
Using Cascading Style Sheets

A cascading style sheet provides a great, flexible way for controlling
the look or presentation of your Web pages. Small changes to this

one document can dramatically change the appearance of many Web
pages. This easy method for controlling the design of your pages allows
you to rapidly implement changes to the look and feel of your Web site.
Programmers appreciate this single point of control.

A cascading style sheet is a file that ends in the .CSS suffix. Developers
often name their cascading style sheet theme.css. “Theme” is a good choice
for the file name, since a style sheet can create the visual theme for a Web
site. All you need to do is have all the pages in your Web site reference the
same cascading style sheet. It’s also possible to have multiple style sheets
all in effect for the same HTML documents. We’ll discuss how that is
accomplished later in this chapter.

Creating a Cascading Style Sheet

You can attach a cascading style sheet to your Web page using the <link>
tag. The code snippet in Figure 5.1 shows an example of such a link. When
the HTML page is opened, the browser will search the theme.css style
sheet to find rules for handling the content of the page.

C H A P T E R 5

<link href="theme.css" rel="stylesheet" type="text/css">

Figure 5.1: Linking to a cascading style sheet.

100 Chapter 5: Using Cascading Style Sheets

You can create the theme.css style sheet using a tool as simple as Notepad,
by using a sophisticated tool in a Web design product. Figure 5.2 shows the
code for a basic theme.css style sheet.

The styles in the theme.css code in Figure 5.2 are for the HTML <body>
element, the <h1> and <h3> heading elements, and the paragraph element.
One of the basic things you can do with style sheets is define a default
style for each of the HTML elements. As the HTML document is rendered,
the styles are read in from the style sheet and applied. There other ways to
define styles, such as using style classes, discussed later in this chapter.

When defining the style for an element, the element’s tag is listed without
the angle brackets (<>) and followed by braces ({}). Within these braces,
any available property can be defined. Each property is followed by a
colon (:) and then by its associated value. Each value is followed by a
semicolon (;). Additional properties may be listed as needed. Once all
of the properties are listed, the ending brace is coded.

In theme.css, each of the four element styles sets the default font family
for that element. In the body style, the font family is set to Arial. If Arial

body {font-family : arial,courier new,times new roman;
}

h1 {font-family : times new roman;
}

h3 {font-family : times new roman;
}

P {font-family : courier new;
}

Figure 5.2: A basic style sheet for four HTML tags.

element {property:value;

}

is not available on the user’s computer, one of the alternate fonts listed
will be used. Simply list all of the fonts in order of preference. The first
one available on the user’s computer will be used. If none of the listed
fonts are available, the default font of the user’s browser will be used.
The h1 and h3 styles define the font family as Times New Roman. The
fourth style is for the paragraph tag <p>. This style sets the default font
to Courier New.

A wide variety of fonts are available. Monospace fonts such as Courier
New use the exact same width for every letter. This makes them very
 attractive when you need to get text to line up a certain way.

Figure 5.3 shows the code for a sample Web page that links to the theme.
css style sheet. The Web page is shown in Figure 5.4.

Notice in Figure 5.3 that within the second <h3> tag, there is also a <p>
tag, so two of the styles from themes.css are in effect. In general, the
 innermost, or child, element will inherit properties from a parent element,

<html>
<head>
<link href="theme.css" rel="stylesheet" type="text/css">
</head>
<body>
This font is Arial
<h1>This font is Times New Roman</h1>
<h3><P>This font is Courier New</P></h3>
</body>
</html>

Figure 5.3: The HTML code for a Web page using a style sheet.

Figure 5.4: Sample font families using a style sheet.

 Creating a Cascading Style Sheet 101

102 Chapter 5: Using Cascading Style Sheets

but the child also has the option to override those properties. Both element
styles attempt to change the font family, but the <p> tag takes precedence,
since it is the innermost tag. Therefore, the text in the <h3> tag appears in
Courier New instead of Times New Roman.

What Other Properties Do Fonts Have?

In addition to the font-family property, you can also set the font size, font
style, or font weight. Alternatively, you can set the font property, which
has several values, including style, variant, weight, size, and family.

Most of the properties have specific options to choose from. For example,
font-weight can use relative terms such as lighter, normal, bold, or
bolder. These choices are displayed here in bold text. Other properties
allow more varied values. These are displayed here in bold italics. For
example, font-weight accepts a numeric value that is a multiple of 100,
from 100 to 900. A value of 100 is the lightest (thinnest) font weight,
while 900 is the heaviest (thickest).

The font-size property requires a value that may be followed by a code such
as 12px, which means 12 pixels wide. Here are the available size codes:

● em, the width of the letter m in the current font

● ex, the width of the letter x in the current font

{font-family:font1, font2,…

 font-size:size
 font-style:normal
 italic
 oblique
 font-weight:normal
 bold
 bolder
 lighter
 number
 font:style weight
 size family
}

● cm, centimeters

● mm, millimeters

● pc, picas (1 pica = 4.216 mm)

● pt, points (1 point = 1/12 pica)

● in, inches

● px, pixels

Using the em and ex sizes
allows you to define the size
of certain portions of text
without needing to know the
underlying size of the font.
Specifying a value of .5em, for
example, means you want the
font to be 50% smaller than the
current text size for the letter m.
Similarly, to define a size 20%
greater than the current text size
of the letter x, use a value of
1.2ex. Avoiding hardcoded font
sizes provides better support for
users who have adjusted their
own font sizes.

