
57

3
Control Structures and Loops

Writing a program would be a pretty useless exercise if we didn’t have
 control structures. Essentially, a control structure lets a program decide

how to react based on a given circumstance or piece of data. When moving
from RPG to PHP, you’ll fi nd that most control structure syntax is fairly similar.
 Structures such as if-then-else are pretty much the same across languages. You
will encounter some minor syntactical differences in PHP, but the concepts are
virtually identical. In fact, if you were to use older PHP if-then-else syntax, you
could almost copy the code line for line.

Conditional Structures
PHP’s conditional structures are built around the if and switch statements. Let’s
take a look at some examples to illustrate their syntax and use.

The if Statement
To work with an if statement, you defi ne a block of code that should be executed
only if a given condition is true. For example:

58

<?php

$var = 1;

if ($var === 1) {
 echo "The variable equals one\n";
}

This sample code produces the following output:

The variable equals one

If we were to input a different variable, as in

<?php

$var = 2;

if ($var === 1) {
 echo "The variable equals one\n";
}

we would not get any output. That’s because in this case the condition within the
parentheses evaluates to false, and therefore the echo statement is not executed.

Often, you want to require that multiple conditions evaluate to true before a
 particular block of code is executed. Take, for instance, the example of validating
a birth year:

<?php

$month = 15;

if ($month < 1 || $month > 12) {
 die('That is an invalid month');
}

Because the month value in this example is outside the specifi ed range, this
 program prints out

CHAPTER 3: Control Structures and Loops

59

That is an invalid month

If your logic requires that you also have a default block of code that is executed
if the condition is not satisfi ed, you can use an if-else structure:

<?php

$month = 11;

if ($month < 1 || $month > 12) {
 die('That is an invalid month');
} else {
 echo "That is an excellent choice for a month";
}

In this if statement, the fi rst condition evaluates to false, so the output is

That is an excellent choice for a month

Using an if-else-if structure, you can specify additional conditional statements to
be executed in-line. No practical restriction exists on the number of conditional
statements you can tie together, so, technically, you could call this an "if-else
if-else if-else if etc.” conditional. Two methods are available for implementing
this type of logic. You can specify it using the two words (else if), or you can
specify it by compounding both words (elseif). Either way works:

<?php

$month = 4;
$name = 'not in the list';

if ($month == 1) {
 $name = 'January';
} else if ($month == 2) {
 $name = 'February';
} elseif ($month == 3) {
 $name = 'March';
}

echo "The month is $name";

Conditional Structures

CHAPTER 3: Control Structures and Loops

60

The preceding code produces the following output:

The month is not in the list

Notice the difference between the fi rst and second else-if statements. The fi rst
uses both keywords, while the keywords are compounded in the second.

Earlier, we mentioned the older method of writing conditional statements.
There are two primary differences between the old method and the current
method, which is more C-like. The old method omits the curly braces({}), and
it appends a colon (:) to non-terminating conditional expressions (else, elseif).
To illustrate these differences, let’s rewrite the previous example using the older
 syntax. Note that else if is not valid using this syntax; you must use elseif.
Notice also the use of the endif keyword.

<?php

$month = 4;
$name = 'not in the list';

if ($month == 1):
 $name = 'January';
elseif ($month == 2):
 $name = 'February';
elseif ($month == 3):
 $name = 'March';
endif;

echo "The month is $name";

The switch Statement
Sometimes, simply comparing values is easier than writing full conditional state-
ments. As you can imagine from the preceding code examples, things can get a bit
verbose in some conditional statements. Instead of evaluating several conditionals,
each of which could have their own set of bugs (e.g., a mistyped variable name),
switch simplifi es the logical structure and can make your code a little easier to
read. For expressing simple conditional statements, developers often prefer to use
switch.

61

The switch block itself consists of the switch keyword followed by one or more
case keywords. Each case keyword represents a potential true evaluation that
could be executed. After each case statement, an optional break keyword is used.
You use the break keyword (which we’ll look at in more detail in just a bit) to
jump out of a particular place in the code. Omitting the break lets statements fl ow
from one to the next.

The switch statement is similar to RPG’s SELECT/WHEN opcodes. One key differ-
ence to be aware of with switch is that unless you use a break statement to exit,
each of the conditional case statements will be evaluated. This behavior holds true
even after one of the case statements has been evaluated as true.

