
Security

Eight and one-half percent (8.5%) of the DB2 9 for Linux, UNIX, and
Windows Database Administration exam (Exam 731) is designed to test your

knowledge about the mechanisms DB2 uses to protect data and database objects
against unauthorized access and modification. The questions that make up this
portion of the exam are intended to evaluate the following:

● Your ability to identify the methods that can be used to restrict access to
data stored in a DB2 database

● Your ability to identify the authorization levels used by DB2

● Your ability to identify the privileges used by DB2

● Your ability to identify how specific authorizations and/or privileges are
given to a user or group

● Your ability to identify how specific authorizations and/or privileges are
taken away from a user or group

● Your knowledge of the mechanisms and steps needed to implement label-
based access control (LBAC)

This chapter is designed to introduce you to the various authorizations and
privileges that are available with DB2 9 and to the tools that are used to give
(grant) one or more of these authorizations and/or privileges to various users and
groups. This chapter will also show you how to revoke one or more authorizations
or privileges a user or group currently holds and how to implement LBAC to
control access columns and rows in a table.

C H A P T E R 8

Controlling Database Access

Identity theft—a crime in which someone wrongfully obtains another person’s
personal data (such as a Social Security number, bank account number, and credit
card number) and uses it in some way that involves fraud or deception for
economic gain—is the fastest-growing crime in our nation today. Criminals are
stealing information by overhearing conversations made on cell phones, by reading
faxes and emails, by hacking into computers, by waging telephone and email
scams, by stealing wallets and purses, by stealing discarded documents from trash
bins, by stealing mail, and by taking advantage of careless online shopping and
banking habits. But more frightening is the fact that studies show that up to 70
percent of all identity theft cases are inside jobs—perpetrated by a coworker or an
employee of a business you patronize. In these cases, all that is needed is access to
your personal data, which can often be found in a company database.

Every database management system must be able to protect data against
unauthorized access and modification. DB2 uses a combination of external
security services and internal access control mechanisms to perform this vital task.
In most cases, three different levels of security are employed: The first level
controls access to the instance under which a database was created, the second
controls access to the database itself, and the third controls access to the data and
data objects that reside within the database.

Authentication

The first security portal most users must pass through on their way to gaining
access to a DB2 instance or database is a process known as authentication. The
purpose of authentication is to verify that users really are who they say they are.
Normally, authentication is performed by an external security facility that is not
part of DB2. This security facility may be part of the operating system (as is the
case with AIX, Solaris, Linux, HP-UX, Windows 2000/NT, and many others), may
be a separate add-on product (for example, Distributed Computing Environment
[DCE] Security Services), or may not exist at all (which is the case with Windows
95, Windows 98, and Windows Millennium Edition). If a security facility does
exist, it must be presented with two specific items before a user can be
authenticated: a unique user ID and a corresponding password. The user ID
identifies the user to the security facility, and the password, which is information

622 Chapter 8: Security

Authentication 623

known only by the user and the security facility, is used to verify that the user is
indeed who he or she claims to be.

Where Does Authentication Take Place?

Because DB2 can reside in environments composed of multiple clients, gateways,
and servers, each of which may be running on a different operating system,
deciding where authentication is to take place can be a daunting task. To simplify
things, DB2 uses a parameter in each DB2 Database Manager configuration file
(the authentication parameter) to determine how and where users are authenticated.
Such a file is associated with every instance, and the value assigned to this
parameter, often referred to as the authentication type, is set initially when an
instance is created. (On the server side, the authentication type is specified during
the instance creation process; on the client side, the authentication type is specified
when a remote database is cataloged.) Only one authentication type exists for each
instance, and it controls access to that instance, as well as to all databases that fall
under that instance’s control.

With DB2 9, the following authentication types are available:

SERVER. Authentication occurs at the server workstation, using the security
facility provided by the server’s operating system. (The user ID and password
provided by the user wishing to attach to an instance or connect to a database
are compared to the user ID and password combinations stored at the server
to determine whether the user is permitted to access the instance or
database.) By default, this is the authentication type used when an instance is
first created.

Because passwords are a very important tool for
authenticating users, you should always require passwords at
the operating system level if you want the operating system to

perform the authentication for your database. Keep in mind that on
most UNIX operating systems, undefined passwords are treated as
NULL, and any user who has not been assigned a password will be
treated as having a NULL password. From the operating system’s
perspective, if no password is provided when a user attempts to log
on, this will evaluate to being a valid match.

SERVER_ENCRYPT. Authentication occurs at the server workstation,
using the security facility that is provided by the server’s operating system.
However, the password provided by the user wishing to attach to an instance
or connect to a database stored on the server may be encrypted at the client
workstation before it is sent to the server workstation for validation.

CLIENT. Authentication occurs at the client workstation or database
partition where a client application is invoked, using the security facility that
is provided by the client’s operating system, assuming one is available. If no
security facility is available, authentication is handled in a slightly different
manner. The user ID and password provided by the user wishing to attach to
an instance or connect to a database are compared to the user ID and
password combinations stored at the client or node to determine whether the
user is permitted to access the instance or the database.

KERBEROS. Authentication occurs at the server workstation, using a
security facility that supports the Kerberos security protocol. This protocol
performs authentication as a third-party service by using conventional
cryptography to create a shared secret key. The key becomes the credentials
used to verify the identity of the user whenever local or network services are
requested; this eliminates the need to pass a user ID and password across the
network as ASCII text. (If both the client and the server support the Kerberos
security protocol, the user ID and password provided by the user wishing to
attach to an instance or connect to a database are encrypted at the client
workstation and sent to the server for validation.) It should be noted that the
KERBEROS authentication type is supported only on clients and servers that
are using the Windows 2000, Windows XP, or Windows .NET operating
system. In addition, both client and server workstations must either belong to
the same Windows domain or belong to trusted domains.

KRB_SERVER_ENCRYPT. Authentication occurs at the server workstation,
using either the KERBEROS or the SERVER_ENCRYPT authentication method.
If the client’s authentication type is set to KERBEROS, authentication is
performed at the server using the Kerberos security system. On the other
hand, if the client’s authentication type is set to anything other than
KERBEROS, or if the Kerberos authentication service is unavailable, the

Chapter 8: Security624

server acts as if the SERVER_ENCRYPT authentication type was specified, and
the rules of this authentication method apply.

DATA_ENCRYPT. Authentication occurs at the server workstation, using
the SERVER_ENCRYPT authentication method. In addition, all user data is
encrypted before it is passed from client to server and from server to client.

DATA_ENCRYPT_CMP. Authentication occurs at the server workstation,
using the SERVER_ENCRYPT authentication method; all user data is encrypted
before it is passed from client to server and from server to client. In addition,
this authentication type provides compatibility for down-level products that do
not support the DATA_ENCRYPT authentication type. Such products connect
using the SERVER_ENCRYPT authentication type, and user data is not encrypted.

GSSPLUGIN. Authentication occurs at the server workstation, using a
Generic Security Service Application Program Interface (GSS-API) plug-in.
If the client’s authentication type is not specified, the server returns a list of
server-supported plug-ins (found in the srvcon_gssplugin_list database
manager configuration parameter) to the client. The client then selects the
first plug-in found in the client plug-in directory from the list. If the client
does not support any plug-in in the list, the client is authenticated using the
KERBEROS authentication method.

GSS_SERVER_ENCRYPT. Authentication occurs at the server
workstation, using either the GSSPLUGIN or the SERVER_ENCRYPT

authentication method. That is, if client authentication occurs through a GSS-
API plug-in, the client is authenticated using the first client-supported plug-
in found in the list of server-supported plug-ins. If the client does not support
any of the plug-ins found in the server-supported plug-in list, the client is
authenticated using the KERBEROS authentication method. If the client does
not support the Kerberos security protocol, the client is authenticated using
the SERVER_ENCRYPT authentication method.

It is important to note that if the authentication type used by the client workstation
encrypts user ID and password information before sending it to a server for
authentication (i.e., SERVER_ENCRYPT, KRB_SERVER_ENCRYPT, etc.), the server must
be configured to use a compatible authentication method. Otherwise, it will not be
able to process the encrypted data received, and an error will occur.

Authentication 625

It is also important to note that if the authentication type is not specified for a
client workstation, the SERVER_ENCRYPT authentication method is used by default.
If such a client tries to communicate with a server that does not support the
SERVER_ENCRYPT authentication method, the client will attempt to use the
authentication type that is being used by the server—provided the server has been
configured to use only one authentication type. If the server supports multiple
authentication types, an error will be generated.

Security Plug-ins

In DB2 9, authentication is done using security plug-ins. A security plug-in is a
dynamically loadable library that provides authentication security services; DB2 9
supports two mechanisms for plug-in authentication:

● User ID/password authentication

This involves authentication using a user ID and password. The following
authentication types are implemented using user ID/password
authentication plug-ins:

● CLIENT

● SERVER

● SERVER_ENCRYPT

● DATA_ENCRYPT

● DATA_ENCRYPT_CMP

● GSS-API authentication

GSS-API was formally known as Generic Security Service Application
Program Interface, Version 2 (IETF RFC2743) and Generic Security
Service API Version 2: C-Bindings (IETF RFC2744). The following
authentication types are implemented using GSS-API authentication
plug-ins:

● KERBEROS

● GSSPLUGIN

Chapter 8: Security626

● KRB_SERVER_ENCRYPT

● GSS_SERVER_ENCRYPT

KRB_SERVER_ENCRYPT and GSS_SERVER_ENCRYPT support both GSS-API
authentication and user ID/password authentication; however, GSS-API
authentication is the authentication type preferred.

Each plug-in can be used independently or in conjunction with one or more of the
other plug-ins available. For example, you might specify only a server
authentication plug-in to use and allow DB2 to use the defaults for client and
group authentication. Alternatively, you might specify only a group or client
authentication plug-in. The only situation where both a client and server plug-in
are required is for GSS-API authentication. (In some cases—for example, if you
are using Microsoft Active Directory to validate a user—you may need to create
your own custom security plug-in and make it available for DB2 to use.)

The default behavior for DB2 9 is to use a user ID/password plug-in that
implements an operating-system-level mechanism for authentication.

Trusted Clients Versus Untrusted Clients

If both the server and the client are configured to use the CLIENT authentication
type, authentication occurs at the client workstation (if the database is a
nonpartitioned database) or at the database partition from which the client
application is invoked (if the database is a partitioned database), using the security
facility provided by the client workstation’s operating system. But what happens if
the client workstation is using an operating system that does not contain a tightly
integrated security facility, and no separate add-on security facility has been made
available? Does such a configuration compromise security? The answer is no.
However, in such environments, the DB2 Database Manager for the instance at the
server must be able to determine which clients will be responsible for validating
users and which clients will be forced to let the server handle user authentication.
To make this distinction, clients that use an operating system that contains a tightly
integrated security facility (for example, OS/390, VM, VSE, MVS, AS/400,
Windows NT, Windows 2000, and all supported versions of UNIX) are classified
as trusted clients, whereas clients that use an operating system that does not

Authentication 627

provide an integrated security facility (for example, Windows 95, Windows 98, and
Windows Millennium Edition) are treated as untrusted clients.

The trust_allclnts parameter of a DB2 Database Manager configuration file helps
the DB2 Database Manager for an instance on a server anticipate whether its clients
are to be treated as trusted or untrusted. If this configuration parameter is set to YES

(which is the default), the DB2 Database Manager assumes that any client that
accesses the instance is a trusted client and that some form of authentication will
take place at the client. However, if this configuration parameter is set to NO, the
DB2 Database Manager assumes that one or more untrusted clients will try to
access the server; therefore, all users must be authenticated at the server. (If this
configuration parameter is set to DRDAONLY, only MVS, OS/390, VM, VSE, and
OS/400 clients will be treated as trusted clients.) It is important to note that,
regardless of how the trust_allclnts parameter is set, whenever an untrusted client
attempts to access an instance or a database, user authentication always takes place
at the server.

In some situations, it may be desirable to authenticate users at the server, even
when untrusted clients will not be used. In such situations, the trust_clntauth
configuration parameter of a DB2 Database Manager configuration file can be used
to control where trusted clients are to be validated. When the default value for this
parameter (which is CLIENT) is accepted, authentication for trusted clients will take
place at the client workstation. If, however, the value for this parameter is changed
to SERVER, authentication for all trusted clients will take place at the server.

Authorities and Privileges

Once a user has been authenticated, and an attachment to an instance or a
connection to a database has been established, the DB2 Database Manger evaluates
any authorities and privileges that have been assigned to the user to determine what
operations the user is allowed to perform. Privileges convey the rights to perform
certain actions against specific database resources (such as tables and views).
Authorities convey a set of privileges or the right to perform high-level
administrative and maintenance/utility operations on an instance or a database.
Authorities and privileges can be assigned directly to a user, or they can be obtained
indirectly from the authorities and privileges that have been assigned to a group of
which the user is a member. Together, authorities and privileges act to control access

Chapter 8: Security628

to the DB2 Database Manager for an instance, to one or more databases running
under that instance’s control, and to a particular database’s objects. Users can work
only with those objects for which they have been given the appropriate
authorization—that is, the required authority or privilege. Figure 8–1 provides a
hierarchical view of the authorities and privileges that are recognized by DB2 9.

Authorities and Privileges 629

Figure 8–1: Hierarchy of the authorities and privilages available with DB2 9.

Authorities

DB2 9 uses seven different levels of authority to control how users perform
administrative and maintenance operations against an instance or a database:

● System Administrator (SYSADM) authority

● System Control (SYSCTRL) authority

● System Maintenance (SYSMAINT) authority

● System Monitor (SYSMON) authority

● Database Administrator (DBADM) authority

● Security Administrator (SECADM) authority

● Load (LOAD) authority

Four of these levels apply to the DB2 Database Manager instance (and to all
databases that are under that instance’s control), whereas three apply only to
specific databases within a particular instance. The instance-level authorities can
be assigned only to groups; the names of the groups that are assigned these
authorities are stored in the DB2 Database Manager configuration file that is
associated with the instance. Conversely, the database-level authorities can be
assigned to individual users and, in some cases, groups; groups and users that have
been assigned database-level authorities are recorded in the system catalog tables
of the database to which the authority applies.

System Administrator authority

System Administrator (SYSADM) authority is the highest level of administrative
authority available. Users who have been given this authority are allowed to run
any DB2 utility, execute any DB2 command, and perform any SQL/XQuery
operation that does not attempt to access data protected by label-based access
control (LBAC). Users with this authority also have the ability to control
all database objects within an instance, including databases, database partition
groups, buffer pools, table spaces, schemas, tables, views, indexes, aliases, servers,
data types, functions, procedures, triggers, packages, and event monitors.