Use the font-style to determine
if the text should be printed in its
normal form, italics, or as oblique
text. (Oblique prints “slanted”
text that, to the untrained eye,
looks the same as italics.)

There are a number of other
text properties not directly
associated with a font. These
include color, direction,
line-height, letter-spacing,
text-align, text-decoration,

 Creating a Cascading Style Sheet 103

{color:color
 rgb(r,g,b)
 #rrggbb
 direction:ltr
 rtl
 line-height:normal
 number
 percent
 letter-spacing:normal
 number
 text-align:left
 right
 center
 justify
text-decoration:
 none
 underline
 overline
 line-through
 blink
 text-indent: number
 percent
 text-shadow: color
 horizontal-distance
 vertical-distance
 blur radius
 text-transform:none
 capitalize
 uppercase
 lowercase
 white-space: normal
 pre
 nowrap
 word-spacing:normal
 number
 Unicode-bidi:normal
 embed
 bidi-override
}

104 Chapter 5: Using Cascading Style Sheets

text-indent, text-shadow, text-transform, Unicode-bidi, white-space, and
word-spacing.

Color may be coded as a specific name, such as blue or red, as an RGB
hex value, or as RGB decimal values (rarely used). Color names are easy
to use, but not all browsers present the colors in exactly the same way. The
16 standard HTML colors are shown in Table 5.1, together with their hex
values. More colors can be found in appendix E.

Examples of hex values are #000000 (black), #c0c0c0 (silver), and #FFFFFF
(white). Each hex code is made up of a pound sign (#) followed by three hex
values (00 through FF), representing the red, green, and blue values of the
color. Most programmers know that hex is a base-16 number system, where
0=0 and F=15. So, a hex code of #3366CC has 33 for the red value, 66 for
the green, and CC for the blue, resulting in a medium grayish-blue.

Table 5.1: Standard Color Names and Hex Codes

Color Name Hex Code

Aqua #00FFFF

Black #000000

Blue #0000FF

Fuchsia #FF00FF

Gray #808080

Green #008000

Lime #00FF00

Maroon #800000

Navy #000080

Olive #808000

Purple #800080

Red #FF0000

Silver #C0C0C0

Teal #008080

Yellow #FFFF00

White #FFFFFF

The direction property can be set to left-to-right (ltr) which is the default,
or right-to-left (rtl). Line-height can be set to normal, a specific number,
or a percentage.

Letter-spacing controls the space between text characters. This property
can be set to either normal or a specific number.

The text-align property can be set to left, right, center, or justify.

Text-decoration lets you add an underline or overline effect to the text.
You can also cause the text to appear with a line through it. This is often
used to represent deleted text. A blinking effect can also be added.

The text-indent property sets the amount of indention for the first line
of text in the paragraph. It can be entered either as a fixed amount or as
a percentage.

Text-shadow sets the color for a shadow effect added to the text.
Horizontal and vertical distance properties indicate the offset distance of
the shadow effect from the text. This property is not supported by many
browsers at this time.

Use the text-transform option to force the text to appear in uppercase or
lowercase, or to capitalize the first letter of every word.

White-space controls the way in which the browser handles the white space
within the HTML text. Setting it to pre causes the text to be handled as if
the HTML <pre> tag were specified. Using the nowrap value indicates
that the text should never wrap down to the next line. It will continue on
the same line until the end of the text or a line-break tag (
).

The word-spacing property sets the distance between each word in the
text. Set this to a specific size.

If you use the rtl directional text, you can set the Unicode-bidi property
to bidi-override, causing the first letter of text to be printed at the right
margin, with each following character moving closer to the left margin.
Otherwise, rtl will simply cause the text to be aligned on the right margin.
For an example of this, consider the code in Figure 5.5. If the style sheet
in Figure 5.6 is applied, the sentence is printed right to left, as shown in
Figure 5.7. The text is aligned on the right margin by default.

 Creating a Cascading Style Sheet 105

106 Chapter 5: Using Cascading Style Sheets

This example might be a bit silly, as it is rare that you would need to print
text right to left. However, most of the other font properties, such as color
assignment and weight, don’t show up well in printed material.

What Properties Control the Arrangement of an Element?

Use the padding properties to control the spacing around an element.

Typically, each element on a Web page is assigned a rectangular section or
“box.” Properties that affect the general positioning and arrangement of
content on the page manipulate the format of these boxes. As a general rule,
these boxes are not visible. Padding refers to the internal space between the
content of an element and the element’s border. You can control the padding
values for each of the four sides of the element, or if you specify the padding

property, you can set all four at once.

<p>this text prints right to left</p>

Figure 5.5: The HTML code to print a line of text.

p {direction:rtl; unicode-bidi:bidi-override;

Figure 5.6: The style sheet code that controls the text in Figure 5.5.

Figure 5.7: Right-to-left text.

{padding-bottom:size

 auto
 padding-left: size
 auto
 padding-right: size
 auto
 padding-top: size
 auto
 padding: top right
 bottom left
}

If padding contains just a single value, such as {padding:3px;}, that
value applies to all four sides of the element. If two values are given,
such as {padding:3px 2px;}, the first value is for the top and bottom,
and the second value is for the left and right. When three values are
given, the first is for the top, the second for the left and right, and the
third for the bottom.

The height and width properties refer to the size of the element itself. Use
a size in one of the formats discussed earlier for the font-weight property.
The max-height and max-width properties refer to the maximum size
that an element can expand to. Rather than specifying an exact size, these
properties set a limit on the element’s size. The min-height and min-width
properties control the minimum size the element can be shrunk to.