That’s a fair amount of information that calls for a code example:

<?php

$month = 4;
$name = 'not in the list';

switch ($month) {
 case 1:
 $name = 'January';
 break;
 case 2:
 $name = 'February';
 break;
 case 3:
 $name = 'March';
 break;
}

echo "The month is $name";

Here is the equivalent RPG code:

d $month s 10i 0 inz(4)
d $name s 20a inz('not in the list')

 /free
 select;

Conditional Structures

CHAPTER 3: Control Structures and Loops

62

 when $month = 1;
 $name = 'January';

 when $month = 2;
 $name = 'February';

 when $month = 3;
 $name = 'March';

 endsl;

 dsply ('The month is '+%trim($name));

 return;
 /end-free

Note that the switch block is specifi ed using matching parentheses, whereas the
case blocks are not. This PHP code functions essentially the same way as what
you saw earlier with if statements. Let’s look at another example that shows what
you can do with a switch statement:

<?php

$month = 2;
$name = 'not in the list';

switch ($month) {
 case 1:
 case 2:
 case 3:
 $name = 'earlier than April';
 break;
}

echo "The month is $name";

This code prints out

The month is earlier than April

This example illustrates what we noted earlier about fl owing from one case to
another. Because the case 2 statement contains no break, statement execution
continues until a break statement is encountered. Because the “break” function

63

is always implied in the RPG SELECT/WHEN structure, the RPG code to accomplish
the same output would most likely not use the SELECT/WHEN structure.

As with the fi nal else statement following an if statement, you can defi ne a default
condition when you use switch. You do so using the default keyword, which
serves the same function as the OTHER opcode in RPG. You code the default in
place of a distinct case statement, as follows:

<?php

$month = 2;

switch ($month) {
 case 1:
 case 2:
 case 3:
 $name = 'earlier than April';
 break;
 default:
 $name = 'not in the list';
 break;
}

echo "The month is $name";

Here is the equivalent RPG code:

d $month s 10i 0 inz(2)
d $name s 20a inz('not in the list')

 /free

 select;

 when $month = 1 or $month = 2 or $month = 3;
 $name = 'earlier than April';

 other;
 $name = 'not in the list';

 endsl;

 dsply ('The month is '+%trim($name));

 return;
 /end-free

Conditional Structures

CHAPTER 3: Control Structures and Loops

64

Loops
PHP’s looping structures implement the same type of iterative logic you can code
in RPG to execute a block of code a number of times. PHP provides three looping
statements: for, while, and do-while.

The for Loop
When you need to iterate over a defi ned number of values in PHP, you typically
use a for loop. In the initialization portion of the loop, you provide a value that is
iterated over a given number of times, usually with the value being incremented
via a coded or internal operation known as a post-op (because it is executed
after the loop operations). In RPG’s FOR/ENDFOR operation (available only in
the free-format version of the language), the BY clause implements the post-op.
In PHP, the post-op is an actual assignment expression that is executed at the
end of each iteration until the conditional statement evaluates to false. This may
sound complicated, but it’s really quite simple, even though the syntax differs
somewhat from RPG.

Rather than providing opcodes to determine how you will iterate over the loop,
you use conditions and operations to determine the looping characteristics. The
syntax is much like C or Java. As with most PHP operations, you enclose the
block of code over which you are iterating within curly braces:

<?php

for ($count = 1; $count <= 10; $count++) {
 echo "The count is {$count}\n";
}

?>

This code produces the following output:

The count is 1
The count is 2
The count is 3
The count is 4

65

The count is 5
The count is 6
The count is 7
The count is 8
The count is 9
The count is 10

Here is the equivalent RPG code:

d $count s 10i 0

 /free

 // Note that the "by 1" post-op is optional in this case
 // and is included only for clarity.
 // for $count = 1 to 10; would function exactly the same.

 for $count = 1 by 1 to 10;
 dsply ('The count is '+%trim(%editc($count:'Z')));
 endfor;

 return;
 /end-free

In PHP, iteration over the loop continues until the condition evaluates to false.
This approach differs a little from the RPG implementation. Indeed, in PHP you
can easily create an infi nite loop:

<?php

for ($count = 1; $count > 0; $count++) {
 echo "The count is {$count}\n";
}

If you write this code, make sure you’re able to easily kill the process because
you’ll be able to cook an egg on the processor afterwards!

