytes

Float 4f Floating-point, standard
precision

Double 8f Floating-point, double
precision

Char * * Defined in RPG with the
VALUE and
Options(*STRING) keywords

(*) * Defined in RPG with the
VALUE and PROCPTR
keywords

Parameter Passing to C Functions

When passing parameters to another procedure, RPG normally uses a tech-
nique called passing by reference, which means that a pointer address is
used. In the called program, the parameter field is a template over the
“passed” field in the calling program. If you modify the variable in the
called program, you are really modifying the field in the calling procedure.

Parameter Passing to C Functions 25

The C language uses a parameter passing technique called passing by
value. In this scheme, the actual value of the parameter is passed. The
value of the passed field can be changed in the called procedure, but the
parameter field in the calling program is not changed. The RPG IV lan-
guage can also pass parameters by value, simply by using the VALUE key-
word for the parameter in the definition on the prototype.

A more flexible option is to use the keyword CONST instead of VALUE. This
also passes parameters by value, but has some additional features. The
CONST keyword allows you to use fields of different data types (for nu-
meric data types) and lengths as a parameter (different than the prototype),
including the use of a constant.

Character String Differences between C and RPG IV
The RPG IV language and C differ in their method of handling character
strings. RPG IV uses fixed or varying-length character fields. The C lan-
guage uses an array of a variable length, with the last entry in the array a
null character (hex '00'). If you use the Options (*String) keyword on the
parameter in the prototype for a character field, the compiler places the
RPG IV character field specified into a work area, and then automatically
adds the null character. The data in the work area is then passed to the C
function.

Binding RPG IV and C Functions
After coding an RPG IV program with the proper prototypes, and using an
implicit call to the C function using the prototype(s), there is still one more
step to “glue” the pieces together. The C functions are in service programs
known only to IBM, but IBM has given us access to these programs via
binding directory QC2LE. By simply putting Bnddir(‘QC2LE’) on the H con-
trol specification, the binder will locate and include the C functions you
have requested.

You must also specify an activation group, but not the default activation
group, since you are using ILE’s binding by reference. While you are test-
ing your new program, use *New as the activation group. This helps avoid
testing problems. Otherwise, named activations stay around and are used
on subsequent calls, even if you recompile and replace the program (as you
will see in Chapter 5).

Here’s an example of an H control specification:

Chapter 3: Using C Functions26

H Bnddir(‘QC2LE’) Actgrp(*New)

This specifies that binding directory QC2LE be used during the binding
phase, and that activation group *New be applied when the program is
loaded and run. When you are past the testing phase, a named activation
group might be your best alternative.

Using C Functions to Make Your Job Easier
I was asked to help with a data conversion, where the customer name in the
“from” database was one big field, with spaces separating the parts of the
name. In the “to” database, the name was divided into title, first name,
middle initial, and last name fields. Other information about the “from”
database included the following:

● Not every name had a title, but if a title existed, it was a standard
title.

● A middle initial was optional, but if it existed, there was a period
after it.

● Every character after the middle initial was part of the last name.

● If only one name appeared, it was the last name, not the first name.

Moving each part of the multi-part name field into the right new field be-
came a programming project. It was accomplished completely in RPG IV,
but a nagging inner voice kept saying to me, “This task could have been
done more easily, somehow.” After some research, I found a C function
that could have helped: the Strtok (string token) function.

This is a parser-type function that helps in dividing portions of a charac-
ter string. Something in the string has to be the delimiter, to tell the
parser where one portion ends and the next begins. The C language calls
these short string portions tokens. For example, using the Strtok function
with the sentence “See Spot Run” and a space as the delimiter, you get
“See” with one pass, “Spot” with a second pass, and “Run” with a third
pass. This scheme would fit my data conversion situation pretty well,
where blanks would be used to separate parts of the big name field. Of
course, some logic would still need to be used to place each “token” item
into its rightful place.

Using C Functions to Make Your Job Easier 27

The Strtok Function

We’ll review the most important elements of the new Strtok program in
this section. (The entire program takes over a hundred lines of code, so it is
not included here.) The field with the name to be parsed is FullName, de-
fined 40A.