As the browser integrates a variety of elements on the same page, some
will be placed beside others. If necessary, you can force the browser to
leave either one side or both sides free of adjacent elements. You would set
the clear property to right, for example, if you wanted to keep the right
side clear.

 Creating a Cascading Style Sheet 107

{height:size

 auto
width: size
 auto
 max-height: size
 auto
max-width: size
 auto
 min-height: size
 auto
min-width: size
 auto
}

108 Chapter 5: Using Cascading Style Sheets

The bottom property sets the
distance that an element is above
the bottom edge of its block area.
Left, right, and top properties
define the distance the element’s
content is from the edge of that
block.

Use the float property to identify
how the element should be
arranged with other elements. Set
it to right if it should float to the
right, left to float left, or none to
prevent it from floating at all.

Visibility controls whether an
element can be seen or not.
Set this to visible for elements
that should be seen, hidden

for ones that should remain in
the background, and collapse

if the element is to be hidden
away from view, but available
for quick display if needed.

Overflow determines how the
browser handles content that
will not fit in the defined space
for the object. Set overflow to
visible to guarantee that the
content will be visible despite
overflowing the element’s
maximum size. Use hidden to
cause the overflow content to
become invisible. Use scroll to
indicate that scrollbars should
be added to the element to allow
access to its entire contents.
Clip sets the size of the clipped

{clear: none

 both
 left
 right
 bottom:number
 auto
 float: left
 right
 none
 visibility: visible
 hidden
 collapse
 top: number
 auto
 right: number
 auto
 left: number
 auto
 position: static
 relative
 fixed
 absolute
 clip: auto
 rect(top,right,
 left,bottom)
 overflow: visible
 hidden
 scroll
 auto
 vertical-align:
 number
 baseline
 sub
 super
 top
 text-top
 middle
 bottom
 text-bottom
 z-index: auto
 number
}

area of an element with overflow. It accepts four values, the top, right, left,
and bottom positions, which identify the top right corner of the object, and
the bottom left corner of the visible portion of the element.

Use the position property to control the way in which the browser places
the element on the page. If the property is set to absolute, the element’s
position (top, right, left, and bottom) is relative to the page itself and
independent of any parent elements on the page. If the position property
is set to relative, the position of the element is adjusted from the location
at which it would normally appear. So, an element that would normally
appear 10 pixels from the top of the page and 20 pixels from the left, with
position set to relative, and 5px for both the top and left properties, would
appear 15 pixels from the top of the page, and 25 from the left.

Use z-index to define layers within the Web page. By default, all of the
content is at the “0” index layer. Content placed at z-index 1 will overlay
that, and content at z-index 2 will overlay the z-index 1 content. This
provides an easy mechanism to overlay content. To avoid layering and
keep all content at the same layer as the parent element, specify auto as
the z-index.

The vertical-align property controls the alignment of elements in line with
each other within a containing box. Baseline is the default value. It causes
all the elements in the line to align with each other along the baseline of
the containing box. Sub and super cause elements to align as if they were
subscript and superscript, respectively. Top, bottom, and middle cause
the elements to align along the top of the highest element, the bottom of
the lowest element, or the middle of all the elements. With text-bottom

or text-top, the elements are lined up with the bottom or top of the parent
item’s font property.

What Properties Control the Display of an Element?

The cursor and display properties provide the ability to customize the look
of the cursor and the text of the page. The cursor can be modified to appear
as a variety of pointers, arrows, or crosshairs. The display property affects
text in numerous ways. For example, it can force text to appear in line with
other text, or force the text to appear in vertical lists.

 Creating a Cascading Style Sheet 109

110 Chapter 5: Using Cascading Style Sheets

Reformatting the mouse
pointer may be a useful tool
for communicating with users.
For example, you could use the
cursor to indicate that a certain
link provides help information.
The cursor property sets the
appearance of the mouse pointer.
Set it to crosshair to change the
mouse pointer into a targeting
crosshair. Use move to create
a mouse pointer that indicates
the element can be moved. This
looks similar to the crosshairs,
but includes arrows on the end
of each line.

The resize values of cursor

switch the pointer to a sizing
arrow that points in the given
direction. So, the e-resize

cursor is an arrow that points
east-west, and the nw-resize

cursor is an arrow that points
northwest-southeast.

Use the text value of cursor

to change the mouse pointer
to the vertical line commonly
used in text areas. Wait causes
the cursor to change to an
hourglass, and help changes
it to a question mark.

The display property has a wide range of options and an even wider range
of support from the major browsers. Rather than going over all of these,
we’ll focus on a few of the more useful options. Set display to none to
cause an element to not be displayed. This is different than the hidden value,
which was discussed earlier. A hidden element occupies space on the page,

{cursor: auto

 crosshair
 pointer
 default
 move
 e-resize
 ne-resize
 nw-resize
 n-resize
 se-resize
 sw-resize
 s-resize
 w-resize
 text
 wait
 help

 display: none
 inline
 block
 list-item
 run-in
 compact
 marker
 table
 inline-table
 table-row-group
 table-header-group
 table-footer- group
 table-column-group
 table-row
 table-column
 table-cell
 table-caption
}

and other elements will move as if it were there. {Display:none} causes the
element to be ignored by the browser, so other elements on the page may be
placed in the space that the non-displayed element would have occupied.