Loops

CHAPTER 3: Control Structures and Loops

66

In RPG, when you count down in a loop, you use the DOWNTO opcode:

FOR i=10 by 1 DOWNTO 1
 . . . code to be executed
ENDFOR

When writing this logic in PHP, you simply change the post-op expression and
the comparison:

<?php

for ($i = 10; $i >= 1; $i--) {
 echo "The number is {$i}\n";
}

Or, if you wanted to iterate using a hexadecimal:

<?php

for ($i = 1; $i < 50; $i += 0x0b) {
 echo "The number is {$i}\n";
}

This code produces the output

The number is 1
The number is 12
The number is 23
The number is 34
The number is 45

Sometimes, you may want to intentionally create an infi nite loop. You can accom-
plish this goal by omitting all parts of the for loop. Chances are you won’t want to
do this when handling an HTTP request because you usually want such requests
to be short-lived, and infi nity is not short. This technique is useful, however,
if you’re using PHP to run as a server daemon, or service that is listening on a
socket:

67

<?php

for (;;) {
 $client = socket_accept($server);
 echo "I got someone's socket!!\n";
}

The while Loop
You typically use the while loop when you don’t have a specifi c iterative sequence
you want to go over but you have code that needs to be executed zero or more
times — in other words, code that might not be executed. A PHP while loop is
roughly equivalent to DOW/ENDDO in RPG.

<?php

$printAuthors = $_GET['printAuthors'];
$kevinPrinted = false;
$jeffPrinted = false;

while ($printAuthors) {

 if (!$jeffPrinted) {
 echo "Jeff\n";
 $jeffPrinted = true;
 } else if (!$kevinPrinted) {
 echo "Kevin\n";
 $kevinPrinted = true;
 }

 $printAuthors = !($jeffPrinted && $kevinPrinted);
}

The preceding code will be run only if someone provides a GET parameter of
printAuthors that can be evaluated as a Boolean true. If someone were to provide
that value, the following output would result:

Jeff
Kevin

Loops

CHAPTER 3: Control Structures and Loops

68

The do-while Loop
PHP’s do-while loop is similar to the while loop, except that rather than executing
its code zero or more times, it executes the code one or more times. In other
words, a do-while loop will always be executed at least once, similar to a DOU/

ENDDO in RPG. Say you want to count through the fi rst 10 values of a Fibonacci
sequence:

<?php

$num1 = 0;
$num2 = 0;
$fs = 0;

do {
 $currentNum = $num1 + $num2;
 echo "F{$fs} = {$currentNum}\n";
 if ($fs == 0 || $fs == 1) {
 $num2 = 1;
 } else {
 $tmp = $num2;
 $num2 = $num2 + $num1;
 $num1 = $tmp;
 }
 $fs++;
} while ($fs < 10);

The resulting output:

F0 = 0
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34

Another use for a do-while loop is when iterating over the result set of a LEFT

OUTER JOIN SQL query. We’ll look at database access later on.

69

Modifying Loop Iteration
PHP provides two different ways to modify loop behavior that is outside the
 conditional statements in the loop: the continue keyword and the break keyword.

Continue
You use the continue keyword in a loop when you want to stop executing the
code in the current iteration and continue on to the next iteration. The continue
statement works exactly like RPG’s ITER opcode. Although you can imitate this
functionality by using a big if statement, that approach doesn’t always make for
the neatest code. Let’s take a look at code that prints out the odd numbers between
1 and 10:

<?php

for ($i = 1; $i <= 10; $i++) {
 if ($i % 2 != 0) {
 echo "The number is {$i}\n";
 }
}

We could write this example a little more neatly using the continue keyword:

<?php

for ($i = 1; $i <= 10; $i++) {
 if ($i % 2 == 0) continue;

 echo "The number is {$i}\n";
}

Here is the equivalent RPG code:

d $i s 10i 0

 /free

 for $i = 1 by 1 to 10;

Loops

CHAPTER 3: Control Structures and Loops

70

 if %rem($i : 2) = 0;
 iter;
 endif;

 dsply ('The number is '+%trim(%editc($i : 'Z')));

 endfor;

 return;
 /end-free

Although this example is a little simplistic, continue can become more useful when
your logic is more complex than simply writing the odd numbers from 1 to 10.