The first part of the main procedure is shown here:

h Bnddir(‘QC2LE’) Actgrp(*New)

d GetToken pr * ExtProc(‘strtok’)

d Name * Value Options(*String)

d Delimit * Value Options(*String)

It has the H control specification with the IBM binding directory QC2LE
specified, and the activation group *New. Following that is the prototype
for the Strtok C function. The return value is a pointer to the found token,
or a null pointer if no token is found. The two parameters are the field to be
parsed and the delimiter.

The next section is a work array to hold all of the tokens, and a work field
to hold the most current token:

d artok s like(FullName) dim(30)

d token s like(FullName)

The next few lines are work fields used in the procedure. The definition
5u 0 indicates an unsigned integer of five digits:

d ReturnAdr s *

d count s 5u 0

d Space c ' '

The count field defined here is used to count the number of tokens found,
and used later in processing the token array elements.

Chapter 3: Using C Functions28

The procedure begins by clearing the previous contents of the Title,
FirstName, Initial, and LastName fields:

/free

//* Clear output fields

Clear Title;

Clear FirstName;

Clear Initial;

Clear LastName;

The procedure continues by first checking for all-blank input. Next, it
left-adjusts the FullName field, and then retrieves the first token from the
FullName field:

If FullName = *blank;

// Name is not all blank

// Shift Name to left, removing left blanks

FullName = %triml(Fullname);

ReturnAdr = GetToken(FullName:Space);

The function call GetToken here gets the first token. In the next section,
GetToken gets the remaining tokens.

The next section is a loop to obtain and store the tokens of the FullName

field:

Using C Functions to Make Your Job Easier 29

Dow ReturnAdr <> *Null; // Load Tokens into Artok array

Token = %str(ReturnAdr);

Count += 1;

Artok(count) = %trim(Token);

ReturnAdr = GetToken(*Null:Space);

Enddo;

Notice that the return value for the C function is a pointer to the token. The
%str BIF takes the null-terminated string and moves the characters into a
regular character-field-token. A count is made of how many tokens are
saved in the array, to handle later processing. At this point, the tokens are
stored in elements of the Artok array.

The use of the Strtok C function makes parsing the long FullName string
very easy. The remainder of the program, not shown here, just puts the to-
kens in the correct output fields.

Exponentiation

There was a time when RPG could do little in the way of powers and roots.
Powers were done by repetitive multiplications, and the only “root” capa-
bility was the square root. The use of C functions was the only solution for
anything more complex. You might have done this.

It might seem contrary to bring this up in a chapter on using C functions,
but the truth of the matter is that native RPG can now provide all you need
in this mathematical arena.

With the advent of the ** (exponentiation) operator, all business formulas
using an exponent can be done without using the C function library. In
RPG IV, the exponentiation operator gives you the complete capability to
determine the root or power of a number.

The form of an exponentiation operation is as follows:

Answer = number ** power;

In this formula, “power” can be a whole number, a fraction, or a mixed
number. It can also have a negative sign.

Chapter 3: Using C Functions30

Here are several examples of exponentiation, for your review:

/free

// Simple power and roots:

Area_Circle = 3.1416 * Radius ** 2;

// The above computes the area of a circle using

// the power 2

Cube_Root = 8 ** (1/3);

// The above line computes the cube root of 8,

// making Cube_root = 2.

Future_Val_Annuity = Period_Amt * (((1+i)**n-1)/i);

// The above expression computes the future value

// of an annuity. i is the periodic rate, and n

// is the number of periods. With this formula, you can

// determine how much money you will have if you save

// Period_Amt for n periods at interest rate i.

As you can see, any formula needing exponents can be done without using
C functions.

Summary

C functions provide capabilities that are useful to you, as an RPG IV pro-
grammer. In particular, if you have a math requirement needing the use of
trigonometry or other higher mathematics, the appropriate C function will
make the overall programming much easier. Other specialized C functions,
such as the random number generator, are helpful for special projects.

The example of the Strtok C function in this chapter shows that combining
C functions with native RPG operations enhances your overall program-
ming toolset.

Summary 31