The block value essentially behaves like paragraphs have always behaved,
advancing to a new line and avoiding placing other elements to its right or
left. The inline option causes an element to display on the current line of
the current block.

The code sample in Figure 5.8 creates a series of hypertext links.
Figure 5.9 shows how they would normally appear in the browser.
The links appear one after another until the right margin is reached,
at which point the text moves down to the next line.

If you wanted each link to advance to the next line, similar to the
way paragraphs behave, you could use the display:block property. To
accomplish this, you could add the code in Figure 5.10 to a cascading
style sheet. The output would change as shown in Figure 5.11.

 Creating a Cascading Style Sheet 111

Link to page 2
Link to page 3
Link to page 4

Figure 5.8: HTML code to show three hypertext links.

Figure 5.9: Links formatted inline with each other.

a {display:block;
}

Figure 5.10: A cascading style sheet for block format.

Figure 5.11: Links presented
 in block format.

112 Chapter 5: Using Cascading Style Sheets

Margins define the space between the border and the edge of
a containing box.

Each margin can be set to a specific size, as for the font-size property
 described earlier. The margin property lets you set all four margins at
once. If only one value is given, all four margins use that value. If two
values are given, the top and bottom margins use the first value, and the
right and left margins use the second. If three values are given, the first
value is for the top margin, the second for the left and right, and the third
for the bottom.

Use the border property to set the width, style, and color of the border. Set
the width to a specific size, as for the font-size property. The style can be
set to values such as dashed, groove, inset, or outset. The default border
style is none. The color may be coded as a color name, a hex value, or an
RGB value.

{margin-bottom:size

 auto
 margin-left: size
 auto
 margin-right: size
 auto
 margin-top: size
 auto
 margin: top right
 bottom left
}

By default, no border is shown for an element. Use border-color to
set just the color property for the border. Similarly, the border-width

property defines just the width of the element’s border. The border-style

property can be set to none to indicate that no border be displayed, or
hidden to indicate that the border be rendered on the page, but invisibly.

 Creating a Cascading Style Sheet 113

{border: width

 style
 color
 border-color: color
 rgb
 hex
 border-style: none
 hidden
 dotted
 dashed
 solid
 double
 groove
 ridge
 inset
 outset
 border-width:size
 thin
 medium
 thick
 border-top-color: as above
 border-top-style: as above
 border-top-width: as above
 border-top: as above
 border-bottom-color: as above
 border-bottom-style: as above
 border-bottom-width: as above
 border-bottom: as above
 border-left-color: as above
 border-left-style: as above
 border-left-width: as above
 border-left: as above
 border-right-color: as above
 border-right-style: as above
 border-right-width: as above
 border-right: as above
}

114 Chapter 5: Using Cascading Style Sheets

The dotted, dashed, and solid values obviously describe the appearance
of the border.

The groove border style appears like a channel cut into the surface of the
Web page. Ridge creates a 3D raised border that surrounds the element.
Double creates a border within a border. The inset border appears sunken
into the surface of the Web page, while the outset value makes an element
appear to be elevated, as if on top of a button.

Use border-top, border-left, border-right, and border-bottom to set the
border properties for just that section of the element.

To make the links from Figure 5.11 more visually distinct, we could add
a border. In this case, the code in Figure 5.12 adds an outset border to
make them appear raised above the surface of the Web page, as shown
in Figure 5.13.

The code in Figure 5.12 keeps the block
attribute from the earlier example and adds
the outset border. It also sets the width
to 14ex (fourteen x’s) so that the outset
 borders would not continue all the way to
the right margin of the page. The text was
also centered within the block so that it
lined up nice and neat within the borders.
This makes the links look like buttons.

What Properties Control the Background of an Element?

Use the background-image property to indicate the URL of an image
file you wish to use as the background of the element. When specifying
the URL, be sure to code it within the url(‘…’) wrapper, as shown in the
syntax below.

a {display:block; border-style:outset;
 width:14ex;text-align:center;
}

Figure 5.12: The style sheet code for anchor tags with special borders.

Figure 5.13: Centered links with
 outset borders of a specific

width.

Set the background-attachment property to fixed if you wish the
 background image to remain in exactly the same position within the
 viewable area of the Web page. If this property is set to scroll, the image
will move with the content as the user scrolls through the element.

If you are not using a background image and would rather set the back-
ground to a solid color, use the background-color property. Set it to the
desired color name, a hex code, or an RGB value.

If you want a background image to repeat (tile) to fill the element, set
the background-repeat property. The property’s default is repeat, which
causes the image to tile as many times as needed to fill the available space.
If it is set to repeat-x, the image repeats across the element horizontally,

 Creating a Cascading Style Sheet 115

{background-attachment: fixed

 scroll
 background-color: color
 rgb(r,g,b)
 #(rr,gg,bb)
 background-image:url('url')
 background-position:
 x y
 top left
 top center
 top right
 center left
 center center
 center right
 bottom left
 bottom center
 bottom right
 background-repeat: repeat
 repeat-x
 repeat-y
 no-repeat
 background: color
 image
 repeat
 attachment
 position
}

116 Chapter 5: Using Cascading Style Sheets

but only one row is tiled. If the property is set to repeat-y, the image
repeats vertically, but only one column is tiled. To cause the image to
only appear once, use the no-repeat value.