Chapter 8: Security630

Additionally, users who have been given this authority are allowed to perform the
following tasks:

● Upgrade (migrate) an existing database from a previous version of DB2 to
DB2 Version 9.

● Modify the parameter values of the DB2 Database Manager configuration
file associated with an instance—including specifying which groups have
System Administrator, System Control, System Maintenance, and System
Monitor authority. (The DB2 Database Manager configuration file is used
to control the amount of system resources allocated to a single instance.)

● Give (grant) Database Administrator authority and Security Administrator
authority to individual users and/or groups.

● Revoke Database Administrator authority and/or Security Administrator
authority from individual users and/or groups.

System Administrator authority can be assigned only to a group; this assignment is
made by storing the appropriate group name in the sysadm_group parameter of the
DB2 Database Manager configuration file associated with an instance. (This is
done by executing an UPDATE DATABASE MANAGER CONFIGURATION command
with the SYSADM_GROUP parameter specified, along with the name of the group
that is to receive System Administrator authority.) Individual membership in the
group itself is controlled through the security facility provided by the operating
system used on the workstation where the instance has been defined. Users who
possess System Administrator authority are responsible both for controlling the
DB2 Database Manager associated with an instance and for ensuring the safety and
integrity of the data contained in databases that fall under the instance’s control.

Users who hold System Administrator authority are implicitly given the rights
granted by System Control, System Maintenance, System Monitor, and Database
Administrator authority. However, they are not implicitly given the rights granted
by Security Administrator authority.

Authorities and Privileges 631

System Control authority

System Control (SYSCTRL) authority is the highest level of system or instance
control authority available. Users who have been given this authority are allowed to
perform maintenance and utility operations both on a DB2 Database Manager
instance and on any databases that fall under that instance’s control. However,
because System Control authority is designed to allow special users to maintain an
instance that contains sensitive data that they most likely do not have the right to
view or modify, users who are granted this authority do not implicitly receive
authority to access the data stored in the databases that are controlled by the
instance. On the other hand, because a connection to a database is required in order
to perform some of the utility operations available, users who are granted System
Control authority for a particular instance also receive the privileges needed to
connect to each database under that instance’s control.
Users with System Control authority (or higher) are allowed to perform the
following tasks:

● Update a database, node, or distributed connection services (DCS)
directory (by cataloging/uncataloging databases, nodes, or DCS databases).

● Modify the parameter values in one or more database configuration files.
(A database configuration file is used to control the amount of system
resources that are allocated to a single database during normal operation.)

● Force users off the system.

● Create or destroy (drop) a database.

● Create, alter, or drop a table space.

● Make a backup image of a database or a table space.

● Restore an existing database using a backup image.

● Restore a table space using a backup image.

● Create a new database from a database backup image.

● Perform a roll-forward recovery operation on a database.

● Start or stop a DB2 Database Manager instance.

● Run a trace on a database operation.

Chapter 8: Security632

● Take database system monitor snapshots of a DB2 Database Manager
instance or any database under the instance’s control.

● Query the state of a table space.

● Update recovery history log files.

● Quiesce (restrict access to) a table space.

● Reorganize a table.

● Collect catalog statistics using the RUNSTATS utility.

Like System Administrator authority, System Control authority can be assigned only
to a group. This assignment is made by storing the appropriate group name in the
sysctrl_group parameter of the DB2 Database Manager configuration file that is
associated with a particular instance. (This is done by executing an UPDATE

DATABASE MANAGER CONFIGURATION command with the SYSCTRL_GROUP parameter
specified, along with the name of the group that is to receive System Control
authority.) Again, individual membership in the group itself is controlled through the
security facility that is used on the workstation where the instance has been defined.

System Maintenance authority

System Maintenance (SYSMAINT) authority is the second highest level of system or
instance control authority available. Users who have been given this authority are
allowed to perform maintenance and utility operations both on a DB2 Database
Manager instance and on and any databases that fall under that instance’s control.
System Maintenance authority is designed to allow special users to maintain a
database that contains sensitive data that they most likely do not have the right to
view or modify. Therefore, users who are granted this authority do not implicitly
receive authority to access the data stored in the databases on which they are
allowed to perform maintenance. However, because a connection to a database must
exist before some utility operations can be performed, users who are granted System
Maintenance authority for a particular instance automatically receive the privileges
needed to connect to each database that falls under that instance’s control.

Users with System Maintenance authority (or higher) are allowed to perform the
following tasks:

Authorities and Privileges 633

● Modify the parameter values of one or more DB2 database configuration
files

● Make a backup image of a database or a table space

● Restore an existing database using a backup image

● Restore a table space using a backup image

● Perform a roll-forward recovery operation on a database

● Start or stop a DB2 Database Manager instance

● Run a trace on a database operation

● Take database system monitor snapshots of a DB2 Database Manager
instance or any database under the instance’s control

● Query the state of a table space

● Update recovery log history files

● Quiesce (restrict access to) a table space

● Reorganize a table

● Collect catalog statistics using the RUNSTATS utility

Like System Administrator and System Control authority, System Maintenance
authority can be assigned only to a group. This assignment is made by storing the
appropriate group name in the sysmaint_group parameter of the DB2 Database
Manager configuration file that is associated with a particular instance. (This is
done by executing an UPDATE DATABASE MANAGER CONFIGURATION command
with the SYSMAINT_GROUP parameter specified, along with the name of the group
that is to receive System Maintenance authority.) Again, individual membership in
the group itself is controlled through the security facility that is used on the
workstation where the instance has been defined.

Chapter 8: Security634

System Monitor authority

System Monitor (SYSMON) authority is the third highest level of system or instance
control authority available with DB2. Users who have been given this authority are
allowed to take system monitor snapshots for a DB2 Database Manager instance
and/or for one or more databases that fall under that instance’s control. System
Monitor authority is designed to allow special users to monitor the performance of
a database that contains sensitive data that they most likely do not have the right to
view or modify. Therefore, users who are granted this authority do not implicitly
receive authority to access the data stored in the databases on which they are
allowed to collect snapshot monitor information. However, because a connection to
a database must exist before the snapshot monitor SQL table functions can be used,
users who are granted System Monitor authority for a particular instance
automatically receive the privileges needed to connect to each database under that
instance’s control.
Users with System Monitor authority (or higher) are allowed to perform the
following tasks:

● Obtain the current settings of the snapshot monitor switches

● Modify the settings of one or more snapshot monitor switches

● Reset all counters used by the snapshot monitor

● Obtain a list of active databases

● Obtain a list of active applications, including DCS applications

● Collect snapshot monitor data

● Use the snapshot monitor SQL table functions

Like System Administrator, System Control, and System Maintenance authority,
System Monitor authority can be assigned only to a group. This assignment is
made by storing the appropriate group name in the sysmon_group parameter of the
DB2 Database Manager configuration file that is associated with a particular
instance. (This is done by executing an UPDATE DATABASE MANAGER

CONFIGURATION command with the SYSMON_GROUP parameter specified, along
with the name of the group that is to receive System Monitor authority.) Again,

Authorities and Privileges 635

individual membership in the group itself is controlled through the security facility
that is used on the workstation where the instance has been defined.

Database Administrator authority

Database Administrator (DBADM) authority is the second highest level of
administrative authority available (just below System Administrator authority).
Users who have been given this authority are allowed to run most DB2 utilities,
issue database-specific DB2 commands, perform most SQL/XQuery operations,
and access data stored in any table in a database—provided that data is not
protected by LBAC. (To access data protected by LBAC, a user must have the
appropriate LBAC credentials.) However, they can perform these functions only on
the database for which Database Administrator authority is held.

Additionally, users with Database Administrator authority (or higher) are allowed
to perform the following tasks:

● Read database log files

● Create, activate, and drop event monitors

● Query the state of a table space

● Update recovery history log files

● Quiesce (restrict access to) a table space

● Reorganize a table

● Collect catalog statistics using the RUNSTATS utility

Unlike System Administrator, System Control, System Maintenance, and System
Monitor authority, Database Administrator authority can be assigned to both
individual users and groups. This assignment is made by executing the appropriate
form of the GRANT SQL statement (which we will look at shortly). When a user is
given Database Administrator authority for a particular database, they
automatically receive all database privileges available for that database as well.

Chapter 8: Security636

Security Administrator authority

Security Administrator (SECADM) authority is a special database level of authority
that is designed to allow special users to configure various label-based access
control (LBAC) elements to restrict access to one or more tables that contain data
to which they most likely do not have access themselves. Users who are granted
this authority do not implicitly receive authority to access the data stored in the
databases for which they manage data access. In fact, users with Security
Administrator authority are allowed to perform only the following tasks:

● Create and drop security policies

● Create and drop security labels

● Grant and revoke security labels to and from individual users (using the
GRANT SECURITY LABEL and REVOKE SECURITY LABEL SQL statements)

● Grant and revoke LBAC rule exemptions

● Grant and revoke SETSESSIONUSER privileges (using the GRANT

SETSESSIONUSER SQL statement)

● Transfer ownership of any object not owned by the Security Administrator
(by executing the TRANSFER OWNERSHIP SQL statement)

No other authority, including System Administrator authority, provides a user with
these abilities.

Authorities and Privileges 637

Any time a user with SYSADM or SYSCTRL authority creates a
new database, that user automatically receives DBADM

authority on that database. Furthermore, if a user with SYSADM

or SYSCTRL authority creates a database and is later removed from the
SYSADM or SYSCTRL group (i.e., the user’s SYSADM or SYSCTRL

authority is revoked), the user retains DBADM authority for that
database until it is explicitly removed (revoked).

Security Administrator authority can be assigned only to individual users; it cannot
be assigned to groups (including the group PUBLIC). This assignment is made by
executing the appropriate form of the GRANT SQL statement, and only users with
System Administrator authority are allowed to grant this authority.

Load authority

Load (LOAD) authority is a special database level of administrative authority that
has a much smaller scope than DBADM authority. Users who have been given this
authority, along with INSERT and in some cases DELETE privileges, on a particular
table are allowed to bulk-load data into that table, using either the AutoLoader
utility (db2atld command) or the LOAD command/API. Load authority is designed
to allow special users to perform bulk-load operations against a database with
which they most likely cannot do anything else. This authority provides a way for
Database Administrators to allow more users to perform special database
operations, such as Extraction-Transform-Load (ETL) operations, without having
to sacrifice control.

In addition to being able to load data into a database table, users with Load
authority (or higher) are allowed to perform the following tasks:

● Query the state of a table space using the LIST TABLESPACES command.

● Quiesce (restrict access to) a table space.

● Perform bulk-load operations using the LOAD utility. (If exception tables
are used as part of a load operation, the user must have INSERT privilege on
the exception tables used as well as INSERT privilege on the table being
loaded.)

● Collect catalog statistics using the RUNSTATS utility.

Like Database Administrator authority, Load authority can be assigned to both
individual users and groups. This assignment is made by executing the appropriate
form of the GRANT SQL statement.

Chapter 8: Security638

Privileges

As mentioned earlier, privileges are used to convey the rights to perform certain
actions on specific database resources to both individual users and groups. With
DB2 9, two distinct types of privileges exist: database privileges and object
privileges.

Database privileges

Database privileges apply to a database as a whole, and in many cases, they act as
a second security checkpoint that must be cleared before access to data is provided.
Figure 8–2 shows the different types of database privileges available.

As you can see in Figure 8–2, eight different database privileges exist. They are:

CONNECT. Allows a user to establish a connection to the database.

QUIESCE_CONNECT. Allows a user to establish a connection to the
database while it is in a quiesced state (i.e., while access to it is restricted).

IMPLICIT_SCHEMA. Allows a user to create a new schema in the database
implicitly by creating an object and assigning that object a schema name that is
different from any of the schema names that already exist in the database.

Authorities and Privileges 639

Figure 8–2: Database privileges available with DB2 9.

CREATETAB. Allows a user to create new tables in the database.

BINDADD. Allows a user to create packages in the database (by
precompiling embedded SQL application source code files against the
database or by binding application bind files to the database).

CREATE_EXTERNAL_ROUTINE. Allows a user to create user-defined
functions (UDFs) and/or procedures and store them in the database so that
they can be used by other users and applications.

CREATE_NOT_FENCED_ROUTINE. Allows a user to create unfenced
UDFs and/or procedures and store them in the database. (Unfenced UDFs and
stored procedures are UDFs/procedures that are considered “safe” enough to
be run in the DB2 Database Manager operating environment’s process or
address space. Unless a UDF/procedure is registered as unfenced, the DB2
Database Manager insulates the UDF/procedure’s internal resources in such a
way that they cannot be run in the DB2 Database Manager’s address space.)

LOAD. Allows a user to bulk-load data into one or more existing tables in
the database.

At a minimum, a user must have CONNECT privilege on a database before he or she
can work with any object contained in that database.

Object privileges

Unlike database privileges, which apply to a database as a whole, object privileges
apply only to specific objects within a database. These objects include table spaces,
schemas, tables, views, indexes, sequences, routines, packages, servers, and
nicknames. Because the nature of each database object available varies, the
individual privileges that exist for each object can vary as well. The following
sections describe the different sets of object privileges that are available with DB2 9.

Table space privileges. Table space privileges control what users can and cannot do
with a particular table space. (Table spaces are used to control where data in a
database physically resides.) Figure 8–3 shows the only table space privilege available.

Chapter 8: Security640

As you can see in Figure 8–3, only one table space privilege exists. That privilege
is the USE privilege, which, when granted, allows a user to create tables and indexes
in the table space. The owner of a table space (usually the individual who created
the table space) automatically receives USE privilege for that table space.

Schema privileges. Schema privileges control what users can and cannot do with a
particular schema. (A schema is an object that is used to logically classify and
group other objects in the database; most objects are named using a naming
convention that consists of a schema name, followed by a period, followed by the
object name.) Figure 8–4 shows the different types of schema privileges available.

Authorities and Privileges 641

Figure 8–3: Table space privilege available with DB2 9.

Figure 8–4: Schema privileges available with DB2 9.

The USE privilege cannot be used to provide a user with the
ability to create tables in the SYSCATSPACE table space or in
any temporary table space that might exist.

As you can see in Figure 8–4, three different schema privileges exist. They are:

CREATEIN. Allows a user to create objects within the schema.

ALTERIN. Allows a user to change the comment associated with any object
in the schema or to alter any object that resides within the schema.

DROPIN. Allows a user to remove (drop) any object within the schema.

Objects that can be manipulated within a schema include tables, views, indexes,
packages, user-defined data types, user-defined functions, triggers, stored
procedures, and aliases. The owner of a schema (usually the individual who created
the schema) automatically receives all privileges available for that schema, along
with the right to grant any combination of those privileges to other users and groups.

Table privileges. Table privileges control what users can and cannot do with a
particular table in a database. (A table is a logical structure used to present data as
a collection of unordered rows with a fixed number of columns.) Figure 8–5 shows
the different types of table privileges available.

