
Access and Security

In This Chapter

✔ Subsystem access

✔ Data set protection

✔ Authorization IDs

✔ Trusted context and roles

✔ Authorities and privileges

✔ Auditing

Whenever you store data in a relational database management system, security is
an important consideration. In this chapter, we discuss controlling data access
using many different methods. Access to data within DB2 is controlled at several
levels, including the subsystem, database object, and application plan/package. We
discuss user ID and password authentication and describe how to configure groups
of typical database users, such as database administrators, system administrators,
transactional processing personnel, and decision support users. Each of these user
types may require different access privileges. As a final piece to our security
discussion, we explain how to audit access to DB2 objects so you can monitor
access to and manipulation of data.

As Figure 3.1 depicts, there are several routes from a process to DB2 data, with
controls on every route.

C H A P T E R 3

With each new release, DB2 gets bigger, faster, and more secure. Over the years, it
has recognized and addressed the following security problems:

● Privilege theft or mismanagement

● Application or application server tampering

● Data or log tampering

● Storage media theft

● Unauthorized object access

To address these areas, DB2 offers the following security solutions:

● Authentication

● Authorization

● Data integrity

Chapter 3: Access and Security100

Figure 3.1: DB2 data access control

● Confidentiality

● system integrity

● Audit

DB2 Subsystem Access

You can control whether a process can gain access to a specific DB2 subsystem
from outside DB2. A common procedure is to grant access only through the
Resource Access Control Facility or a similar security system. With this approach,
you define profiles for access to DB2 from various environments (and DB2
address spaces) as resources to RACF. You identify these profiles by specifying the
subsystem and the environment. Environments include the following:

Environment Description
MASS For IMS

SASS For CICS

DIST For DDF

RRSAF For RRSAF

BATCH For TSO, CAF, utilities

Each request to access DB2 is associated with an identifier. When a request is
made, RACF verifies whether this ID is authorized for DB2 resources and either
permits or does not permit access to DB2.

The RACF system provides several advantages of its own. For example, it can

● identify and verify the ID associated with a process

● connect those IDs to RACF group names

● log and report unauthorized attempts to access protected resources

The RACF resource class for DB2 is DSNR, and this class is contained in the
RACF descriptor table. To control access, you define a profile name as a member
of class DSNR for every combination of subsystem and environment you’ll be
using. You can then issue commands to give authority to groups that are authorized
for class DSNR.

DB2 Subsystem Access 101

For example, the following PERMIT command lets users run batch jobs and utilities
on a subsystem.

PERMIT DSN.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

You can also use PERMIT to take away DB2 access from a user:

PERMIT DSNP.TSO CLASS(DSNR) ID(DB2USER) ACCESS(NONE)

Authorization Control with Exit Routines

You can also control access to DB2 subsystems through exit routines. DB2
provides two exit points for authorization routines, one in connection processing
and one in sign-on processing. Both are important for ID assignment. You need a
routine for each exit, and IBM supplies default routines for each type: DSN3@ATH

for connections and DSN3@SGN for sign-ons.

DB2 provides a third exit point (DSNX@XAC) that lets you furnish your own
access-control routines or use RACF (or the equivalent) to perform system
authorization checking. When DB2 invokes an authorization routine, it passes
three possible functions to it:

● Initialization (DB2 startup)

● Authorization check

● Termination (DB2 shutdown)

The exit routine may not be called in the following situations:

● If the user is Install SYSADM or Install SYSOPR

● If DB2 security has been disabled (i.e., if you specified NO for the USE

PROTECTION installation field on the DSNTIPP panel)

● If a prior invocation of the routine indicated the routine should not be
called again

● If a GRANT statement is being executed

Chapter 3: Access and Security102

Local DB2 Access

Even before reaching DB2, a local DB2 user is subject to several checks. For
example, if you’re running DB2 under TSO and using the TSO logon ID as the
DB2 primary authorization ID, that ID is verified with a password when the user
logs on. Once the user gains access to DB2, a user-written or IBM-supplied exit
routine connected to DB2 can check the authorization ID further, change it, and
associate it with secondary IDs (which we discuss later). In providing these
functions, DB2 can use the services of an external security system.