The background-position property identifies the starting position of the
background image. Specify the x and y distances, where x is the offset
distance from the left border, and y is the offset from the top border. Use the
standard size values discussed earlier in this chapter. To avoid hardcoding a
specific distance, you can specify one of the special values, such as top left
or center center. As you would expect, the image is anchored to the element
at the specified location. To set all the background image properties at once,
use the background property and provide the values in the order shown.

To update the background of our sample Web page, we might remove all
the background properties set in the <body> tag in the HTML code, and
add the code in Figure 5.14 to the cascading style sheet.

This style defines the background as a single image (barn5.jpg), positioned
in the upper-right corner of the page. This doesn’t change the look of the
page at all, but it does move the control of the background image into
the cascading style sheet and out of the HTML code. There is another
advantage to this that we’ll discuss at the end of this chapter.

What Properties Control the Appearance of Elements?

The list-style-type property sets the specific symbol to use for ordered
and unordered lists. The disc, circle, and square values create the
standard symbols discussed in chapter 2. Set the type to lower-roman
to use lowercase Roman numerals in an ordered list, or upper-roman for
uppercase. Upper-alpha creates an ordered list with uppercase alphabetic
characters, and lower-alpha uses lowercase. List-style-position has two
values: inside indents the list items, while outside (the default) prints
them aligned to the current text.

body {background:url(barn5.jpg);background-repeat:no-repeat;
 background-position:top right;
}

Figure 5.14: The style sheet code for the body of a Web page.

If the standard symbols are not sufficient for you, use the list-style-image
property to specify a URL containing an image file of a symbol. Be sure to
wrap the URL with url(…). Many people report having difficulty in getting
list-style-image to work correctly and consistently in multiple browsers. If
you have this problem, first try setting the position to outside. If that does
not fix the problem, you might need to consider attaching a background
image to the text instead of using an tag.

The marker-offset property exists in the CSS definition from the W3C,
but few, if any, browsers support it at this time.

 Creating a Cascading Style Sheet 117

{list-style-type:

 disc
 circle
 square
 decimal
 decimal-leading-zero
 lower-roman
 upper-roman
 lower-alpha
 upper-alpha
 lower-greek
 lower-latin
 upper-latin
 Hebrew
 armenian
 georgian
 cjk-ideographic
 hiragana
 katakana
 hiragana-iroha
 katakana-iroha
 list-style: type position image
 list-style-position: inside
 outside
 list-style-image: url(url)
 marker-offset: length
 auto
}

118 Chapter 5: Using Cascading Style Sheets

To set the style, position and/or image at once, use the list-style property,
and then provide a type, position, and URL. Any of these may be omitted,
as needed.

The page properties affect the way an HTML document is printed. The two
most common properties are page-break-before and page-break-after. Add
one or the other of these to an element to control how it handles page breaks.

To force a page break before a given element prints, set its page-break-

before property to always. This forces a page break no matter how far
down the page it is. Set a page-break-inside property to prevent page
breaks from occurring within a given element.

Use the orphans property to set the minimum number of lines that must
print at the bottom of a page before advancing to the next page. Similarly,
widows defines the minimum number of lines that may print on a new
page after a page break occurs in the middle of an element.

Set the marks property to crop if you want to allow images to print all the
way to the edge of the paper, ignoring margins. Set this property to cross

{marks: crop

 cross
 orphans: number
 page-break-after: auto
 always
 avoid
 left
 right
 page-break-before: (as above)
 page-break-inside: auto
 avoid
size: length width
 auto
 landscape
 portrait
 widows: number
}

if you want to print alignment crosses on the paper, which are special
symbols used by certain printers to guarantee correct alignment.

You may define the basic layout of the page by setting the size property to
either landscape or portrait. Auto uses the default page size. If you want
to manually set the page size, simply provide the length and width sizes.

There are also specific CSS properties for working with tables. For example,
table-layout can be set to fixed if you have consistent row and column sizes.
The sizes of the cells in the first row of the table provide the template that
all subsequent rows use. This can lead to a performance improvement when
loading large tables, as the browser does not need to calculate the size of
each cell as it is displayed.

Use the empty-cells property to control how empty table cells are handled.
Set this to hide if you want empty cells to be hidden from view, or show
(the default) to indicate that all cells should be visible.

The border-collapse property compresses two adjacent borders into a single
border, creating a more compact table. Setting this value to separate (the
default) displays the two adjacent borders with a small space between them.
Use the border-spacing property to control the size of the space between the
borders when they are separated. Set border-spacing to a single value, and

 Creating a Cascading Style Sheet 119

{border-collapse: collapse

 separate
 border-spacing: length
 horz vert
 caption-side: bottom
 left
 right
 top
 empty-cells: show
 hide
 table-layout: auto
 fixed
}

120 Chapter 5: Using Cascading Style Sheets

that length will be used as the size for both the vertical and the horizontal
borders. Alternatively, provide the horizontal and vertical border sizes
separately. The caption-side property simply determines the side of the table
on which the caption appears. This can be set to top, right, left, or bottom.

Defining Style Classes

So far, you have seen ways to change the properties of standard HTML
elements. There is a far more powerful option within cascading style
sheets, however. You can define something called a class, which is a set
of properties that can be used by one or more types of elements. You can
define a class as a subclass of a specific element, as shown in Figure 5.15.

You can then write some HTML code that uses the style sheet, as in Figure
5.16. As you can see, the style sheet defines two types of paragraph tags:
the question class and the answer class. Questions will be displayed in
bold, while answers will be displayed in normal text.