Chapter 8: Security642

Figure 8–5: Table privileges available with DB2 9.

As you can see in Figure 8–5, eight different table privileges exist. They are:

CONTROL. Provides a user with every table privilege available, allows the
user to remove (drop) the table from the database, and gives the user the
ability to grant and revoke one or more table privileges (except the CONTROL

privilege) to and from other users and groups.

ALTER. Allows a user to execute the ALTER TABLE SQL statement against
the table. In other words, allows a user to add columns to the table, add or
change comments associated with the table or any of its columns, create or
drop a primary key for the table, create or drop a unique constraint for the
table, create or drop a check constraint for the table, create or drop a
referential constraint for the table, and create or drop triggers for the table
(provided the user holds the appropriate privileges for every object
referenced by the trigger).

SELECT. Allows a user to execute a SELECT SQL statement against the table.
In other words, this privilege allows a user to retrieve data from a table, create
a view that references the table, and run the Export utility against the table.

INSERT. Allows a user to execute the INSERT SQL statement against the
table. In other words, this privilege allows a user to add data to the table and
run the Import utility against the table.

UPDATE. Allows a user to execute the UPDATE SQL statement against the
table. In other words, this privilege allows a user to modify data in the table.
(This privilege can be granted for the entire table or limited to one or more
columns within the table.)

DELETE. Allows a user to execute the DELETE SQL statement against the
table. In other words, allows a user to remove rows of data from the table.

INDEX. Allows a user to create an index for the table.

REFERENCES. Allows a user to create and drop foreign key constraints
that reference the table in a parent relationship. (This privilege can be
granted for the entire table or limited to one or more columns within the

Authorities and Privileges 643

table, in which case only those columns can participate as a parent key in a
referential constraint.)

The owner of a table (usually the individual who created the table) automatically
receives all privileges available for that table (including CONTROL privilege), along
with the right to grant any combination of those privileges (except CONTROL

privilege) to other users and groups. If the CONTROL privilege is later revoked from
the table owner, all other privileges that were automatically granted to the owner
for that particular table are not automatically revoked. Instead, they must be
explicitly revoked in one or more separate operations.

View privileges. View privileges control what users can and cannot do with a
particular view. (A view is a virtual table residing in memory that provides an
alternative way of working with data that resides in one or more base tables. For
this reason, views can be used to prevent access to select columns in a table.)
Figure 8–6 shows the different types of view privileges available.

As you can see in Figure 8–6, five different view privileges exist. They are:

CONTROL. Provides a user with every view privilege available, allows the
user to remove (drop) the view from the database, and gives the user the
ability to grant and revoke one or more view privileges (except the CONTROL

privilege) to and from other users and groups.

Chapter 8: Security644

Figure 8–6: View privileges available with DB2 9.

SELECT. Allows a user to retrieve data from the view, create a second view
that references the view, and run the Export utility against the view.

INSERT. Allows a user to execute the INSERT SQL statement against the
view. In other words, allows a user to add data to the view.

UPDATE. Allows a user to execute the UPDATE SQL statement against the
view. In other words, this privilege allows a user to modify data in the view.
(This privilege can be granted for the entire view or limited to one or more
columns within the view.)

DELETE. Allows a user to execute the DELETE SQL statement against the
view. In other words, this privilege allows a user to remove rows of data from
the view.

In order to create a view, a user must hold appropriate privileges (at a minimum,
SELECT privilege) on each base table the view references. The owner of a view
(usually the individual who created the view) automatically receives all privileges
available—with the exception of the CONTROL privilege—for that view, along with
the right to grant any combination of those privileges (except CONTROL privilege) to
other users and groups. A view owner will receive CONTROL privilege for a view only
if he or she also holds CONTROL privilege for every base table the view references.

Index privileges. Index privileges control what users can and cannot do with a
particular index. (An index is an ordered set of pointers that refer to one or more
key columns in a base table; indexes are used to improve query performance.)
Figure 8–7 shows the only index privilege available.

Authorities and Privileges 645

If a user who holds SELECT privilege on one or more tables
creates a view based on one or more of those tables and his
or her SELECT privileges are later revoked, the view will

become inoperative, and any privileges that have been granted for
that view will be revoked automatically.

As you can see in Figure 8–7, only one index privilege exists. That privilege is the
CONTROL privilege, which, when granted, allows a user to remove (drop) the index
from the database. Unlike the CONTROL privilege for other objects, the CONTROL

privilege for an index does not give a user the ability to grant and revoke index
privileges to and from other users and groups. That’s because the CONTROL

privilege is the only index privilege available, and only users who hold System
Administrator (SYSADM) or Database Administrator (DBADM) authority are allowed
to grant and revoke CONTROL privileges for an object.

The owner of an index (usually the individual who created the index) automatically
receives CONTROL privilege for that index.

Sequence privileges. Sequence privileges control what users can and cannot do
with a particular sequence. (A sequence is an object that can be used to generate
values automatically. Sequences are ideal for generating unique key values, and
they can be used to avoid the possible concurrency and performance problems that
can occur when unique counters residing outside the database are used for data
generation.) Figure 8–8 shows the different types of sequence privileges available.

Chapter 8: Security646

Figure 8–8: Sequence privileges available with DB2 9.

Figure 8–7: Index privilege available with DB2 9.

As you can see in Figure 8–8, two different sequence privileges exist. They are:

USAGE. Allows a user to use the PREVIOUS VALUE and NEXT VALUE expressions
that are associated with the sequence. (The PREVIOUS VALUE expression returns
the most recently generated value for the specified sequence; the NEXT VALUE

expression returns the next value for the specified sequence.)

ALTER. Allows a user to perform administrative tasks such as restarting the
sequence, changing the increment value for the sequence, and adding or
changing the comment associated with the sequence.

The owner of a sequence (usually the individual who created the sequence)
automatically receives all privileges available for that sequence, along with the
right to grant any combination of those privileges to other users and groups.

Routine privileges. Routine privileges control what users can and cannot do with a
particular routine. (A routine can be a user-defined function, a stored procedure, or
a method that can be invoked by several different users.) Figure 8–9 shows the only
routine privilege available.

As you can see in Figure 8–9, only one routine privilege exists. That privilege is
the EXECUTE privilege, which, when granted, allows a user to invoke the routine,
create a function that is sourced from the routine (provided the routine is a
function), and reference the routine in any Data Definition Language SQL
statement (for example, CREATE VIEW and CREATE TRIGGER).

Authorities and Privileges 647

Figure 8–9: Routine privilege available with DB2 9.

The owner of a routine (usually the individual who created the routine)
automatically receives EXECUTE privilege for that routine.

Package privileges. Package privileges control what users can and cannot do with
a particular package. (A package is an object that contains the information needed
by the DB2 Database Manager to process SQL statements in the most efficient
way possible on behalf of an embedded SQL application.) Figure 8–10 shows the
different types of package privileges available.

As you can see in Figure 8–10, three different package privileges exist. They are:

CONTROL. Provides a user with every package privilege available, allows
the user to remove (drop) the package from the database, and gives the user
the ability to grant and revoke one or more table privileges (except the
CONTROL privilege) to and from other users and groups.

Chapter 8: Security648

Figure 8–10: Package privileges available with DB2 9.

Before a user can invoke a routine (user-defined function, stored
procedure, or method), he or she must hold both EXECUTE
privilege on the routine and any privileges required by that

routine. Thus, in order to execute a stored procedure that queries a
table, a user must hold both EXECUTE privilege on the stored procedure
and SELECT privilege on the table against which the query is run.

BIND. Allows a user to rebind or add new package versions to a package that
has already been bound to a database. (In addition to the BIND package
privilege, a user must hold the privileges needed to execute the SQL statements
that make up the package before the package can be successfully rebound.)

EXECUTE. Allows a user to execute the package. (A user who has EXECUTE

privilege for a particular package can execute that package, even if the user
does not have the privileges that are needed to execute the SQL statements
stored in the package. That is because any privileges needed to execute the
SQL statements are implicitly granted to the package user. It is important to
note that for privileges to be implicitly granted, the creator of the package
must hold privileges as an individual user or as a member of the group
PUBLIC—not as a member of another named group.)

The owner of a package (usually the individual who created the package)
automatically receives all privileges available for that package (including CONTROL

privilege), along with the right to grant any combination of those privileges (except
CONTROL privilege) to other users and groups. If the CONTROL privilege is later
revoked from the package owner, all other privileges that were automatically
granted to the owner for that particular package are not automatically revoked.
Instead, they must be explicitly revoked in one or more separate operations.

Server privileges. Server privileges control what users can and cannot do with a
particular federated database server. (A DB2 federated system is a distributed
computing system that consists of a DB2 server, known as a federated server, and
one or more data sources to which the federated server sends queries. Each data
source consists of an instance of some supported relational database management
system—such as Oracle—plus the database or databases that the instance
supports.) Figure 8–11 shows the only server privilege available.

Authorities and Privileges 649

Users who have EXECUTE privilege for a package that
contains nicknames do not need additional authorities or
privileges for the nicknames in the package; however, they
must be able to pass any authentication checks performed at

the data source(s) in which objects referenced by the nicknames are
stored, and they must hold the appropriate authorizations and
privileges needed to access all objects referenced.

As you can see in Figure 8–11, only one server privilege exists. That privilege is the
PASSTHRU privilege, which, when granted, allows a user to issue Data Definition
Language (DDL) and Data Manipulation Language (DML) SQL statements (as
pass-through operations) directly to a data source via a federated server.

Nickname privileges. Nickname privileges control what users can and cannot do
with a particular nickname. (When a client application submits a distributed request
to a federated database server, the server forwards the request to the appropriate
data source for processing. However, such a request does not identify the data
source itself; instead, it references tables and views within the data source by using
nicknames that map to specific table and view names in the data source. Nicknames
are not alternate names for tables and views in the same way that aliases are;
instead, they are pointers by which a federated server references external objects.)
Figure 8–12 shows the different types of nickname privileges available.

Chapter 8: Security650

Figure 8–12: Nickname privileges available with DB2 9.

Figure 8–11: Server privilege available with DB2 9.

As you can see in Figure 8–12, eight different nickname privileges exist. They are:

CONTROL. Provides a user with every nickname privilege available, allows
the user to remove (drop) the nickname from the database, and gives the user
the ability to grant and revoke one or more nickname privileges (except the
CONTROL privilege) to and from other users and groups.

ALTER. Allows a user to execute the ALTER NICKNAME SQL statement
against the table. In other words, this privilege allows a user to change
column names in the nickname, add or change the DB2 data type to which a
particular nickname column’s data type maps, and specify column options for
a specific nickname column.

SELECT. Allows a user to execute a SELECT SQL statement against the
nickname. In other words, this privilege allows a user to retrieve data from
the table or view within a federated data source to which the nickname
refers.

INSERT. Allows a user to execute the INSERT SQL statement against the
nickname. In other words, this privilege allows a user to add data to the table
or view within a federated data source to which the nickname refers.

UPDATE. Allows a user to execute the UPDATE SQL statement against the
nickname. In other words, this privilege allows a user to modify data in the
table or view within a federated data source to which the nickname refers.
(This privilege can be granted for the entire table or limited to one or more
columns within the table to which the nickname refers.)

DELETE. Allows a user to execute the DELETE SQL statement against the
nickname. In other words, allows a user to remove rows of data from the
table or view within a federated data source to which the nickname refers.

INDEX. Allows a user to create an index specification for the nickname.

REFERENCES. Allows a user to create and drop foreign key constraints
that reference the nickname in a parent relationship.

Authorities and Privileges 651

The owner of a nickname (usually the individual who created the table)
automatically receives all privileges available for that nickname (including CONTROL

privilege), along with the right to grant any combination of those privileges (except
CONTROL privilege) to other users and groups. If the CONTROL privilege is later
revoked from the nickname owner, all other privileges that were automatically
granted to the owner for that particular table are not automatically revoked. Instead,
they must be explicitly revoked in one or more separate operations.

Granting Authorities and Privileges

There are three different ways that users (and in some cases, groups) can obtain
database-level authorities and database/object privileges. They are:

Implicitly. When a user creates a database, that user implicitly receives
Database Administrator authority for that database, along with most database
privileges available. Likewise, when a user creates a database object, that
user implicitly receives all privileges available for that object, along with the
ability to grant any combination of those privileges (with the exception of the
CONTROL privilege) to other users and groups. Privileges can also be
implicitly given whenever a higher-level privilege is explicitly granted to a
user (for example, if a user is explicitly given CONTROL privilege for a table
space, the user will implicitly receive the USE privilege for that table space as
well). It’s important to remember that such implicitly assigned privileges are
not automatically revoked when the higher-level privilege that caused them to
be granted is revoked.

Indirectly. Indirectly assigned privileges are usually associated with
packages; when a user executes a package that requires additional privileges
that the user does not have (for example, a package that deletes a row of data
from a table requires the DELETE privilege on that table), the user is indirectly
given those privileges for the express purpose of executing the package.
Indirectly granted privileges are temporary and do not exist outside the scope
in which they are granted.

Explicitly. Database-level authorities, database privileges, and object
privileges can be explicitly given to or taken from an individual user or a
group of users by anyone who has the authority to do so. To grant privileges

Chapter 8: Security652

explicitly on most database objects, a user must have System Administrator
(SYSADM) or Database Administrator (DBADM) authority, or CONTROL

privilege on that object. Alternately, a user can explicitly grant any privilege
that user was assigned with the WITH GRANT OPTION specified. To grant
CONTROL privilege for any object, a user must have System Administrator
(SYSADM) or Database Administrator (DBADM) authority; to grant System
Administrator (SYSADM) or Database Administrator (DBADM) authority, a
user must have System Administrator (SYSADM) authority.

Granting and Revoking Authorities and Privileges from the Control Center

One way to explicitly grant and revoke database-level authorities, as well as many
of the object privileges available, is by using the various authorities and privileges
management dialogs that are provided with the Control Center. These dialogs are
activated by highlighting the appropriate database or object name shown in the
Control Center panes and selecting either Authorities or Privileges from the
corresponding database or object menu. Figure 8–13 shows the menu items that
must be selected in the Control Center in order to activate the Table Privileges
dialog for a particular table. Figure 8–14 shows how the Table Privileges dialog
might look immediately after a table is first created. (A single check mark under a
privilege means that the individual or group shown has been granted that privilege;
a double check mark means the individual or group has also been granted ability to
grant that privilege to other users and groups.)

Granting Authorities and Privileges 653

Chapter 8: Security654

Figure 8–13: Invoking the Table Privileges dialog from the Control Center.

Figure 8–14: The Table privilages dialog.