Remote Access

Remote users, too, are subject to several checks before reaching your DB2. You
can use RACF or a similar security subsystem. RACF can

● verify an identifier associated with a remote attachment request and check
it with a password.

● generate PassTickets on the sending side. Used instead of a password, a
PassTicket lets a user gain access to a host system without sending the
RACF password across the network.

IMS and CICS Security

You can also control DB2 access from within IMS or CICS.

IMS terminal security lets you limit the entry of a transaction code to a particular
logical terminal (LTERM) or group of LTERMs in the system. To protect a particular
program, you can authorize a transaction code to be entered only from any
terminal on a list of LTERMs. As an alternative, you can associate each LTERM with
a list of the transaction codes a user can enter from that LTERM. IMS then passes
the validated LTERM name to DB2 as the initial primary authorization ID.

DB2 Subsystem Access 103

DB2’s communications database does permit some control of
authentication in that you can cause IDs to be translated
before sending them to the remote system. For more

information about accessing DB2 and the CDB, see Chapter 2.

CICS transaction code security works with RACF to control the transactions and
programs that can access DB2. Within DB2, you can use the ENABLE and DISABLE

options of the bind operation to limit access to specific CICS subsystems.

Kerberos Security

Kerberos security is a network security technology developed at the Massachusetts
Institute of Technology. DB2 for z/OS can use Kerberos security services to
authenticate remote users. With Kerberos security services, remote end users
access DB2 when they issue their Kerberos name and password. This same name
and password is used for access throughout the network, so a separate z/OS
password to access DB2 isn’t necessary.

Kerberos security technology doesn’t require passwords to flow in readable text,
making it secure even in client/server environments. This flexibility is possible
because Kerberos employs an authentication technology that uses encrypted tickets
that contain authentication information for the end user.

DB2 support for Kerberos security requires the z/OS SecureWay Security Server
Network Authentication and Privacy Service and the z/OS SecureWay Security
Server (formerly known as RACF), or the functional equivalent. The Network
Authentication and Privacy Service provides Kerberos support and relies on a
security product (e.g., RACF) to provide registry support. The SecureWay Security
Server enables administrators already familiar with RACF commands and RACF
ISPF panels to define Kerberos configuration and principal information.

Secure Sockets Layer Support

DB2 exploits the z/OS Application Transparent–Transport Layer Security
(AT-TLS) function in the TCP/IP stack to provide TLS for DB2 clients that require
secure connections. AT-TLS performs TLS on behalf of the application by invoking
the z/OS system SSL in the TCP transport layer of the stack. DB2’s SSL support

Chapter 3: Access and Security104

You can use Kerberos security only if you have the z/OS
SecureWay Security Server.

provides protected connections between DB2 servers. With SSL support, a
DB2 server can optionally listen on a secondary secure port for inbound SSL
connections. Similarly, a DB2 requester can optionally send encrypted data
across the network through an SSL connection to the server.

Protection Against Denial-of-Service Attacks

In a denial-of-service attack, an attacker tries to prevent legitimate users from
accessing information or services. By targeting a DB2 server and its network
connection, an attacker might be able to prevent you from accessing data or other
services that the server provides. The DB2 server guards against such attacks and
provides a more secure operating environment for legitimate users.

Data-Set Protection

The data in a DB2 subsystem is contained in data sets. It’s possible to access these
data sets without going through DB2 at all. If the data is sensitive, you want to
control that route.

If you’re using the z/OS SecureWay Security Server (or a similar security system)
to control access to DB2, the simplest way to control data-set access outside DB2
is to use RACF for that purpose, too. That means defining RACF profiles for data
sets and permitting access to them for certain DB2 IDs.

If the data is very sensitive, you may want to consider encrypting it to protect against
unauthorized access to data sets and backup copies outside DB2. You can use DB2
edit procedures or field procedures to encrypt data, and those routines can use the
Integrated Cryptographic Service Facility (ICSF) of z/OS. Note that data
compression is not a substitute for encryption. In some cases, the compression
method doesn’t actually shorten the data, and the data is then left uncompressed and
readable. If you both encrypt and compress data, be sure to compress it first to obtain
the maximum compression; then encrypt the result. When retrieving data, take the
steps in reverse order: decrypt the data first, and then decompress the result.