The beauty of this method is that if you decide you want to display all
questions in, say, blue, and the answers in green, you would only have to
update the style sheet, and all pages that reference it would be updated.
The HTML code references the class by adding the class property to a tag.
If there is a paragraph class defined with that name, its properties will be
used on this element.

You also have the option to define classes that are completely independent
of all elements. The code for this is shown in Figure 5.17. As you can see,
a class is defined with a period (.) as its first character.

P.question {font-weight:bold;
}
P.answer {font-weight:normal;
}

Figure 5.15: Examples of subclasses.

<p class="question" >How do we define style classes?</p>
<p class="answer">Using the ".class-name" syntax in the style
 sheet</p>

Figure 5.16: HTML code controlled by subclasses.

Since the question class in Figure 5.17 is not associated with a specific
HTML tag, any tag could inherit its properties by simply referring to
it. This allows multiple elements, such as paragraphs and headings, to
acquire the same properties.

How Do Elements Inherit Properties from a Parent Element?

Elements inherit any properties they can from their parent. So, if the
<body> tag has its font-family set to Arial, every element within the
body that prints text will acquire that font property by default. However,
any child element that defines its own font-family property supersedes
the value in the <body> tag.

It’s also possible to use classes in style sheets to define properties for child
elements. For example, suppose you created a list of questions and answers
using the definition-list HTML tags. You could use the style classes shown
in Figure 5.18 to define the look of the definition terms and the definition
descriptions. You could also provide a separate look for the major and
minor questions.

The styles in Figure 5.18 define the major topics as having a gray back-
ground and larger text, while the minor topics have a white background
and smaller text. Each cell within the row will inherit these properties
from its parent. They will also define their own class as being either a

 Creating a Cascading Style Sheet 121

.question {font-weight:bold;
}
.answer {font-weight:normal;
}

Figure 5.17: Examples of classes.

.major {background:gray;font-size:120%; width=200px;
}
.minor {background:white; font-size 90%;
}
.question {color:blue;
}
.answer {color:black;
}

Figure 5.18: Styles for a question-and-answer page.

122 Chapter 5: Using Cascading Style Sheets

question, which is printed in blue, or an answer, which is printed in white.
The code for an HTML table that uses these classes is given in Figure 5.19.

The <dl> tag defines the beginning of a new definition list. In this case,
it also selects the class as being major or minor. The <dt> tag identifies a
term, or in this case a question, and defines the class as being a question.
The <dd>, or definition description, tag uses the answer class. The text that
appears in the list acquires the properties of both the classes set in the <dt>
and <dd> tags, as well as the class set in the <dl> tag. This is because the
<dt> and <dd> tags are within the <dl>, making them child elements that
inherit properties from their parent.

The code in Figure 5.19 creates the page shown in Figure 5.20. All of
the questions appear in blue, while the answers are in black. The major
questions appear in a larger text with a gray background. The width
property in the major class limits the width of the element to 200 pixels.
Without this, the gray background would extend all the way across the
page.

You might be thinking that the list in Figure 5.20 is pretty ugly. While
that’s true, it provides a fairly simple way to illustrate the inheritance
we’re discussing, and that is our primary goal.

<dl class="major">
<dt class ="question">Question 1</dt>
<dd class ="answer">Answer for 1</dd>
<dl class="minor">
<dt class ="question">Question 1.a</dt>
<dd class ="answer">Answer for 1.a</dd>
<dt class ="question">Question 1.b</dt>
<dd class ="answer">Answer for 1.b</dd>
</dl>
<dt class="question">Question 2</dt>
<dd class ="answer">Answer for 2</dd>
<dl class="minor">
<dt class ="question">Question 2.a</dt>
<dd class ="answer">Answer for 2.a</dd>
<dt class ="question">Question 2.b</dt>
<dd class ="answer">Answer for 2.b</dd>
</dl>
</dl>

Figure 5.19: The HTML code for a question-and-answer page.

Rather than using inheritance to provide the flexibility needed in the
question-and-answer list, we could have assigned multiple classes to a
single element. The code for the cascading style sheet remains the same
as in Figure 5.18, but the HTML changes to that in Figure 5.21.

 Creating a Cascading Style Sheet 123

Figure 5.20: A question-and-answer
 HTML page, showing definitions

with inheritance.

<dl>
<dt class ="question major">Question 1</dt>
<dd class ="answer major">Answer for 1</dd>
<dl class ="minor">
<dt class ="question minor">Question 1.a</dt>
<dd class ="answer minor">Answer for 1.a</dd>
<dt class ="question minor">Question 1.b</dt>
<dd class ="answer minor">Answer for 1.b</dd>
</dl>
<dt class ="question major">Question 2</dt>
<dd class ="answer major">Answer for 2</dd>
<dl class ="minor">
<dt class ="question minor">Question 2.a</dt>
<dd class ="answer minor">Answer for 2.a</dd>
<dt class ="question minor">Question 2.b</dt>
<dd class ="answer minor">Answer for 2.b</dd>
</dl>

Figure 5.21: Alternative HTML code for the question-and-answer page.

124 Chapter 5: Using Cascading Style Sheets

In this version of the definition list, all of the decisions about question versus
answer and major versus minor have been moved into the specific <dt> and
<dd> tags. To improve the look of the list, we also included the minor class
for the inner (minor) definition lists. As shown here, more than one class
may be listed for the class property of an HTML tag. Simply list all of the
relevant classes, with a space between each. The result of this modified code,
shown in Figure 5.22, is noticeably different than the previous example.