To assign privileges to an individual user from the Table Privileges dialog (or a similar
authorities/privileges dialog), you simply identify a particular user by highlighting the
user’s entry in the recognized users list—if the desired user is not in the list, the user
can be added by selecting the “Add User” push button—and assigning the appropriate
privileges (or authorities) using the “Privileges” (or “Authorities”) drop-down list(s) or
the “Grant All” or “Revoke All” push buttons. To assign privileges to a group of users,
you select the “Group” tab to display a list of recognized groups and repeat the
process (using the “Add Group” push button instead of the “Add User” push button to
add a desired group to the list if the group is not already there).

Granting Authorities and Privileges with the GRANT SQL Statement

Not all privileges can be explicitly given to users or groups with the privileges
management dialogs available. In situations where no privileges dialog exists (and
in situations where you elect not to use the privileges dialogs available), database-
level authorities and database/object privileges can be explicitly given to users
and/or groups by executing the appropriate form of the GRANT SQL statement. The
syntax for the GRANT SQL statement varies according to the authority or privilege
being granted. The following subsections show the syntax used to grant each
database-level authority and database/object privilege available.

Database-level authorities and privileges

GRANT [Privilege, ...] ON DATABASE
TO [Recipient, ...]

where:

Privilege Identifies one or more database privileges that are to be
given to one or more users and/or groups. The following
values are valid for this parameter: DBADM, SECADM,
CONNECT, CONNECT_QUIESCE, IMPLICIT_SCHEMA,
CREATETAB, BINDADD, CREATE_EXTERNAL_ROUTINE,
CREATE_NOT_FENCED_ROUTINE, and LOAD.

Granting Authorities and Privileges 655

Recipient Identifies the name of the user(s) and/or group(s) that
are to receive the database privileges specified. The
value specified for the Recipient parameter can be
any combination of the following:

<USER> [UserName] Identifies a specific user to which the privilege(s)
specified are to be given.

<GROUP> [GroupName] Identifies a specific group to whom the privilege(s)
specified are to be given.

PUBLIC Indicates that the privilege(s) specified are to be
given to the group PUBLIC. (All users are members of
the group PUBLIC.)

Table space privileges

GRANT USE OF TABLESPACE [TablespaceName]
TO [Recipient, ...]
<WITH GRANT OPTION>

where:

TablespaceName Identifies by name the table space that the USE privilege
is to be associated with.

Recipient Identifies the name of the user(s) and/or group(s) that
are to receive the USE privilege. Again, the value
specified for the Recipient parameter can be any
combination of the following: <USER> [UserName],
<GROUP> [GroupName], and PUBLIC.

Chapter 8: Security656

Checking is not performed to ensure that the names of users
and/or groups specified in the Recipient parameter are valid.
Therefore, it is possible to grant privileges to users and

groups that do not yet exist.

If the WITH GRANT OPTION clause is specified, each Recipient is given the ability
to grant the privilege received to others.

Schema privileges

GRANT [Privilege, ...] ON SCHEMA [SchemaName]
TO [Recipient, ...]
<WITH GRANT OPTION>

where:

Privilege Identifies one or more schema privileges that are to be given to
one or more users and/or groups. The following values are valid
for this parameter: CREATIN, ALTERIN, and DROPIN.

SchemaName Identifies by name the schema with which all schema privileges
specified are to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the schema privileges specified. The value specified for
the Recipient parameter can be any combination of the
following: <USER> [UserName], <GROUP> [GroupName], and
PUBLIC.

Table privileges

GRANT [ALL <PRIVILEGES> |
Privilege <(ColumnName, ...)> , ...]

ON TABLE [TableName]
TO [Recipient, ...]
<WITH GRANT OPTION>

where:

Privilege Identifies one or more table privileges that are to be given to one
or more users and/or groups. The following values are valid for
this parameter: CONTROL, ALTER, SELECT, INSERT, UPDATE,
DELETE, INDEX, and REFERENCES.

Granting Authorities and Privileges 657

ColumnName Identifies by name one or more specific columns with which
UPDATE or REFERENCES privileges are to be associated. This
option is used only when the Privilege parameter contains the
value UPDATE or REFERENCES.

TableName Identifies by name the table with which all table privileges
specified are to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the table privileges specified. The value specified for the
Recipient parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

It is important to note that only users who hold System Administrator (SYSADM) or
Database Administrator (DBADM) authority are allowed to grant CONTROL privilege
for a table. For this reason, when the ALL PRIVILEGES clause is specified, all table
privileges except CONTROL privilege are granted to each Recipient; CONTROL

privilege must be granted separately.

View privileges
GRANT [ALL <PRIVILEGES> |

Privilege <(ColumnName, ...)> , ...]
ON [ViewName]
TO [Recipient, ...]
<WITH GRANT OPTION>

where:

Privilege Identifies one or more view privileges that are to be given to one
or more users and/or groups. The following values are valid for
this parameter: CONTROL, SELECT, INSERT, UPDATE, and DELETE.

ColumnName Identifies by name one or more specific columns with which
UPDATE privileges are to be associated. This option is used only
when the Privilege parameter contains the value UPDATE.

Chapter 8: Security658

ViewName Identifies by name the view with which all view privileges
specified are to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the view privileges specified. The value specified for the
Recipient parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Again, only users who hold System Administrator (SYSADM) or Database
Administrator (DBADM) authority are allowed to grant CONTROL privilege for a
table. Therefore, when the ALL PRIVILEGES clause is specified, all view privileges
except CONTROL privilege are granted to each Recipient; CONTROL privilege must
be granted separately.

Index privileges

GRANT CONTROL ON INDEX [IndexName]
TO [Recipient, ...]

where:

IndexName Identifies by name the index with which the CONTROL privilege
is to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the CONTROL privilege. The value specified for the
Recipient parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Sequence privileges

GRANT [Privilege, ...] ON SEQUENCE [SequenceName]
TO [Recipient, ...]
<WITH GRANT OPTION>

where:

Granting Authorities and Privileges 659

Privilege Identifies one or more sequence privileges that are to be given to
one or more users and/or groups. The following values are valid
for this parameter: USAGE and ALTER.

SequenceName Identifies by name the sequence with which all sequence
privileges specified are to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to receive
the sequence privileges specified. Again, the value specified for the
Recipient parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Routine privileges

GRANT EXECUTE ON [RoutineName |
FUNCTION <SchemaName.> * |
METHOD * FOR [TypeName] |
METHOD * FOR <SchemaName.> * |
PROCEDURE <SchemaName.> *]

TO [Recipient, ...]
<WITH GRANT OPTION>

where:

RoutineName Identifies by name the routine (user-defined function, method,
or stored procedure) with which the EXECUTE privilege is to be
associated.

TypeName Identifies by name the type in which the specified method is
found.

SchemaName Identifies by name the schema in which all functions, methods,
or procedures—including those that may be created in the
future—are to have the EXECUTE privilege granted.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the EXECUTE privilege. The value specified for the
Recipient parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Chapter 8: Security660

Package privileges

GRANT [Privilege, ...] ON PACKAGE <SchemaName.>[PackageID] TO [Recipient,
...]
<WITH GRANT OPTION>

where:

Privilege Identifies one or more package privileges that are to be given to
one or more users and/or groups. The following values are valid
for this parameter: CONTROL, BIND, and EXECUTE.

SchemaName Identifies by name the schema in which the specified package is
found.

PackageName Identifies by name the package with which all package
privileges specified are to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the package privileges specified. The value specified for
the Recipient parameter can be any combination of the
following: <USER> [UserName], <GROUP> [GroupName], and
PUBLIC. (DB2 for Linux, UNIX, and Windows does not allow
users to grant package privileges to themselves.)

Server privileges

GRANT PASSTHRU ON SERVER [ServerName]
TO [Recipient, ...]

where:

ServerName Identifies by name the server with which the PASSTHRU privilege
is to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the PASSTHRU privilege. The value specified for the
Recipient parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Granting Authorities and Privileges 661

Nickname privileges

GRANT [ALL <PRIVILEGES> |
Privilege <(ColumnName, ...)> , ...]

ON [Nickname]
TO [Recipient, ...]
<WITH GRANT OPTION>

where:

Privilege Identifies one or more nickname privileges that are to be given
to one or more users and/or groups. The following values are
valid for this parameter: CONTROL, ALTER, SELECT, INSERT,
UPDATE, DELETE, INDEX, and REFERENCES.

ColumnName Identifies by name one or more specific columns with which
UPDATE or REFERENCES privileges are to be associated. This
option is used only when the Privilege parameter contains the
value UPDATE or REFERENCES.

Nickname Identifies by name the nickname with which all privileges
specified are to be associated.

Recipient Identifies the name of the user(s) and/or group(s) that are to
receive the nickname privileges specified. The value specified
for the Recipient parameter can be any combination of the
following: <USER> [UserName], <GROUP> [GroupName], and
PUBLIC.

Only users who hold System Administrator (SYSADM) or Database Administrator
(DBADM) authority are allowed to grant CONTROL privilege for a nickname.
Therefore, when the ALL PRIVILEGES clause is specified, all nickname privileges
except CONTROL privilege are granted to each Recipient; CONTROL privilege must
be granted separately.

GRANT SQL statement examples

Now that we’ve seen the basic syntax for the various forms of the GRANT SQL
statement, let’s take a look at some examples.

Chapter 8: Security662

Example 1. A server has both a user and a group named TESTER. Give the group
TESTER the ability to bind applications to the database SAMPLE:

CONNECT TO sample;
GRANT BINDADD ON DATABASE TO GROUP tester;

Example 2. Give all table privileges available for the table PAYROLL.EMPLOYEE

(except CONTROL privilege) to the group PUBLIC:

GRANT ALL PRIVILEGES ON TABLE payroll.employee TO PUBLIC

Example 3. Give user USER1 and user USER2 the privileges needed to perform
DML operations on the table DEPARTMENT using the view DEPTVIEW:

GRANT SELECT, INSERT, UPDATE, DELETE ON deptview
TO USER user1, USER user2

Example 4. Give user JOHN_DOE the privileges needed to query the table
INVENTORY, along with the ability to give these privileges to other users whenever
appropriate:

GRANT SELECT ON TABLE inventory
TO john_doe
WITH GRANT OPTION

Example 5. Give user USER1 the ability to run an embedded SQL application that
requires a package named GET_INVENTORY:

GRANT EXECUTE ON PACKAGE get_inventory TO USER user1

Example 6. Give user USER1 the ability to use a stored procedure named
PAYROLL.CALC_SALARY in a query:

GRANT EXECUTE ON PROCEDURE payroll.calc_salary TO user1

Example 7. Give user USER1 and group GROUP1 the ability to define a referential
constraint between the tables EMPLOYEE and DEPARTMENT using column EMPID in
table EMPLOYEE as the parent key:

GRANT REFERENCES(empid) ON TABLE employee TO USER user1,
GROUP group1

Granting Authorities and Privileges 663

Example 8. Give the group PUBLIC the ability to modify information stored in the
ADDRESS and HOME_PHONE columns of the table EMP_INFO:

GRANT UPDATE(address, home_phone) ON TABLE emp_info
TO PUBLIC

Revoking Authorities and Privileges with the REVOKE SQL Statement

Just as there is an SQL statement that can be used to grant database-level
authorities and database/object privileges, there is an SQL statement that can be
used to revoke database-level authorities and database/object privileges. This
statement is the REVOKE SQL statement, and as with the GRANT statement, the
syntax for the REVOKE statement varies according to the authority or privilege
being revoked. The following sections show the syntax used to revoke each
database-level authority and database/object privilege available.

Database-level authorities and privileges

REVOKE [Privilege, ...] ON DATABASE
FROM [Forfeiter, ...] <BY ALL>

where:

Privilege Identifies one or more database privileges that are to be
taken from one or more users and/or groups. The
following values are valid for this parameter: DBADM,
SECADM, CONNECT, CONNECT_QUIESCE,
IMPLICIT_SCHEMA, CREATETAB, BINDADD,
CREATE_EXTERNAL_ROUTINE,
CREATE_NOT_FENCED_ROUTINE, and LOAD.

Forfeiter Identifies the name of the user(s) and/or group(s) that
are to lose the database privileges specified. The value
specified for the Forfeiter parameter can be any
combination of the following:

Chapter 8: Security664

<USER> [UserName] Identifies a specific user from whom the privilege(s)
specified are to be taken.

<GROUP> [GroupName] Identifies a specific group from which the privilege(s)
specified are to be taken.

PUBLIC Indicates that the privilege(s) specified are to be taken
from the group PUBLIC. (All users are members of the
group PUBLIC.)

The BY ALL clause is optional and is provided as a courtesy for administrators who
are familiar with the syntax of the DB2 for OS/390 REVOKE SQL statement.
Whether it is included or not, all privileges specified will be revoked from all users
and/or groups specified.

It is important to note that when Database Administrator (DBADM) authority is
revoked, privileges held on objects in the database by the Forfeiter specified are
not automatically revoked. The same is true for all other database authorities that
were implicitly and automatically granted when DBADM authority was granted.

Table space privileges

REVOKE USE OF TABLESPACE [TablespaceName]
FROM [Forfeiter, ...] <BY ALL>

where:

TablespaceName Identifies by name the table space with which the USE

privilege is associated.

Forfeiter Identifies the name of the user(s) and/or group(s) that
are to lose the USE privilege. Again, the value specified
for the Forfeiter parameter can be any combination of
the following: <USER> [UserName], <GROUP>

[GroupName], and PUBLIC.

Granting Authorities and Privileges 665

Schema privileges

REVOKE [Privilege, ...] ON SCHEMA [SchemaName]
FROM [Forfeiter, ...] <BY ALL>

where:

Privilege Identifies one or more schema privileges that are to be
taken from one or more users and/or groups. The
following values are valid for this parameter: CREATIN,
ALTERIN, and DROPIN.

SchemaName Identifies by name the schema with which all schema
privileges specified are to be associated.

Forfeiter Identifies the name of the user(s) and/or group(s) that
are to lose the schema privileges specified. The value
specified for the Forfeiter parameter can be any
combination of the following: <USER> [UserName],
<GROUP> [GroupName], and PUBLIC.

Table privileges

REVOKE [ALL <PRIVILEGES> |
Privilege, ...]

ON TABLE [TableName]
FROM [Forfeiter, ...] <BY ALL>

where:

Privilege Identifies one or more table privileges that are to be
taken from one or more users and/or groups. The
following values are valid for this parameter: CONTROL,
ALTER, SELECT, INSERT, UPDATE, DELETE, INDEX, and
REFERENCES.

TableName Identifies by name the table with which all table
privileges specified are to be associated.

Chapter 8: Security666

Forfeiter Identifies the name of the user(s) and/or group(s) that
are to lose the table privileges specified. The value
specified for the Forfeiter parameter can be any
combination of the following: <USER> [UserName],
<GROUP> [GroupName], and PUBLIC.