DB2 Object Access

An individual process can be represented by a primary authorization ID, possibly
one or more secondary IDs, and an SQL ID. The security and network systems and
the DB2 connections that are made all affect the use of IDs.

Data-Set Protection 105

DB2 controls access to objects by assigning privileges and authorities to either
primary or secondary IDs. Object ownership also carries with it a set of related
privileges over the object. An ID can own an object it creates, or it can create an
object to be owned by another ID. Separate controls govern creation and
ownership.

Executing a plan or package exercises implicitly all the privileges that the owner
needed when binding it. Hence, granting the privilege to execute can provide a
finely detailed set of privileges and can eliminate the need to grant other privileges
separately.

In this section, we look at how privileges, authorities, and ownership work together
to provide security for access to DB2 objects.

Authorization IDs

Every process that connects to or signs on to DB2 is represented by a set of one or
more DB2 identifiers called authorization IDs. Authorization IDs can be assigned
to a process by default procedures or by user-written exit routines.

Primary Authorization ID

A primary authorization ID is assigned to every process. Each process has only
one primary authorization ID, and it is the ID that is normally used to uniquely
identify the process.

Secondary Authorization ID

A secondary authorization ID, which can hold additional privileges, is optional.
Secondary authorizations are often used for groups, such as RACF groups. A primary
authorization ID can be associated with multiple secondary authorization IDs.

Chapter 3: Access and Security106

You can use RACF access control to supplement or replace the
DB2 GRANT and REVOKE statements.

Role

A role is available within a trusted context. You can define a role and assign it to
an authorization ID in a trusted context. When associated with a role and using the
trusted connection, the authorization ID inherits all the privileges granted to that
role. We discuss roles and trusted contexts in more detail later.

Current SQL ID

Either the primary ID or the secondary ID can be the current SQL ID at any given
time. Furthermore, one ID (either primary or secondary) is designated as the
current SQL ID. You can change the value of the SQL ID during your session. For
example, if DB2EXPT is your primary or one of your secondary authorization IDs,
you can make it your current SQL ID by issuing the SQL statement

SET CURRENT SQLID ='DB2EXPT';

An ID with SYSADM authority (described later) can set the current SQL ID to
any string of up to eight bytes, whether or not the ID is an authorization ID
associated with the process that is running.

Trusted Contexts

DB2 9 helps you satisfy the need for data security and accountability by enabling
you to create and use trusted contexts as another method to manage access to your
DB2 servers. Within a trusted context, you can use trusted connections to reuse the
authorization and switch users of the connection without the database server
needing to authenticate the IDs.

A trusted context is an independent database entity that you can define based on a
system authorization ID and connection trust attributes. The trust attributes specify a
set of characteristics about a specific connection. These attributes include the IP
address, domain name, or SERVAUTH security zone name of a remote client and the

DB2 Object Access 107

When you add a new user to an RACF group, that user is
visible the next time he or she logs on to TSO.

job or task name of a local client. A trusted context lets you define a unique set of
interactions between DB2 and the external entity, including the following abilities:

● The ability for the external entity to use an established database connection
with a different user without the need to authenticate that user at the DB2
server. This support eliminates the need for the external entity to manage
end-user passwords. Also, a database administrator can assume the identity
of other users and perform actions on their behalf.

● The ability for a DB2 authorization ID to acquire one or more privileges
within a trusted context that are not available to it outside that trusted
context. You accomplish this by associating a role with the trusted context.

Several client applications support the trusted context:

● The DB2 Driver for JDBC and SQL introduces new APIs for establishing
trusted connections and switching users of a trusted connection.

● The DB2 Driver for ODBC and CLI introduces new keywords for
connecting APIs to establish trusted connections and switch users of a
trusted connection.

● WebSphere Application Server 6.0 exploits the trusted context support
through its “propagate client identity” property.