Since we moved the “major” class out of the <dl> tag and into the <dt>
and <dd> tags, only those specific question-and-answer sections have a
gray background. Since the answer is indented beneath the question, and
both have a fixed length of 200 pixels, the gray shading for the answer
boxes sticks out further than the questions. We might want to set a smaller
width for the answer so that they align on the right side, but that is a
cosmetic change that we don’t need to worry about here. You can do it
on your own, if you want.

It is also possible to define the style for elements that are the child of other
specific elements. For example, you could define the look of the tag
when it is within an ordered list as being different from when it is within an
unordered list. The CSS code might look like Figure 5.23.

Figure 5.22: A definition list with multiple classes.

Using this style sheet, the sample HTML code shown in Figure 5.24
creates the output in Figure 5.25.

Remember that in this example all six lines of code are generated within
the tag. The different behavior comes from the parent element, in
this case, the or tag. This type of subclass is called a child
selector.

 Creating a Cascading Style Sheet 125

UL LI {color:blue; font-size:120%;
}
OL LI {color:green; font-size:100%;
}

Figure 5.23: Styles for list items within unordered and ordered lists.

Major Topic A

 Minor topic a.1
 Minor topic a.2

Major Topic B

 Minor topic b.1
 Minor topic b.2

Figure 5.24: The HTML code to create the Web page in Figure 5.25.

Figure 5.25: Nested lists with subclass styles.

126 Chapter 5: Using Cascading Style Sheets

Another type of a subclass is the descendant selector, which identifies
an element that is descended from another element, but not necessarily
an immediate descendant. For example if you added definition lists
within the minor topics in the previous examples, you would have several
layers of elements. You would have an containing a containing
a <dl>. To assign a style to a definition list contained somewhere inside
an ordered list, you would use the code shown in Figure 5.26.

If you needed to define the style of a definition list that was the grandchild
or later descendant of another element, you would use the code in Figure
5.27 in the CSS. In this example, if the definition list were immediately
beneath the ordered list in the HTML code, this style would not apply.
There would have to be at least one other element between them for this
style to apply.

If you needed to identify sibling elements, such as a paragraph that
immediately follows an <h3> tag, you could define a style sheet as shown
in Figure 5.28. In this case, the plus sign indicates that the <p> tag must
follow the <h3> tag. It is important to note that as opposed to the earlier
examples, the <p> tag is not inside the <h3> tag, but adjacent to it, within
a larger element such as the page body.

Once you understand these basic methods of identifying various selectors
based on their relationships, an even more complex method of identifying
elements in relationships to one another is to string multiple dependent

OL>DL {color:green; font-size:100%;
}

Figure 5.26: The style for a definition list somewhere within an ordered list.

OL*DL {color:green; font-size:100%;
}

Figure 5.27: The style for a definition list that is at least a grandchild of an ordered list.

H3+P {color:blue; font-size:100%;
}

Figure 5.28: The style for a paragraph that immediately follows an <h3> tag.

selectors together. For example, if you wanted to identify only those
ordered lists that existed somewhere within a paragraph and immediately
after an unordered list, you could write the CSS code shown in Figure 5.29.

This might seem at first like an odd and not terribly useful ability. However,
what if you wanted to nest one unordered list inside another, such as shown
in Figure 5.30?

Normally, for nested lists like this, the browser will assign different symbols
such as disk, circle, and square to the list items at each level. But what if
you wanted to change more than the symbol? What if you wanted to change,
say, the text color and size as well? You could use the CSS code in Figure
5.31 to define the behavior for each layer of nested, unordered lists.

The first style is for the top-level unordered list. If you didn’t code
anything else, it would apply to all levels. The second style applies to

 Creating a Cascading Style Sheet 127

P>UL+OL {color:blue; font-size:100%;
}

Figure 5.29: An example of nested subclasses.

Major Topic A

 Minor topic a.1
 Minor topic a.2

 Tertiary topic a.2.1
 Tertiary topic a.2.1

Figure 5.30: The HTML code for nested lists.

ul {color:blue; font-size:120%;
}
ul ul {color:green; font-size:100%;
}
ul ul ul {color:Red; font-size:80%;
}

Figure 5.31: Styles for nested lists.

128 Chapter 5: Using Cascading Style Sheets

the second level of nested unordered lists. The third style applies to all
unordered lists that have been nested at least three levels deep. When
this CSS code is combined with the previous HTML code, it generates
the output shown in Figure 5.32. To continue defining different looks for
deeper levels such as the fourth or fifth levels, simply add additional styles
with either four or five ul identifiers at the beginning.

Whenever more than one selector applies to an element, the one that is
most precise takes precedence. There is a formula for determining this,
but it’s a bit more complicated than we want to try to explain here, so the
overly simplified rule is this:

The selector that refers to the most IDs (discussed next) takes
precedence. If the selectors refer to the same number of IDs (or
none), then the number of classes referenced determines the selector
that takes precedence. If the selectors refer to the same number
of classes (or none), then the number of HTML tags referenced
determines the selector that takes precedence. If two selectors refer
to the same number of HTML tags, then the one listed last in the
style sheet takes precedence.

What Is an ID?

So far, we have been talking almost exclusively about classes. But there is
another entity called an ID. Where classes are used to define styles for one
or more HTML elements, IDs are exclusively designed to uniquely identify
a single element. So, if a page had three paragraphs, you might assign the
same class to all three, but also assign a unique ID to each one, as shown
in Figure 5.33.

Figure 5.32: Three nested, unordered lists.