It is important to note that only users who hold System Administrator (SYSADM) or
Database Administrator (DBADM) authority are allowed to revoke CONTROL

privilege for a table. For this reason, when the ALL PRIVILEGES clause is specified,
all table privileges except CONTROL privilege are revoked from each Forfeiter;
CONTROL privilege must be revoked separately.

View privileges

REVOKE [ALL <PRIVILEGES> |
Privilege, ...]

ON [ViewName]
FROM [Forfeiter, ...] <BY ALL>

where:

Privilege Identifies one or more view privileges that are to be
taken from one or more users and/or groups. The
following values are valid for this parameter: CONTROL,
SELECT, INSERT, UPDATE, and DELETE.

ViewName Identifies by name the view with which all view
privileges specified are to be associated.

Forfeiter Identifies the name of the user(s) and/or group(s) that
are to lose the view privileges specified. The value
specified for the Forfeiter parameter can be any
combination of the following: <USER> [UserName],
<GROUP> [GroupName], and PUBLIC.

Again, only users who hold System Administrator (SYSADM) or Database
Administrator (DBADM) authority are allowed to revoke CONTROL privilege for a
table. For this reason, when the ALL PRIVILEGES clause is specified, all table

Granting Authorities and Privileges 667

privileges except CONTROL privilege are revoked from each Forfeiter; CONTROL

privilege must be revoked separately.

Index privileges

REVOKE CONTROL ON INDEX [IndexName]
FROM [Forfeiter, ...] <BY ALL>

where:

IndexName Identifies by name the index with which the CONTROL privilege
is associated.

Forfeiter Identifies the name of the user(s) and/or group(s) that are to lose
the CONTROL privilege. The value specified for the Forfeiter
parameter can be any combination of the following: <USER>

[UserName], <GROUP> [GroupName], and PUBLIC.

Sequence privileges

REVOKE [Privilege, ...] ON SEQUENCE [SequenceName]
FROM [Forfeiter, ...] <BY ALL>

where:

Privilege Identifies one or more sequence privileges that are to be taken
from one or more users and/or groups. The following values are
valid for this parameter: USAGE and ALTER.

SequenceName Identifies by name the sequence with which all sequence
privileges specified are to be associated with.

Forfeiter Identifies the name of the user(s) and/or group(s) that are to lose
the sequence privileges specified. The value specified for the
Forfeiter parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Chapter 8: Security668

Routine privileges

REVOKE EXECUTE ON [RoutineName |
FUNCTION <SchemaName.> * |
METHOD * FOR [TypeName] |
METHOD * FOR <SchemaName.> * |
PROCEDURE <SchemaName.> *]

FROM [Forfeiter, ...] <BY ALL>
RESTRICT

where:

RoutineName Identifies by name the routine (user-defined function, method,
or stored procedure) with which the EXECUTE privilege is
associated.

TypeName Identifies by name the type in which the specified method is
found.

SchemaName Identifies by name the schema from which all functions,
methods, or procedures—including those that may be created in
the future—are to have the EXECUTE privilege revoked.

Forfeiter Identifies the name of the user(s) and/or group(s) that are to lose
the EXECUTE privilege. The value specified for the Forfeiter
parameter can be any combination of the following: <USER>

[UserName], <GROUP> [GroupName], and PUBLIC.

The RESTRICT clause guarantees EXECUTE privilege will not be revoked if the
routine specified is used in a view, trigger, constraint, index, SQL function, SQL
method, or transform group or is referenced as the source of a sourced function.
Additionally, EXECUTE privilege will not be revoked if the loss of the privilege
would prohibit the routine definer from executing the routine (i.e., if the user who
created the routine is identified as a Forfeiter).

Package privileges

REVOKE [Privilege, ...] ON PACKAGE <SchemaName.>[PackageID]
FROM [Forfeiter, ...] <BY ALL>

Granting Authorities and Privileges 669

where:

Privilege Identifies one or more package privileges that are to be taken
from one or more users and/or groups. The following values are
valid for this parameter: CONTROL, BIND, and EXECUTE.

SchemaName Identifies by name the schema in which the specified package is
found.

PackageName Identifies by name the specific package with which all package
privileges specified are to be associated.

Forfeiter Identifies the name of the user(s) and/or group(s) that are to lose
the package privileges specified. The value specified for the
Forfeiter parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Server privileges

REVOKE PASSTHRU ON SERVER [ServerName]
FROM [Forfeiter, ...] <BY ALL>

where:

ServerName Identifies by name the server with which the PASSTHRU privilege
is associated.

Forfeiter Identifies the name of the user(s) and/or group(s) that are to lose
the PASSTHRU privilege. The value specified for the Forfeiter
parameter can be any combination of the following: <USER>

[UserName], <GROUP> [GroupName], and PUBLIC.

Nickname privileges

REVOKE [ALL <PRIVILEGES> |
Privilege, ...]

ON [Nickname]
FROM [Forfeiter, ...] <BY ALL>

Chapter 8: Security670

where:

Privilege Identifies one or more nickname privileges that are to be taken
from one or more users and/or groups. The following values are
valid for this parameter: CONTROL, ALTER, SELECT, INSERT,
UPDATE, DELETE, INDEX, and REFERENCES.

Nickname Identifies by name the nickname with which all privileges
specified are to be associated.

Forfeiter Identifies the name of the user(s) and/or group(s) that are to lose
the nickname privileges specified. The value specified for the
Forfeiter parameter can be any combination of the following:
<USER> [UserName], <GROUP> [GroupName], and PUBLIC.

Only users who hold System Administrator (SYSADM) or Database Administrator
(DBADM) authority are allowed to revoke CONTROL privilege for a nickname. For
this reason, when the ALL PRIVILEGES clause is specified, all nickname privileges
except CONTROL privilege are revoked from each Forfeiter; CONTROL privilege
must be revoked separately.

REVOKE SQL statement examples

Now that we’ve seen the basic syntax for the various forms of the REVOKE SQL
statement, let’s take a look at some examples.

Example 1. A server has both a user and a group named Q045. Remove the ability
to connect to the database named SAMPLE from the group Q045:

CONNECT TO sample;
REVOKE CONNECT ON DATABASE FROM GROUP q045;

Example 2. Revoke all table privileges available for the table DEPARTMENT (except
CONTROL privilege) from the user USER1 and the group PUBLIC:

REVOKE ALL PRIVILEGES ON TABLE department FROM user1, PUBLIC

Granting Authorities and Privileges 671

Example 3. Take away user USER1’s ability to use a user-defined function named
CALC_BONUS:

REVOKE EXECUTE ON FUNCTION calc_bonus FROM user1

Example 4. Take away user USER1’s ability to modify information stored in the
ADDRESS and HOME_PHONE columns of the table EMP_INFO:

REVOKE UPDATE(address, home_phone) ON TABLE emp_info FROM user1 BY ALL

Example 5. Take away user USER1’s ability to read data stored in a table named
INVENTORY:

REVOKE SELECT ON TABLE inventory FROM user1

Example 6. Prevent users in the group PUBLIC from adding or changing data stored
in a table named EMPLOYEE:

REVOKE INSERT, UPDATE ON TABLE employee FROM PUBLIC

Requirements for Granting and Revoking Authorities and Privileges

Not only do authorization levels and privileges control what a user can and cannot do;
they also control what authorities and privileges a user is allowed to grant and revoke.
A list of the authorities and privileges that a user who has been given a specific
authority level or privilege is allowed to grant and revoke can be seen in Table 8.1.

Chapter 8: Security672

If all table privileges are revoked from the group PUBLIC, all
views that reference the table will become inaccessible to the
group PUBLIC. That’s because SELECT privilege must be held

on a table in order to access a view that references the table.

Authorities and Privileges Needed to Perform Common Tasks
So far, we have identified the authorities and privileges that are available, and we
have examined how these authorities and privileges are granted and revoked. But to
use authorities and privileges effectively, you must be able to determine which
authorities and privileges are appropriate for an individual user and which are not.

Authorities and Privileges Needed to Perform Common Tasks 673

Table 8.1 Requirements for Granting/Revoking Authorities and Privileges

If a User Holds... The User Can Grant... The User Can Revoke...

System Administrator (SYSADM)

authority

System Control (SYSCTRL)

authority

System Maintenance

(SYSMAINT) authority

System Monitor (SYSMON)

authority

Database Administrator

(DBADM) authority

Security Administrator

(SECADM) authority

Load (LOAD) authority

Any database privilege,

including CONTROL privilege

Any object privilege, including

CONTROL privilege

System Control (SYSCTRL)

authority

System Maintenance

(SYSMAINT) authority

System Monitor (SYSMON)

authority

Database Administrator

(DBADM) authority

Security Administrator

(SECADM) authority

Load (LOAD) authority

Any database privilege,

including CONTROL privilege

Any object privilege, including

CONTROL privilege

System Control (SYSCTRL)

authority

The USE table space privilege The USE table space privilege

System Maintenance

(SYSMAINT) authority

No authorities or privileges No authorities or privileges

System Monitor (SYSMON)

authority

No authorities or privileges No authorities or privileges

Database Administrator

(DBADM) authority

Any database privilege, including

CONTROL privilege

Any object privilege, including

CONTROL privilege

Any database privilege, including

CONTROL privilege

Any object privilege, including

CONTROL privilege

Security Administrator

(SECADM) authority

No authorities or privileges No authorities or privileges

Load (LOAD) authority No authorities or privileges No authorities or privileges

CONTROL privilege on an object

(but no other authority)

All privileges available (with the

exception of the CONTROL
privilege) for the object on which

the user holds CONTROL
privilege

All privileges available (with the

exception of the CONTROL
privilege) for the object on which

the user holds CONTROL
privilege

A privilege on an object that was

assigned with the WITH GRANT
OPTION option specified

The same object privilege that

was assigned with the WITH
GRANT OPTION option

specified.

No authorities or privileges

Often, a blanket set of authorities and privileges is assigned to an individual, based
on his or her job title and job responsibilities. Then, as the individual begins to
work with the database, the set of authorities and privileges he or she has is
modified as appropriate. Some of the more common job titles used, along with the
tasks that usually accompany them and the authorities/privileges needed to perform
those tasks, can be seen in Table 8.2.

Chapter 8: Security674

Table 8.2 Common Job Titles, Tasks, and Authorities/Privileges Needed

Job Title Tasks Authorities/Privileges Needed

Department

Administrator

Oversees the departmental

system; designs and creates

databases.

System Control (SYSCTRL) authority or System

Administrator (SYSADM) authority (if the

department has its own instance)

Security

Administrator

Grants authorities and

privileges to other users and

revokes them, if necessary.

System Administrator (SYSADM) authority or

Database Administrator (DBADM) authority

(Security Administrator [SECADM] authority if label-

based access control is used)

Database

Administrator

Designs, develops, operates,

safeguards, and maintains

one or more databases.

Database Administrator (DBADM) authority over

one or more databases and System Maintenance

(SYSMAINT) authority, or in some cases System

Control (SYSCTRL) authority, over the instance(s)

that control the databases

System

Operator

Monitors the database and

performs routine backup

operations. Also performs

recovery operations if needed.

System Maintenance (SYSMAINT) authority or

System Monitor (SYSMON) authority

Application

Developer/

Programmer

Develops and tests

database/DB2 Database

Manager application

programs; may also create

test tables and populate them

with data.

CONNECT and CREATE_TAB privilege for one or

more databases, BINDADD and BIND privilege on

one or more packages, one or more schema

privileges for one or more schemas, and one or

more table privileges for one or more tables;

CREATE_EXTERNAL_ROUTINE privilege for one or

more databases may also be required

User Analyst Defines the data requirements

for an application program by

examining the database

structure using the system

catalog views.

CONNECT privilege for one or more databases

and SELECT privilege on the system catalog views

Securing Data with Label-Based Access Control (LBAC)

Earlier, we saw that authentication is performed at the operating system level to
verify that users are who they say they are, and authorities and privileges control
access to a database and the objects and data that reside within it. Views, which allow
different users to see different presentations of the same data, can be used in
conjunction with privileges to limit access to specific columns. But what if your
security requirements dictate that you create and manage several hundred views?
Or, more importantly, what if you want to restrict access to individual rows in a table?
If you’re using DB2 9, the solution for these situations is label-based access control.

So just what is label-based access control (LBAC)? LBAC is a new security feature
that uses one or more security labels to control who has read access and who has
write access to individual rows and/or columns in a table. The United States and
many other governments use LBAC models in which hierarchical classification
labels such as CONFIDENTIAL, SECRET, and TOP SECRET are assigned to data based
on its sensitivity. Access to data labeled at a certain level (for example, SECRET) is
restricted to those users who have been granted that level of access or higher. With

Securing Data with Label-Based Access Control (LBAC) 675

Table 8.2 Common Job Titles, Tasks, and Authorities/Privileges Needed (continued)

Job Title Tasks Authorities/Privileges Needed

End User Executes one or more

application programs.

CONNECT privilege for one or more databases

and EXECUTE privilege on the package

associated with each application used; if an

application program contains dynamic SQL

statements, SELECT, INSERT, UPDATE, and

DELETE privileges for one or more tables may be

needed as well

Information

Center

Consultant

Defines the data requirements

for a query user; provides the

data needed by creating

tables and views and by

granting access to one or

more database objects.

Database Administrator (DBADM) authority for

one or more databases

Query User Issues SQL statements

(usually from the Command

Line Processor) to retrieve,

add, update, or delete data

(may also save results of

queries in tables)

CONNECT privilege on one or more databases;

SELECT, INSERT, UPDATE, and DELETE privilege

on each table used; and CREATEIN privilege on

the schema in which tables and views are to be

created

Adapted from Table 78 on pages 608–609 of the IBM DB2 Version 9 for Linux, UNIX, and

Windows Administration Guide—Implementation manual.

LBAC, you can construct security labels to represent any criteria your company
uses to determine who can read or modify particular data values. And LBAC is
flexible enough to handle the most simple to the most complex criteria.

One problem with the traditional security methods DB2 uses is that security
administrators and DBAs have access to sensitive data stored in the databases they
oversee. To solve this problem, LBAC-security administration tasks are isolated
from all other tasks—only users with Security Administrator (SECADM) authority
are allowed to configure LBAC elements.

Implementing Row-Level LBAC

Before you implement a row-level LBAC solution, you need to have a thorough
understanding of the security requirement needs. Suppose you have a database that
contains company sales data, and you want to control how senior executives,
regional managers, and sales representatives access data stored in a table named
SALES. Security requirements might dictate that access to this data should comply
with these rules:

● Senior executives are allowed to view, but not update, all records in the
table.

● Regional managers are allowed to view and update only records that were
entered by sales representatives who report to them.

● Sales representatives are allowed to view and update only records of the
sales they made.