Trusted Connections

A trusted connection is a database connection that is established when the
connection attributes match the attributes of a unique trusted context defined at the
server. You can establish a trusted connection locally or at a remote location.

A trusted context establishes a trusted relationship between DB2 and an external
entity, such as a middleware server. To determine whether a specific context can be
trusted, DB2 evaluates a series of trust attributes. At this time, the only attribute
DB2 considers is the database connection.

The relationship between a connection and a trusted context is established when
the connection to the server is first created, and that relationship remains in place
as long as that connection exists.

Chapter 3: Access and Security108

Roles

A role is a database entity, available only in a trusted context, that groups together
one or more privileges and can be assigned to users. You can define a role and
assign it to an authorization ID in a trusted context. When associated with a role
and using the trusted connection, the authorization ID inherits all the privileges
granted to that role.

A role can own database objects, a fact that helps eliminate the need for individual
users to own and control database objects. A role owns objects if the objects are
created in a trusted context with the role defined as the owner (by specifying the
ROLE AS OBJECT OWNER clause in the trusted context definition). Databases, table
spaces, tables, indexes, and views can be implemented in a trusted context with
role as the owner of the created objects.

You can assign a role to an individual user or a group of users by defining a
trusted context. A role thus offers a mechanism other than authorization IDs
through which you can assign privileges and authorities. When you define a role
for a trusted context, the role becomes the actual owner of the objects when you
specify the ROLE AS OBJECT OWNER clause. As a result, roles give you the
flexibility of authorization methods and help simplify the management of
authentication.

If objects were created using a ROLE, you can remove the user ID to which the role
was assigned without having to redo privileges or drop or re-create objects. For
example, say a company creates an APP1 trusted context and an APP1_DBA role to
limit exposure to an application and then assigns DBA1 to this role and all the
objects. If DBA1 leaves the company and the ID is removed, the objects and
privileges of the role remain untouched.

Defining Trusted Contexts

Before you can create a trusted connection, you must define a trusted context by
specifying a system authorization ID and connection trust attributes.

A system authorization ID is the DB2 primary authorization ID used to establish
the trusted connection. For local connections, the system authorization ID is
derived as follows:

DB2 Object Access 109

Source System authorization ID
Started task (RRSAF) USER parameter on JOB or RACF USER

TSO TSO logon ID

BATCH USER parameter on JOB

For remote connections, the system authorization ID is derived from the system
user ID provided by an external entity, such as a middleware server.

Connection trust attributes identify a set of characteristics about the specific
connection. These attributes are required for the connection to be considered a
trusted connection. For a local connection, the connection trust attribute is the job
or started task name. For a remote connection, the connection trust attribute is the
client’s IP address, domain name, or SERVAUTH security zone name. Table 3.1
describes the connection trust attributes.

You cannot specify the JOBNAME attribute with the ADDRESS, SERVAUTH, or
ENCRYPTION attribute.

Chapter 3: Access and Security110

Table 3.1: Connection trust attributes

Attribute Description

ADDRESS Specifies the client’s IP address or domain name; used by the connection to

communicate with DB2. The protocol must be TCP/IP.

SERVAUTH Specifies the name of a resource in the RACF SERVAUTH class. This

resource is the network access security zone name that contains the IP

address of the connection to communicate with DB2.

ENCRYPTION Specifies the minimum level of encryption of the data stream (network

encryption) for the connection.

Value Meaning
NONE No encryption (the default)

LOW DRDA data stream encryption

HIGH SSL encryption

JOBNAME Specifies the local z/OS started task or job name. The value of JOBNAME

depends on the source of the address space.

Source JOBNAME
Started task (RRSAF) Job or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

Performing Tasks on Behalf of Others

If you have DBADM authority (described later), you can assume the identity of other
users within a trusted context and perform tasks on their behalf. After successfully
assuming the identity of a view owner, you inherit all the privileges from the ID
that owns the view and can therefore perform the CREATE, DROP, and GRANT

actions on the view.