Any attributes that are common to all three paragraphs can be assigned
via the class’s style. If you wanted only the second paragraph to print in
italics, however, you might create CSS code such as that shown in Figure
5.34. The .notes entry defines the style for the notes class, which then
applies to all three paragraphs. All ID tags referenced in a CSS precede the
id identifier with a pound sign (#). So, the entry starting with #p2 defines
the style for the second paragraph. Because the HTML code has both a
class and an ID, both styles apply. The entry for the id tag overrides any
conflicting values from the notes class.

The three paragraphs in Figure 5.33, with the CSS code in Figure 5.34,
create the output in Figure 5.35. Remember that when you use an id tag,
it should be unique within the HTML document.

What You Can Do with a Cascading Style Sheet

You can define style rules for virtually every HTML element, even if some
are pointless, such as a font assignment for an embedded video file. All

 Creating a Cascading Style Sheet 129

<p id="p1" class="notes">Some misc information</p>
<p id="p2" class="notes">More misc information</p>
<p id="p3" class="notes">The last misc information</p>

Figure 5.33: Paragraph tags with IDs.

.notes {font-style:normal; width:60%;margin-left:20%;
}

#p2 {font-style:italic
}

Figure 5.34: The style for the notes class and the p2 ID.

Figure 5.35: Three paragraphs with
 classes and IDs.

130 Chapter 5: Using Cascading Style Sheets

of the examples you’ve seen so far are fairly simple. This is appropriate,
because you are just trying to figure out how these things work.

One of the main uses for style sheets is to control the arrangement of
content on the page. By arrangement, we mean not just font sizes, colors,
etc., but to actually move elements all over the page. One of the neat things
you can do is create pages that can wildly change their looks and layouts,
simply by changing the cascading style sheet they use. We’ll discuss this
further in chapter 6. For now, let’s look at a revised version of our Web
page that incorporates a cascading style sheet. We’ll change the page to
pull in the barn image as a background.

The modified HTML code is shown in Figure 5.36. Nearly all the line
breaks, the width attributes, and even the background image have been
removed. The previous background image was the size of the entire page,
with white space to the left and bottom. By moving the background
image’s definition to a cascading style sheet, we have better tools for
controlling its behavior, and we can eliminate the white space and use a
smaller image that includes just the barn. Because it is smaller, the image
will load faster than on the previous page. You will also notice the class
definitions sprinkled throughout the code.

<html>
<head>
<link href="bbqtheme.css" rel="stylesheet" type="text/css">
</head>
<body>
<h1 class="heading1" >Bill's Barbeque Barn</h1>
<H3><P class="intro">Here at Bill's BBQ Barn, there is nothing
 we like more than sharing our Blue Ribbon BBQ Recipe with all
our friends.

</P>
<P class ="intro">
Join us for some of the best BBQ you'll find anywhere. After you
 sample some of our famous food, stop by the gift shop and pick up
a bottle of Bill's BBQ Sauce to take home, or find the perfect
gift for your Backyard BBQ Grill Master at home.

</P>
<P class ="intro">
We think that you'll have to agree with us, that there is nothing that
brings back that "down home" feeling like a great BBQ dinner. And
 Great BBQ is what we do.

Figure 5.36: The modified HTML code for the BBQ Barn home page (part 1 of 2).

The new cascading style sheet for our home page is shown in Figure 5.37.
This cascading style sheet defines the picture of the barn as the back-
ground for the page, positions it in the upper-right corner, and prevents it
from repeating, so only one barn is shown.

We’ve added a bottom margin to the first heading, so the text that follows
appears farther down the page. The introductory section has its width
defined as 60% of the page, so it won’t overlap the background image.
Virtually all of the properties of the horizontal rule, including its height,
width, and alignment, are controlled in the cascading style sheet.

The block class defines the style for the hypertext links at the bottom of
the page. It defines an indention, a width, a border style, and an alignment.
As noted earlier in the chapter, the display:block property forces a new

 What You Can Do with a Cascading Style Sheet 131

</P></H3>

<HR>
Learn More about:

Country
 Store
BBQ
 Flavors
“How
 To” BBQ
</body>
</html>

Figure 5.36: The modified HTML code for the BBQ Barn home page (part 2 of 2).

body {background:url(barn5.jpg);background-repeat:no-repeat;
 background-position:top right;
}
.heading1 {width:70%; text-align:center; margin-bottom:40px;
}
.intro {width:60%;
}
hr {width=80%; text-align:center;height:2px;
}
.inset {margin-left:7em; width:80%;
}
a.block {display:block; border-style:outset;
 width:14ex;text-align:center; margin-left:7em;
}

Figure 5.37: The cascading style sheet for the BBQ Barn home page.

132 Chapter 5: Using Cascading Style Sheets

line after each link. The outset border makes the links appear like buttons
on the page. The resulting Web page is shown in Figure 5.38.

Summary

Cascading style sheets provide a tremendous amount of flexibility and
complexity to Web page design. Combining HTML with style sheets
creates vastly more sophisticated Web pages, and the whole thing begins
to feel more like programming.

Most programmers will, or at least should, partner with experienced Web
designers to create the layout and look of their Web pages. If you don’t
have an experienced designer to learn from, there are countless online
tutorials and books on cascading style sheets. With a little research and
effort, you can build on this introduction to cascading style sheets, and
you’ll be on the road to becoming an experienced Web developer yourself!

Figure 5.38: The updated Web page using a cascading style sheet.