Once the security requirements are known, you must then define the appropriate
security policies and labels, create an LBAC-protected table (or alter an existing
table to add LBAC protection), and grant the proper security labels to the
appropriate users.

Defining a security label component

Security label components represent criteria that may be used to decide whether a
user should have access to specific data. Three types of security label components
can exist:

Chapter 8: Security676

● A set is a collection of elements (character string values) where the order in
which each element appears is not important.

● An array is an ordered set that can represent a simple hierarchy. In an array,
the order in which the elements appear is important—the first element ranks
higher than the second, the second ranks higher than the third, and so on.

● A tree represents a more complex hierarchy that can have multiple nodes
and branches.

To create security label components, you execute one of the following CREATE

SECURITY LABEL COMPONENT SQL statements:

CREATE SECURITY LABEL COMPONENT [ComponentName]
SET {StringConstant,...}

or

CREATE SECURITY LABEL COMPONENT [ComponentName]
ARRAY [StringConstant,...]

or

CREATE SECURITY LABEL COMPONENT [ComponentName]
TREE (StringConstant ROOT < StringConstant UNDER StringConstant >)]

where:

ComponentName Identifies the name that is to be assigned to the security label
component being created.

StringConstant Identifies one or more string constant values that make up the
valid array, set, or tree of values to be used by the security label
component being created.

Thus, to create a security label component named SEC_COMP that contains a set of
values whose order is insignificant, you would execute a CREATE SECURITY LABEL

COMPONENT statement that looks something like this:

Securing Data with Label-Based Access Control (LBAC) 677

CREATE SECURITY LABEL COMPONENT sec_comp
SET {'CONFIDENTIAL', 'SECRET', 'TOP_SECRET'}

To create a security label component that contains an array of values listed from
highest to lowest order, you would execute a CREATE SECURITY LABEL COMPONENT

statement that looks something like this:

CREATE SECURITY LABEL COMPONENT sec_comp
ARRAY ['MASTER_CRAFTSMAN', 'JOURNEYMAN', 'APPRENTICE']

And to create a security label component that contains a tree of values that
describe a company’s organizational chart, you would execute a CREATE SECURITY

LABEL COMPONENT statement that looks something like this:

CREATE SECURITY LABEL COMPONENT sec_comp
TREE ('EXEC_STAFF' ROOT,

'N_MGR' UNDER 'EXEC_STAFF',
'E_MGR' UNDER 'EXEC_STAFF',
'S_MGR' UNDER 'EXEC_STAFF',
'W_MGR' UNDER 'EXEC_STAFF’,
'C_MGR' UNDER 'EXEC_STAFF',
'SALES_REP1' UNDER 'N_MGR',
'SALES_REP2' UNDER 'W_MGR')

Defining a security policy

Security policies determine exactly how a table is to be protected by LBAC.
Specifically, a security policy identifies the following:

● What security label components will be used in the security labels that will
be part of the policy

● What rules will be used when security label components are compared (at
this time, only one set of rules is supported: DB2LBACRULES)

● Which optional behaviors will be used when accessing data protected by
the policy

Every LBAC-protected table must have one (and only one) security policy
associated with it. Rows and columns in that table can be protected only with
security labels that are part of that security policy; all protected data access must

Chapter 8: Security678

adhere to the rules of that policy. You can have multiple security policies within a
single database, but you can’t have more than one security policy protecting any
given table.

To create a security policy, execute the CREATE SECURITY POLICY SQL statement as
follows:

CREATE SECURITY POLICY [PolicyName]
COMPONENTS [ComponentName ,...]
WITH DB2LBACRULES
<[OVERRIDE | RESTRICT] NOT AUTHORIZED

WRITE SECURITY LABEL>

where:

PolicyName Identifies the name that is to be assigned to the security policy
being created.

ComponentName Identifies, by name, one or more security label components that
are to be part of the security policy being created.

The [OVERRIDE | RESTRICT] NOT AUTHORIZED WRITE SECURITY LABEL option
specifies the action to be taken when a user who is not authorized to write the
security label explicitly specified with INSERT and UPDATE statements attempts to
write data to the protected table. By default, the value of a user’s security label,
rather than an explicitly specified security label, is used for write access during
insert and update operations (OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL).
If the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option is used, insert and
update operations will fail if the user isn’t authorized to write the explicitly
specified security label to the protected table.

Therefore, to create a security policy named SEC_POLICY that is based on the
SEC_COMP security label component created earlier, you would execute a CREATE

SECURITY POLICY statement that look something like this:

CREATE SECURITY POLICY sec_policy
COMPONENTS sec_comp
WITH DB2LBACRULES

Securing Data with Label-Based Access Control (LBAC) 679

Defining security labels

Security labels describe a set of security criteria and are used to protect data
against unauthorized access or modification. Security labels are granted to users
who are allowed to access or modify protected data; when users attempt to access
or modify protected data, their security label is compared to the security label
protecting the data to determine whether the access or modification is allowed.
Every security label is part of exactly one security policy, and a security label must
exist for each security label component found in the security policy.

Security labels are created by executing the CREATE SECURITY LABEL SQL
statement. The syntax for this statement is:

CREATE SECURITY LABEL [LabelName]
[COMPONENT [ComponentName] [StringConstant] ,...]

where:

LabelName Identifies the name that is to be assigned to the security label
being created. The name specified must be qualified with a
security policy name and must not match an existing security
label for the security policy specified.

ComponentName Identifies, by name, a security label component that is part of
the security policy specified as the qualifier for the LabelName
parameter.

StringConstant Identifies one or more string constant values that are valid
elements of the security label component specified in the
ComponentName parameter.

Thus, to create a set of security labels for the security policy named SEC_POLICY

that was created earlier, you would execute a set of CREATE SECURITY LABEL

statements that looks something like this:

Chapter 8: Security680

CREATE SECURITY LABEL sec_policy.exec_staff
COMPONENT sec_comp 'EXEC_STAFF'

CREATE SECURITY LABEL sec_policy.n_mgr
COMPONENT sec_comp 'N_MGR'

CREATE SECURITY LABEL sec_policy.e_mgr
COMPONENT sec_comp 'E_MGR'

CREATE SECURITY LABEL sec_policy.s_mgr
COMPONENT sec_comp 'S_MGR'

CREATE SECURITY LABEL sec_policy.w_mgr
COMPONENT sec_comp 'W_MGR'

CREATE SECURITY LABEL sec_policy.c_mgr
COMPONENT sec_comp 'C_MGR'

CREATE SECURITY LABEL sec_policy.sales_rep1
COMPONENT sec_comp 'SALES_REP1'

CREATE SECURITY LABEL sec_policy.sales_rep2
COMPONENT sec_comp 'SALES_REP2'

Creating a LBAC-protected table

Once you have defined the security policy and labels needed to enforce your
security requirements, you’re ready to create a table and configure it for LBAC
protection. To configure a new table for row-level LBAC protection, you include a
column with the data type DB2SECURITYLABEL in the table’s definition and
associate a security policy with the table using the SECURITY POLICY clause of the
CREATE TABLE SQL statement.

So to create a table named SALES and configure it for row-level LBAC protection
using the security policy named SEC_POLICY created earlier, you would execute a
CREATE TABLE statement that looks something like this:

CREATE TABLE corp.sales (
sales_rec_id INTEGER NOT NULL,
sales_date DATE WITH DEFAULT,
sales_rep INTEGER,
region VARCHAR(15),
manager INTEGER,
sales_amt DECIMAL(12,2),
margin DECIMAL(12,2),
sec_label DB2SECURITYLABEL)

SECURITY POLICY sec_policy

Securing Data with Label-Based Access Control (LBAC) 681

To configure an existing table named SALES for row-level LBAC protection using a
security policy named SEC_POLICY, you would execute an ALTER TABLE statement
that looks like this instead:

ALTER TABLE corp.sales
ADD COLUMN sec_label DB2SECURITYLABEL
ADD SECURITY POLICY sec_policy

However, before you can execute such an ALTER TABLE statement, you must be
granted a security label for write access that is part of the security policy that will
be used to protect the table (which, in this case is SEC_POLICY). Otherwise, you
won’t be able to create the DB2SECURITYLABEL column.

Granting security labels to users

Once the security policy and labels needed to enforce your security requirements
have been defined, and a table has been enabled for LBAC protection, you must
grant the proper security labels to the appropriate users and indicate whether they
are to have read access, write access, or full access to data that is protected by that
label. Security labels are granted to users by executing a special form of the GRANT

SQL statement. The syntax for this form of the GRANT statement is:

GRANT SECURITY LABEL [LabelName]
TO USER [UserName]
[FOR ALL ACCESS | FOR READ ACCESS | FOR WRITE ACCESS]

where:

LabelName Identifies the name of an existing security label. The name
specified must be qualified with the security policy name that
was used when the security label was created.

UserName Identifies the name of the user to which the security label is to
be granted.

Thus, to give a user named USER1 the ability to read data protected by the security label
SEC_POLICY.EXEC_STAFF, you would execute a GRANT statement that looks like this:

GRANT SECURITY LABEL sec_policy.exec_staff
TO USER user1 FOR READ ACCESS

Chapter 8: Security682

Putting row-level LBAC into action

To enforce the security requirements listed earlier, we must first give users the
ability to perform DML operations against the SALES table by executing the
following GRANT statements, as a user with SYSADM or DBADM authority:

GRANT ALL PRIVILEGES ON TABLE corp.sales TO exec_staff;
GRANT ALL PRIVILEGES ON TABLE corp.sales TO n_manager;
GRANT ALL PRIVILEGES ON TABLE corp.sales TO e_manager;
GRANT ALL PRIVILEGES ON TABLE corp.sales TO s_manager;
GRANT ALL PRIVILEGES ON TABLE corp.sales TO w_manager;
GRANT ALL PRIVILEGES ON TABLE corp.sales TO c_manager;
GRANT ALL PRIVILEGES ON TABLE corp.sales TO sales_rep1;
GRANT ALL PRIVILEGES ON TABLE corp.sales TO sales_rep2;

Next, we must grant the proper security labels to the appropriate users and indicate
whether they are to have read access, write access, or full access to data that is
protected by that label. This is done by executing the following GRANT statements,
this time as a user with SECADM authority:

GRANT SECURITY LABEL sec_policy.exec_staff
TO USER exec_staff FOR READ ACCESS;

GRANT SECURITY LABEL sec_policy.n_mgr
TO USER n_manager FOR ALL ACCESS;

GRANT SECURITY LABEL sec_policy.e_mgr
TO USER e_manager FOR ALL ACCESS;

GRANT SECURITY LABEL sec_policy.s_mgr
TO USER s_manager FOR ALL ACCESS;

GRANT SECURITY LABEL sec_policy.w_mgr
TO USER w_manager FOR ALL ACCESS;

GRANT SECURITY LABEL sec_policy.c_mgr
TO USER c_manager FOR ALL ACCESS;

GRANT SECURITY LABEL sec_policy.sales_rep1
TO USER sales_rep1 FOR ALL ACCESS;

GRANT SECURITY LABEL sec_policy.sales_rep2
TO USER sales_rep2 FOR ALL ACCESS;

Now, suppose user SALES_REP1 adds three rows to the SALES table by executing the
following SQL statements:

Securing Data with Label-Based Access Control (LBAC) 683

INSERT INTO corp.sales VALUES (1, DEFAULT, 1, 'NORTH', 5,
1000.50, 500.00,
SECLABEL_BY_NAME('SEC_POLICY', 'SALES_REP1'));

INSERT INTO corp.sales VALUES (2, DEFAULT, 1, 'NORTH', 5,
2000.00, 400.00,
SECLABEL_BY_NAME('SEC_POLICY', 'SALES_REP1'));

INSERT INTO corp.sales VALUES (3, DEFAULT, 1, 'NORTH', 5,
4500.90, 850.00,
SECLABEL_BY_NAME('SEC_POLICY', 'SALES_REP1'));

Because SALES_REP1 has been given read/write access to the table using the
SEC_POLICY.SALES_REP1 security label, the statements execute successfully. Next,
user SALES_REP2 adds two additional rows to the SALES table by executing the
following SQL statements:

INSERT INTO corp.sales VALUES (4, DEFAULT, 1, 'WEST', 20,
1000.50, 500.00,
SECLABEL_BY_NAME('SEC_POLICY', 'SALES_REP2'));

INSERT INTO corp.sales VALUES (5, DEFAULT, 1, 'WEST', 20,
3200.00, 600.00,
SECLABEL_BY_NAME('SEC_POLICY', 'SALES_REP2'));

SALES_REP2 has also been given read/write access to the table using the
SEC_POLICY.SALES_REP2 security label, so the rows are successfully inserted.

Now, when user EXEC_STAFF queries the SALES table, all five records entered will
appear (because the security label SEC_POLICY.EXEC_STAFF is the highest level in
the security policy’s security label component tree). However, if user EXEC_STAFF

attempts to insert additional records or update an existing record, an error will be
generated because user EXEC_STAFF is allowed only to read the data (only read
access was granted).

When user N_MANAGER queries the table, only records entered by the user
SALES_REP1 will be displayed; the user W_MANAGER will see only records entered
by the user SALES_REP2; and the users E_MANAGER, S_MANAGER, and C_MANAGER

will not see any records at all. (SALES_REP1 reports to N_MANAGER, SALES_REP2

reports to W_MANAGER; no other managers have a sales representative reporting to
them.)

Chapter 8: Security684

And finally, when SALES_REP1 or SALES_REP2 queries the SALES table, they will see
only the records they personally entered. Likewise, they can update only the
records they entered.

Implementing Column-Level LBAC

To illustrate how column-level LBAC is employed, let’s assume you want to control
how Human Resources (HR) staff members, managers, and employees are going to
access data stored in a table named EMPLOYEES. For this scenario, the security
requirements are as follows:

● Name, gender, department, and phone number information can be viewed
by all employees.

● Hire date, salary, and bonus information (in addition to name, gender,
department, and phone number information) can be seen only by managers
and HR staff members.

● Employee ID and Social Security Number information can be seen only by
HR staff members. Additionally, HR staff members are the only users who
can create and modify employee records.

Once again, after the security requirements have been identified, the next steps are
to define the appropriate security component, policies, and labels; create the table
that will house the data; alter the table to add LBAC protection; and grant the
proper security labels to the appropriate users.