The continue keyword is quite helpful when used alone, but it can also take
an optional parameter that extends its functionality beyond that of ITER. The
parameter notes how many levels of loops to continue from. You might think this
option lets you note the number of iterations to skip over, but this is not true. Used
with a parameter, continue jumps to the next iteration of the specifi ed depth in a
nested loop.

Consider the following code:

<?php

for ($i1 = 1; $i1 <=2; $i1++) {
 echo "Exec outer loop\n";
 for ($i2 = 1; $i2 <=2; $i2++) {
 echo "Exec middle loop\n";
 for ($i3 = 1; $i3 <=2; $i3++) {
 echo "$i1 $i2 $i3\n";
 }
 }
}

Here is the output produced by this code:

Exec outer loop
Exec middle loop
1 1 1
1 1 2
Exec middle loop
1 2 1
1 2 2

71

Exec outer loop
Exec middle loop
2 1 1
2 1 2
Exec middle loop
2 2 1
2 2 2

Here is the equivalent RPG code:

d $i1 s 10i 0
d $i2 s 10i 0
d $i3 s 10i 0

 /free

 for $i1 = 1 to 2;
 dsply ('Exec outer loop');
 for $i2 = 1 to 2;
 dsply ('Exec middle loop');
 for $i3 = 1 to 2;
 dsply (%trim(%editc($i1:'Z')) + ' ' +
 %trim(%editc($i2:'Z')) + ' ' +
 %trim(%editc($i3:'Z')));
 endfor;
 endfor;
 endfor;

 return;
 /end-free

Now, let’s change the example to specify a parameter with continue:

<?php

for ($i1 = 1; $i1 <=2; $i1++) {
 echo "Exec outer loop\n";
 for ($i2 = 1; $i2 <=2; $i2++) {
 echo "Exec middle loop\n";
 for ($i3 = 1; $i3 <=2; $i3++) {
 echo "$i1 $i2 $i3\n";
 continue 2;
 }
 }
}

Loops

CHAPTER 3: Control Structures and Loops

72

Here is the output that results:

Exec outer loop
Exec middle loop
1 1 1
Exec middle loop
1 2 1
Exec outer loop
Exec middle loop
2 1 1
Exec middle loop
2 2 1

The specifi ed continue statement causes the PHP interpreter to skip to the bottom of
the loop that is two levels up in the nesting. To be clear, when continue 2 is encoun-
tered in the sample code, execution jumps to the bottom of the current $i3 loop and
to the bottom of the $i2 loop structure (two levels). Execution then resumes at the
top of the $i2 loop. If we changed the continue statement to continue 3, execution
would jump to the bottom of the $i3 loop, to the bottom of the $i2 loop, and to the
bottom of the $i1 loop and then would resume at the top of the $i1 loop.

No opcode in RPG is equivalent to this use of continue. In RPG, we must simu-
late this functionality using the LEAVE opcode:

d $i1 s 10i 0
d $i2 s 10i 0
d $i3 s 10i 0

 /free
 for $i1 = 1 to 2;
 dsply ('Exec outer loop');
 for $i2 = 1 to 2;
 dsply ('Exec middle loop');
 for $i3 = 1 to 2;
 dsply (%trim(%editc($i1:'Z')) + ' ' +
 %trim(%editc($i2:'Z')) + ' ' +
 %trim(%editc($i3:'Z')));
 leave;
 endfor;
 endfor;
 endfor;

 return;
 /end-free

73

If we change the example to specify a variable on the continue statement:

<?php

for ($i1 = 1; $i1 <=2; $i1++) {
 echo "Exec outer loop\n";
 for ($i2 = 1; $i2 <=2; $i2++) {
 echo "Exec middle loop\n";
 for ($i3 = 1; $i3 <=2; $i3++) {
 echo "$i1 $i2 $i3\n";
 continue $i1;
 }
 }
}

The following output results:

Exec outer loop
Exec middle loop
1 1 1
1 1 2
Exec middle loop
1 2 1
1 2 2
Exec outer loop
Exec middle loop
2 1 1
Exec middle loop
2 2 1

Break
Where continue goes to the next iteration of the loop, break completely jumps out
of the loop. This functionality is the same as that of RPG’s LEAVE opcode. Let’s
look at the same code we saw beforehand and see how it works differently with
break:

<?php

for ($i1 = 1; $i1 <=2; $i1++) {
 echo "Exec outer loop\n";
 for ($i2 = 1; $i2 <=2; $i2++) {

Loops

CHAPTER 3: Control Structures and Loops

74

 echo "Exec middle loop\n";
 for ($i3 = 1; $i3 <=2; $i3++) {
 echo "$i1 $i2 $i3\n";
 break;
 }
 }
}

This code prints out:

Exec outer loop
Exec middle loop
1 1 1
Exec middle loop
1 2 1
Exec outer loop
Exec middle loop
2 1 1
Exec middle loop
2 2 1

Notice that the third number never gets above 1. That’s because break is jumping
completely out of that loop. The RPG equivalent for this code is the same as the
previous example that uses the LEAVE opcode in place of continue.

Just like continue, break can accept an optional parameter that notes the level that
it is supposed to break out of:

<?php

for ($i1 = 1; $i1 <=2; $i1++) {
 echo "Exec outer loop\n";
 for ($i2 = 1; $i2 <=2; $i2++) {
 echo "Exec middle loop\n";
 for ($i3 = 1; $i3 <=2; $i3++) {
 echo "$i1 $i2 $i3\n";
 break $i1;
 }
 }
}

75

The resulting output:

Exec outer loop
Exec middle loop
1 1 1
Exec middle loop
1 2 1
Exec outer loop
Exec middle loop
2 1 1

In this case, there simply is not an applicable RPG equivalent. Obviously, we could
create code to achieve the same results, but we would need to use completely
 different logic.

Exam and Exercise
1. Create a script that yields the same output as the following RPG program.

 // Chapter 3 - Exercise 1
d $a s 10i 0
d $b s 10i 0

 /free

 $a = 1;
 $b = 2;

 if $a = 1 or $b = 1;
 dsply ('Condition one true');
 endif;

 if $a = 1 and $b = 2;
 dsply ('Condition two true');
 endif;

 *inlr = *on;
 return;
 /end-free

Exam and Exercise

CHAPTER 3: Control Structures and Loops

76

2. Create a script that yields the same output as the following RPG program.

 // Chapter 3 - Exercise 2
d $count s 10i 0

 /free

 // for those familiar with the RPG implementation of FOR
 for $count = 5 by 4 to 35;
 dsply $count;
 endfor;

 // and for those who are not
 $count = 5;
 dow $count <= 35;
 dsply $count;
 $count += 4;
 enddo;

 *inlr = *on;
 return;
 /end-free

3. Create a script that yields the same output as the following RPG program.

 // Chapter 3 - Exercise 3
d $count s 10p 5

 /free

 $count = 7;
 dow $count < 40;
 dsply %trim(%editc($count:'1'));
 $count += $count / 2;
 enddo;

 *inlr = *on;
 return;
 /end-free

77

4. Create a script that yields the same output as the following RPG program.

 // Chapter 3 - Exercise 4
d $count s 10i 0 inz(1)

 /free

 if $count > *zeros;

 dow $count < 10;
 dsply %trim(%editc($count:'Z'));
 $count += 1;
 enddo;

 endif;

 *inlr = *on;
 return;
 /end-free

5. Create a script that yields the same output as the following RPG program.

 // Chapter 3 - Exercise 5
d $counter s 10i 0
d $c1 s 10i 0
d $c2 s 10i 0

 /free

 for $c1 = 0 by 1 to 4;

 for $c2 = 0 by 1 to 4;

 $counter += 1;
 if $counter = 10;
 dsply 'I''m done with this';
 leave;
 endif;
 dsply (%trim(%editc($c1:'1'))
 +' '+%trim(%editc($c2:'1')));

 endfor;

 if $counter = 10;
 leave;
 endif;

 endfor;

 *inlr = *on;
 return;
 /end-free

Exam and Exercise