Defining security label components, security policies, and security labels

Because an array of values, listed from highest to lowest order, would be the best
way to implement the security requirements just outlined, you could create the
security component needed by executing a CREATE SECURITY LABEL COMPONENT

statement (as a user with SECADM authority) that looks something like this:

CREATE SECURITY LABEL COMPONENT sec_comp
ARRAY ['CONFIDENTIAL', 'CLASSIFIED', 'UNCLASSIFIED']

Securing Data with Label-Based Access Control (LBAC) 685

After the appropriate security label component has been created, you can create a
security policy named SEC_POLICY that is based on the SEC_COMP security label
component by executing a CREATE SECURITY POLICY statement (as a user with
SECADM authority) that looks like this:

CREATE SECURITY POLICY sec_policy
COMPONENTS sec_comp
WITH DB2LBACRULES

Earlier, we saw that security labels are granted to users who are allowed to access or
modify LBAC-protected data; when users attempt to access or modify protected data,
their security label is compared to the security label protecting the data to determine
whether the access or modification is allowed. But before security labels can be
granted, they must first be defined. To create a set of security labels for the security
policy named SEC_POLICY that was just created, you would execute the following set
of CREATE SECURITY LABEL statements (as a user with SECADM authority):

CREATE SECURITY LABEL sec_policy.confidential
COMPONENT sec_comp 'CONFIDENTIAL'

CREATE SECURITY LABEL sec_policy.classified
COMPONENT sec_comp 'CLASSIFIED'

CREATE SECURITY LABEL sec_policy.unclassified
COMPONENT sec_comp 'UNCLASSIFIED'

Keep in mind that every security label is part of exactly one security policy, and a
security label must exist for each security label component found in that security
policy.

Creating a LBAC-protected table and granting privileges and security
labels to users

Earlier, we saw that in order to configure a new table for row-level LBAC
protection, you must associate a security policy with the table being created with
the SECURITY POLICY clause of the CREATE TABLE SQL statement. The same is true
if column-level LBAC protection is desired. Therefore, to create a table named
EMPLOYEES and associate it with a security policy named SEC_POLICY, you would
need to execute a CREATE TABLE statement that looks something like this:

Chapter 8: Security686

CREATE TABLE hr.employees (
emp_id INTEGER NOT NULL,
f_name VARCHAR(20),
l_name VARCHAR(20),
gender CHAR(1),
hire_date DATE WITH DEFAULT,
dept_id CHAR(5),
phone CHAR(14),
ssn CHAR(12),
salary DECIMAL(12,2),
bonus DECIMAL(12,2))

SECURITY POLICY sec_policy

Then, in order to enforce the security requirements identified earlier, you must give
users the ability to perform the appropriate DML operations against the EMPLOYEES

table. This is done by executing the following GRANT SQL statements (as a user
with SYSADM or DBADM authority):

GRANT ALL PRIVILEGES ON TABLE hr.employees TO hr_staff;
GRANT SELECT ON TABLE hr.employees TO manager1;
GRANT SELECT ON TABLE hr.employees TO employee1;

Finally, you must grant the proper security label to the appropriate users and
indicate whether they are to have read access, write access, or full access to data
that is protected by that label. This is done by executing a set of GRANT statements
(as a user with SECADM authority) that looks something like this:

GRANT SECURITY LABEL sec_policy.confidential
TO USER hr_staff FOR ALL ACCESS;

GRANT SECURITY LABEL sec_policy.classified
TO USER manager1 FOR READ ACCESS;

GRANT SECURITY LABEL sec_policy.unclassified
TO USER employee1 FOR READ ACCESS;

Creating LBAC-protected columns

Once you’ve defined the security policy and labels needed to enforce your security
requirements and have granted the appropriate privileges and security labels to
users, you are ready to modify the table associated with the security policy and
configure its columns for column-level LBAC protection. This is done by
executing an ALTER TABLE statement that looks something like this:

Securing Data with Label-Based Access Control (LBAC) 687

ALTER TABLE hr.employees
ALTER COLUMN emp_id SECURED WITH confidential
ALTER COLUMN f_name SECURED WITH unclassified
ALTER COLUMN l_name SECURED WITH unclassified
ALTER COLUMN gender SECURED WITH unclassified
ALTER COLUMN hire_date SECURED WITH classified
ALTER COLUMN dept_id SECURED WITH unclassified
ALTER COLUMN phone SECURED WITH unclassified
ALTER COLUMN ssn SECURED WITH confidential
ALTER COLUMN salary SECURED WITH classified
ALTER COLUMN bonus SECURED WITH classified;

Here is where things get a little tricky. If you try to execute the ALTER TABLE

statement shown as a user with SYSADM or SECADM authority, the operation will fail,
and you will be presented with an error message that looks something like this:

SQL20419N For table "EMPLOYEES", authorization ID " " does not have LBAC
credentials that allow using the security label "CONFIDENTIAL" to protect
column "EMP_ID". SQLSTATE=42522

That’s because the only user who can secure a column with the “CONFIDENTIAL”
security label is a user who has been granted write access to data that is protected
by that label. In our scenario, this is the user HR_STAFF. So what happens when
user HR_STAFF attempts to execute the preceding ALTER TABLE statement? Now a
slightly different error message is produced:

SQL20419N For table "EMPLOYEES", authorization ID "HR_STAFF" does not
have LBAC credentials that allow using the security label "UNCLASSIFIED"
to protect column "F_NAME". SQLSTATE=42522

Why? Because, by default, the LBAC rules set associated with the security policy
assigned to the EMPLOYEES table allows the user HR_STAFF to write data only to
columns or rows that are protected by the same security label that he/she has been
granted.

DB2LBACRULES rules

An LBAC rule set is a predefined set of rules that is used when comparing security
labels. Currently, only one LBAC rule set is supported (DB2LBACRULES), and as we
have just seen, this rule set prevents both write-up and write-down behavior.
(Write-up and write-down apply only to ARRAY security label components and only

Chapter 8: Security688

to write access.) Write-up is when the security label protecting data to which you
are attempting to write is higher than the security label you have been granted;
write-down is when the security label protecting data is lower.

Which rules are actually used when two security labels are compared is dependent
on the type of component used (SET, ARRAY, or TREE) and the type of access being
attempted (read or write). Table 8.3 lists the rules found in the DB2LBACRULES rules
set, identifies which component each rule is used for, and describes how the rule
determines if access is to be blocked.

Granting exemptions

So how can the remaining columns in the EMPLOYEES table be secured with the
appropriate security labels? The Security Administrator must first grant user
HR_STAFF an exemption to one or more security policy rules. When a user holds an
exemption on a particular security policy rule, that rule is not enforced when the
user attempts to access data that is protected by that security policy.

Securing Data with Label-Based Access Control (LBAC) 689

Table 8.3 Summary of the DB2LBACRULES Rules

Rule Name Component Component Access Access is blocked when this
condition is met

DB2LBACREADARRAY ARRAY Read The user’s security label is lower than the

protecting security label.

DB2LBACREADSET SET Read There are one or more protecting security

labels that the user does not hold.

DB2LBACREADTREE TREE Read None of the user’s security labels are equal

to or an ancestor of one of the protecting

security labels.

DB2LBACWRITEARRAY ARRAY Write The user’s security label is higher than the

protecting security label or lower than the

protecting security label.

DB2LBACWRITESET SET Write There are one or more protecting security

labels that the user does not hold.

DB2LBACWRITETREE TREE Write None of the user’s security labels are equal

to or an ancestor of one of the protecting

security labels.

Adapted from Table 78 on pages 608–609 of the IBM DB2 Version 9 for Linux, UNIX, and

Windows Administration Guide—Implementation manual.

Security policy exemptions are granted by executing the GRANT EXEMPTION ON

RULE SQL statement (as a user with SECADM authority). The syntax for this
statement is:

CREATE EXEMPTION ON RULE [Rule] ,...
FOR [PolicyName]
TO USER [UserName]

where:

Rule Identifies one or more DB2LBACRULES security policy rules
for which exemptions are to be given. The following values are
valid for this parameter: DB2LBACREADARRAY, DB2LBACREADSET,

DB2LBACREADTREE, DB2LBACWRITEARRAY WRITEDOWN,

DB2LBACWRITEARRAY WRITEUP, DB2LBACWRITESET,

DB2LBACWRITETREE, and ALL. (If an exemption is held for
every security policy rule, the user will have complete access
to all data protected by that security policy.)

PolicyName Identifies the security policy for which the exemption is to be
granted.

UserName Identifies the name of the user to which the exemptions specified
are to be granted.

Thus, to grant an exemption to the DB2LBACWRITEARRAY rule in the security policy
named SEC_POLICY created earlier to a user named HR_STAFF, you would execute a
GRANT EXEMPTION statement that looks something like this:

GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY
WRITEDOWN FOR sec_policy
TO USER hr_staff

Once this exemption is granted along with the appropriate security label, user
HR_STAFF will then be able to execute the ALTER TABLE statement shown earlier
without generating an error. (Alternately, the following CREATE TABLE statement could
be used to create the EMPLOYEES table and protect each column with the appropriate
security label, provided user HR_STAFF has the privileges needed to create the table.)

Chapter 8: Security690

CREATE TABLE hr.employees (
emp_id INTEGER NOT NULL SECURED WITH confidential,
f_name VARCHAR(20) SECURED WITH unclassified,
l_name VARCHAR(20) SECURED WITH unclassified,
gender CHAR(1) SECURED WITH unclassified,
hire_date DATE WITH DEFAULT SECURED WITH classified,
dept_id CHAR(5) SECURED WITH unclassified,
phone CHAR(14) SECURED WITH unclassified,
ssn CHAR(12) SECURED WITH confidential,
salary DECIMAL(12,2) SECURED WITH classified,
bonus DECIMAL(12,2) SECURED WITH classified)

SECURITY POLICY sec_policy

Putting column-level LBAC into action

Now that we have established a column-level LBAC environment, let’s see what
happens when different users try to access data stored in protected columns of the
EMPLOYEES table. Suppose the user HR_STAFF adds three rows to the EMPLOYEES

table by executing the following SQL statements.

INSERT INTO hr.employees VALUES(1, 'John', 'Doe', 'M',
DEFAULT, 'A01', '919-555-1212', '111-22-3333',
42000.50, 8500.00);

INSERT INTO hr.employees VALUES(2, 'Jane', 'Doe', 'F',
DEFAULT, 'B02', '919-555-3434', '222-33-4444',
38000.75, 5000.00);

INSERT INTO hr.employees VALUES(3, 'Paul', 'Smith', 'M',
DEFAULT, 'C03', '919-555-5656', '333-44-5555',
39250.00, 3500.00);

User HR_STAFF1 has been given read/write access to all columns in the table
(with the SEC_POLICY.CLASSIFIED security label and the DB2LBACWRITEARRAY

WRITEDOWN exemption), so the statements execute successfully. If user HR_STAFF

attempts to query the table, he or she will be able to see every column and every
row because he or she has been granted the highest security level in the array.

Now, when user MANAGER1 attempts to read every column in the table, an error
will be generated stating that he or she does not have “READ” access to the column
“SSN.” However, MANAGER1 will be able to execute the following query because he
or she has been granted read access to each column specified:

Securing Data with Label-Based Access Control (LBAC) 691

SELECT f_name, l_name, hire_date, salary, bonus
FROM hr.employees

Now, if user EMPLOYEE1 attempts to execute the same query, an error will be
generated stating that he or she does not have “READ” access to the column
“BONUS.” But an attempt by EMPLOYEE1 to execute the following query will be
successful:

SELECT f_name, l_name, gender, dept_id, phone
FROM hr.employees

Additionally, if user MANAGER1 or user EMPLOYEE1 attempt to insert additional
records or update existing information, they will get an error stating they do not
have permission to perform the operation against the table.

Combining Row-Level and Column-Level LBAC

There may be times when you would like to limit an individual user’s access to a
specific combination of rows and columns. When this is the case, you must include
a column with the data type DB2SECURITYLABEL in the table’s definition, add the
SECURED WITH [SecurityLabel] option to each column in the table’s definition, and
associate a security policy with the table using the SECURITY POLICY clause of the
CREATE TABLE SQL statement or the ADD SECURITY POLICY clause of the ALTER

TABLE statement. Typically, you will also create two security label components—one
for rows and one for columns—and use both components to construct the security
policy and labels needed.

For example, assume that you created two security label components by executing
the following commands:

CREATE SECURITY LABEL COMPONENT scom_level
ARRAY ['CONFIDENTIAL', 'CLASSIFIED', 'UNCLASSIFIED'];

CREATE SECURITY LABEL COMPONENT scom_country
TREE ('NA' ROOT, 'CANADA' UNDER 'NA', 'USA' UNDER 'NA');

You would then create a security policy by executing a CREATE SECURITY POLICY

command that looks something like this:

Chapter 8: Security692

CREATE SECURITY POLICY sec_policy
COMPONENTS scom_level, scom_country
WITH DB2LBACRULES

Then you could create corresponding security labels by executing commands that
look something like this:

CREATE SECURITY LABEL sec_policy.confidential
COMPONENT scom_level 'CONFIDENTIAL';

CREATE SECURITY LABEL sec_policy.uc_canada
COMPONENT scom_level 'UNCLASSIFIED'
COMPONENT scom_country 'CANADA';

CREATE SECURITY LABEL sec_policy.uc_us
COMPONENT scom_level 'UNCLASSIFIED'
COMPONENT scom_country 'USA';

Finally, after associating the appropriate security labels with individual columns,
you would grant the proper security label to each user and conduct a few tests to
ensure data access is controlled as expected.

Securing Data with Label-Based Access Control (LBAC) 693

Practice Questions

Question 1

Which of the following is NOT a security mechanism that is used to control access

DB2 data?

❍ A. Authorization

❍ B. Privileges

❍ C. Validation

❍ D. Authentication

Question 2

Which of the following identifies which users have SYSMAINT authority?

❍ A. The DB2 registry

❍ B. The DB2 Database Manager configuration

❍ C. The database configuration

❍ D. The system catalog

Question 3

Which of the following database privileges are NOT automatically granted to the

group PUBLIC when a database is created?

❍ A. CONNECT

❍ B. BINDADD

❍ C. IMPLICIT_SCHEMA

❍ D. CREATE_EXTERNAL_ROUTINE

Chapter 8: Security694

Question 4

User USER1 needs to remove a view named ORDERS_V, which is based on a

table named ORDERS, from the SALES database. Assuming user USER1 does not

hold any privileges, which of the following privileges must be granted before user

USER1 will be allowed to drop the view?

❍ A. DROP privilege on the ORDERS_V view

❍ B. CONTROL privilege on the ORDERS table

❍ C. DROP privilege on the ORDERS_V view

❍ D. CONTROL privilege on the ORDERS_V view

Question 5

Which of the following identifies how authentication is performed for an instance?

❍ A. The operating system used by the instance

❍ B. The communications configuration used by the instance

❍ C. The DB2 registry

❍ D. The DB2 Database Manager configuration

Question 6

After the following SQL statement is executed:

GRANT ALL PRIVILEGES ON TABLE employee TO USER user1

Assuming user USER1 has no other authorities or privileges, which of the following

actions is USER1 allowed to perform?

❍ A. Drop an index on the EMPLOYEE table.

❍ B. Grant all privileges on the EMPLOYEE table to other users.

❍ C. Alter the table definition.

❍ D. Drop the EMPLOYEE table.

Practice Questions 695

Question 7

A user named USER1 is granted DBADM authority. Assuming no other

authorities/privileges have been granted and all privileges have been revoked from

the group PUBLIC, if the following SQL statement is executed:

REVOKE DBADM ON DATABASE FROM user1

What authorities/privileges will user USER1 have?

❍ A. None

❍ B. CONNECT

❍ C. SYSCTRL

❍ D. EXECUTE

Question 8

User USER1 wants to call an SQL stored procedure that dynamically retrieves

data from a table. Which two privileges must user USER1 have in order to invoke

the stored procedure?

❑ A. EXECUTE privilege on the stored procedure.

❑ B. CALL privilege on the stored procedure.

❑ C. SELECT privilege on the table the stored procedure retrieves data from.

❑ D. EXECUTE privilege on the package for the stored procedure.

❑ E. SELECT privilege on the stored procedure.

Question 9

Which of the following privileges allow a user to remove a foreign key that has

been defined for a table?

❍ A. ALTER privilege on the table.

❍ B. DELETE privilege on the table.

❍ C. DROP privilege on the table.

❍ D. UPDATE privilege on the table.

Chapter 8: Security696

Question 10

Which of the following privileges allows a user to generate a package for an

embedded SQL application and store it in a database?

❍ A. BIND

❍ B. BINDADD

❍ C. CREATE_EXTERNAL_ROUTINE

❍ D. CREATE_NOT_FENCED_ROUTINE

Question 11

Which of the following statements is NOT true about DB2 security?

❍ A. A custom security plug-in must be created if Microsoft Active Directory will

be used to validate users.

❍ B. Only users with Security Administrator authority are allowed to grant and

revoke SETSESSIONUSER privileges.

❍ C. Users and groups must exist before they can be granted privileges.

❍ D. If a user holding SELECT privilege on a table creates a view based on that

table and their SELECT privilege is later revoked, the view will become

inoperative.

Question 12

User USER1 has the privileges needed to invoke a stored procedure named

GEN_RESUME. User USER2 needs to be able to call the procedure—user USER1

and all members of the group PUBLIC should no longer be allowed to call the

procedure. Which of the following statement(s) can be used to accomplish this?

❍ A. GRANT EXECUTE ON ROUTINE gen_resume TO user2 EXCLUDE
user1, PUBLIC

❍ B. GRANT EXECUTE ON PROCEDURE gen_resume TO user2;
REVOKE EXECUTE ON PROCEDURE gen_resume FROM user1,

PUBLIC;

❍ C. GRANT CALL ON ROUTINE gen_resume TO user2 EXCLUDE user1,
PUBLIC

❍ D. GRANT CALL ON PROCEDURE gen_resume TO user2;
REVOKE CALL ON PROCEDURE gen_resume FROM user1, PUBLIC;

Practice Questions 697

Question 13

Which of the following is NOT used to limit access to individual rows in a table that

is protected by Label-Based Access Control (LBAC)?

❍ A. One or more security profiles

❍ B. A security policy

❍ C. One or more security labels

❍ D. A DB2SECURITYLABEL column

Question 14

Which of the following statements is NOT true about Label-Based Access Control

(LBAC)?

❍ A. LBAC can be used to restrict access to individual rows and columns.

❍ B. Users that have been granted different LBAC security labels will get

different results when they execute the same query.

❍ C. Only users with SYSADM or SECADM authority are allowed to create

security policies and security labels.

❍ D. Security label components represent criteria that may be used to decide

whether a user should have access to specific data.

Question 15

Which of the following SQL statements allows a user named USER1 to write to

LBAC-protected columns that have been secured with a LBAC label that indicates

a lower level of security than that held by USER1?

❍ A. GRANT EXECPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN
FOR sec_policy TO USER user1

❍ B. GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN
FOR sec_policy TO USER user1

❍ C. GRANT EXECPTION ON RULE DB2LBACWRITEARRAY WRITEUP FOR
sec_policy TO USER user1

❍ D. GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP FOR
sec_policy TO USER user1

Chapter 8: Security698

Answers

Question 1

The correct answer is C. The first security portal most users must pass through on their way
to gaining access to a DB2 instance or database is a process known as authentication. The
purpose of authentication is to verify that users really are who they say they are. Once a user
has been authenticated and an attachment to an instance or a connection to a database has
been established, the DB2 Database Manager evaluates any authorities and privileges that
have been assigned to the user to determine what operations the user is allowed to perform.
Privileges convey the rights to perform certain actions against specific database resources
(such as tables and views). Authorities convey a set of privileges or the right to perform
high-level administrative and maintenance/utility operations on an instance or a database.

Question 2

The correct answer is B. Like System Administrator (SYSADM), System Control (SYSCTRL),
and System Monitor (SYSMON) authority, System Maintenance (SYSMAINT) authority can
only be assigned to a group. This assignment is made by storing the appropriate group name
in the sysmaint_group parameter of the DB2 Database Manager configuration file that is
associated with a particular instance.

Question 3

The correct answer is D. To connect to and work with a particular database, a user must have
the authorities and privileges needed to use that database. Therefore, whenever a new
database is created, unless otherwise specified, the following authorities and privileges are
automatically granted:

● Database Administrator (DBADM) authority, along with CONNECT, CREATETAB,

BINDADD, CREATE_NOT_FENCED, IMPLICIT_SCHEMA, and LOAD privileges, are
granted to the user who created the database.

● USE privilege on the table space USERSPACE1 is granted to the group PUBLIC.

● CONNECT, CREATETAB, BINDADD, and IMPLICIT_SCHEMA privileges are granted to the
group PUBLIC.

● SELECT privilege on each system catalog table is granted to the group PUBLIC.

Answers 699

● EXECUTE privilege on all procedures found in the SYSIBM schema is granted to the
group PUBLIC.

● EXECUTE WITH GRANT privilege on all functions found in the SYSFUN schema is
granted to the group PUBLIC.

● BIND and EXECUTE privileges for each successfully bound utility are granted to the
group PUBLIC.

(For more information, refer to Chapter 3 – “Data Placement”)

Question 4

The correct answer is D. The CONTROL view privilege provides a user with every view
privilege available, allows the user to remove (drop) the view from the database, and gives
the user the ability to grant and revoke one or more view privileges (except the CONTROL

privilege) to/from other users and groups.

Question 5

The correct answer is D. Because DB2 can reside in environments comprised of multiple
clients, gateways, and servers, each of which may be running on a different operating
system, deciding where authentication is to take place is determined by the value assigned to
the authentication parameter in each DB2 Database Manager configuration file. The value
assigned to this parameter, often referred to as the authentication type, is set initially when
an instance is created. (On the server side, the authentication type is specified during the
instance creation process; on the client side, the authentication type is specified when a
remote database is cataloged.) Only one authentication type exists for each instance, and it
controls access to that instance, as well as to all databases that fall under that instance’s
control.

Chapter 8: Security700

Question 6

The correct answer is C. The GRANT ALL PRIVILEGES statement gives USER1 the following
privileges for the EMPLOYEE table: ALTER, SELECT, INSERT, UPDATE, DELETE, INDEX, and
REFERENCES. To drop an index, USER1 would need CONTROL privilege on the index—not the
table the index is based on; USER1 cannot grant privileges to other users because the WITH

GRANT OPTION clause was not specified with the GRANT ALL PRIVILEGES statement used to
give USER1 table privileges; and in order to drop the EMPLOYEE table, USER1 would have to
have CONTROL privilege on the table—CONTROL privilege is not granted with the GRANT ALL

PRIVILEGES statement.

Question 7

The correct answer is B. When a user is given Database Administrator (DBADM) authority for
a particular database, they automatically receive all database privileges available for that
database as well (CONNECT, CONNECT_QUIESCE, IMPLICIT_SCHEMA, CREATETAB, BINDADD,
CREATE_EXTERNAL_ROUTINE, CREATE_NOT_FENCED_ROUTINE, and LOAD). When Database
Administrator authority is revoked, all other database authorities that were implicitly and
automatically granted when DBADM authority was granted are not automatically revoked. The
same is true for privileges held on objects in the database.

Question 8

The correct answers are A and C. Before a user can invoke a routine (user-defined function,
stored procedure, or method) they must hold both EXECUTE privilege on the routine and any
privileges required by that routine. Thus, in order to execute a stored procedure that queries a
table, a user must hold both EXECUTE privilege on the stored procedure and SELECT privilege
on the table the query is ran against.

Package privileges control what users can and cannot do with a particular package. (A
package is an object that contains the information needed by the DB2 Database Manager to
process SQL statements in the most efficient way possible on behalf of an embedded SQL
application.)

Answers 701

Question 9

The correct answer is A. The ALTER table privilege allows a user to execute the ALTER TABLE

SQL statement against a table. In other words, this privilege allows a user to add columns to
the table, add or change comments associated with the table or any of its columns, create or
drop a primary key for the table, create or drop a unique constraint for the table, create or
drop a check constraint for the table, create or drop a referential constraint for the table, and
create triggers for the table (provided the user holds the appropriate privileges for every
object referenced by the trigger).

The UPDATE privilege allows a user to execute the UPDATE SQL statement against the table.
In other words, this privilege allows a user to modify data in the table. The DELETE privilege
allows a user to execute the DELETE SQL statement against the table. In other words, it
allows a user to remove rows of data from the table.

Question 10

The correct answer is B. The BINDADD database privilege allows a user to create packages in
the database (by precompiling embedded SQL application source code files against the
database or by binding application bind files to the database).

The BIND package privilege allows a user to rebind or add new package versions to a
package that has already been bound to a database. (In addition to the BIND package
privilege, a user must hold the privileges needed to execute the SQL statements that make up
the package before the package can be successfully rebound.) The
CREATE_EXTERNAL_ROUTINE database privilege allows a user to create user-defined functions
(UDFs) and/or procedures and store them in the database so that they can be used by other
users and applications. The CREATE_NOT_FENCED_ROUTINE database privilege allows a user to
create unfenced UDFs and/or procedures and store them in the database. (Unfenced UDFs
and stored procedures are UDFs/procedures that are considered “safe” enough to be run in
the DB2 Database Manager operating environment’s process or address space. Unless a
UDF/procedure is registered as unfenced, the DB2 Database Manager insulates the
UDF/procedure’s internal resources in such a way that they cannot be run in the DB2
Database Manager’s address space.)

Chapter 8: Security702

Question 11

The correct answer is C. The GRANT statement does not check to ensure that the names of
users and/or groups that are to be granted authorities and privileges are valid. Therefore, it is
possible to grant authorities and privileges to users and groups that do not exist.

Question 12

The correct answer is B. The syntax used to grant the only stored procedure privilege
available is:

GRANT EXECUTE ON [RoutineName] |
[PROCEDURE <SchemaName.> *]

TO [Recipient, ...]
<WITH GRANT OPTION>

The syntax used to revoke the only stored procedure privilege available is:

REVOKE EXECUTE ON [RoutineName |
[PROCEDURE <SchemaName.> *]

FROM [Forfeiter, ...] <BY ALL>
RESTRICT

where:

RoutineName Identifies by name the routine (user-defined function, method, or
stored procedure) that the EXECUTE privilege is to be associated with.

TypeName Identifies by name the type in which the specified method is found.

SchemaName Identifies by name the schema in which all functions, methods, or
procedures—including those that may be created in the future—are to
have the EXECUTE privilege granted on.

Recipient Identifies the name of the user(s) and/or group(s) that are to receive
the EXECUTE privilege. The value specified for the Recipient parameter
can be any combination of the following: <USER> [UserName],
<GROUP> [GroupName], and PUBLIC.

Forfeiter Identifies the name of the user(s) and/or group(s) that are to lose the
package privileges specified. The value specified for the Forfeiter
parameter can be any combination of the following: <USER>

[UserName], <GROUP> [GroupName], and PUBLIC.

Thus, the proper way to grant and revoke stored procedure privileges is by executing the
GRANT EXECUTE … and REVOKE EXECUTE … statements.

Answers 703

Question 13

The correct answer is A. To restrict access to rows in a table using Label-Based Access
Control (LBAC), you must define a security label component, define a security policy,
create one or more security labels, create an LBAC-protected table or alter an existing table
to add LBAC protection (this is done by adding the security policy to the table and defining
a column that has the DB2SECURITYLABEL data type), and grant the proper security labels to
the appropriate users. There are no LBAC security profiles.

Question 14

The correct answer is C. Security Administrator (SECADM) authority is a special database
level of authority that is designed to allow special users to configure various label-based
access control (LBAC) elements to restrict access to one or more tables that contain data to
which they most likely do not have access themselves. Users with Security Administrator
authority are only allowed to perform the following tasks:

● Create and drop security policies.

● Create and drop security labels.

● Grant and revoke security labels to/from individual users (using the GRANT

SECURITY LABEL and REVOKE SECURITY LABEL SQL statements).

● Grant and revoke LBAC rule exemptions.

● Grant and revoke SETSESSIONUSER privileges (using the GRANT SETSESSIONUSER

SQL statement).

● Transfer ownership of any object not owned by the Security Administrator (by
executing the TRANSFER OWNERSHIP SQL statement).

No other authority provides a user with these abilities, including System Administrator
authority.

Chapter 8: Security704

Question 15

The correct answer is B. When a user holds an exemption on an LBAC security policy rule,
that rule is not enforced when the user attempts to read and/or write data that is protected by
that security policy.

Security policy exemptions are granted by executing the GRANT EXEMPTION ON RULE SQL
statement (as a user with SECADM authority). The syntax for this statement is:

CREATE EXEMPTION ON RULE [Rule] ,...
FOR [PolicyName]
TO USER [UserName]

where:

Rule Identifies one or more DB2LBACRULES security policy rules that
exemptions are to be given for. The following values are valid for this
parameter: DB2LBACREADARRAY, DB2LBACREADSET, DB2LBACREADTREE,

DB2LBACWRITEARRAY WRITEDOWN, DB2LBACWRITEARRAY WRITEUP,

DB2LBACWRITESET, DB2LBACWRITETREE, and ALL. (If an exemption is
held for every security policy rule, the user will have complete access
to all data protected by that security policy.)

PolicyName Identifies the security policy for which the exemption is to be granted.

UserName Identifies the name of the user to which the exemptions specified are
to be granted.

Thus, to grant an exemption to the DB2LBACWRITEARRAY rule in a security policy named
SEC_POLICY to a user named USER1, you would execute a GRANT EXEMPTION statement that
looks something like this:

GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY
WRITEDOWN FOR sec_policy
TO USER user1

Answers 705