To perform tasks on behalf of another user:

1. Define a trusted context. Make sure the SYSTEM AUTH ID is the primary
authorization ID you use in SPUFI.

2. Specify the primary authorization ID as the JOBNAME for the trusted
connection.

3. Specify the primary authorization ID of the user whose identity you want
to assume.

4. Log on to TSO using your primary authorization ID.

5. Set the ASUSER option on the DB2I DEFAULTS panel to the primary
authorization ID of the user whose identity you want to assume.

6. Perform the desired actions by using privileges of the specified user.

For example, let’s assume you have DBADM authority (the minimum authority
required), your primary authorization ID is DAN, and you want to drop a view owned
by user SUSAN. You can issue the following statement to create and enable a trusted
context called CTXLOCAL in which DAN can drop the selected view on SUSAN’s behalf:

CREATE TRUSTED CONTEXT CTXLOCAL
BASED UPON CONNECTION USING SYSTEM AUTHID DAN
ATTRIBUTES (JOBNAME 'DAN')
ENABLE
ALLOW USE FOR SUSAN;

After logging on to TSO, set the ASUSER option to SUSAN in the DB2I DEFAULTS

panel, and invoke SPUFI to process SQL statements. DB2 obtains the primary
authorization ID DAN and JOBNAME DAN from the TSO log-on session,
authenticates DAN, searches for the matching trusted context (CTXLOCAL), and
establishes a trusted connection. DB2 then authenticates the primary authorization

DB2 Object Access 111

ID (SUSAN) and validates all privileges assigned to SUSAN. After successful
authentication and validation, you, DAN, can drop the view that is owned by
SUSAN.

Explicit Privileges

You can grant several explicit privileges to a primary ID, secondary authorization
ID, or role to grant that ID the privilege to perform a particular task. Certain
granted privileges also provide an inherited authority (e.g., if you grant CREATEDBA

to an ID, that ID will become DBADM over the database it creates). The privileges
are grouped into several categories:

● Tables and views

● Plans

● Packages

● Collections

● Databases

● Subsystems

● Usage

● Schemas

● Distinct types or JARs

● Routines (functions or procedures)

● Sequences

Table 3.2 lists the available privileges that can be granted to a primary or
secondary authorization ID, along with the type of usage associated with
each privilege.

Chapter 3: Access and Security112

No specific authority exists for creating a view. To create a
view, you must have the SELECT privilege from the table
(or tables) on which the view is being created.

DB2 Object Access 113

Additional privileges exist for statements, commands, and
utility jobs.

Table 3.2: Explicit privileges

Privilege Provides this usage

Table

ALTER The ALTER TABLE statement, to change the table definition.

DELETE The DELETE statement, to delete rows.

GRANT ALL SQL statements of all table privileges.

INDEX The CREATE INDEX statement, to create an index on the table.

INSERT The INSERT statement, to insert rows.

REFERENCES The ALTER or CREATE TABLE statement, to add or remove a referential

constraint referring to the named table or to a list of columns in the table.

SELECT The SELECT statement, to retrieve data from the table.

TRIGGER The CREATE TRIGGER statement, to define a trigger on a table.

UPDATE The UPDATE statement, to update all columns or a specific list of columns.

Plan

BIND The BIND, REBIND, and FREE PLAN subcommands, to bind or free the plan.

EXECUTE The RUN command, to use the plan when running the application.

Package

BIND The BIND, REBIND, and FREE PACKAGE subcommands and the DROP

PACKAGE statement, to bind or free the package and, depending on the

installation option BIND NEW PACKAGE, to bind a new version of a package.

COPY The COPY option of BIND PACKAGE, to copy a package.

EXECUTE Inclusion of the package in the PKLIST option of BIND PLAN.

GRANT ALL All package privileges.

Collection

CREATE IN Naming the collection in the BIND PACKAGE subcommand.

Database

CREATETAB The CREATE TABLE statement, to create tables in the database.

CREATETS The CREATE TABLESPACE statement, to create table spaces in the

database.

DISPLAYDB The DISPLAY DATABASE command, to display the database status.

DROP DROP and ALTER DATABASE, to drop or alter the database.

Chapter 3: Access and Security114

Table 3.2: Explicit privileges (continued)

Privilege Provides this usage

IMAGCOPY The QUIESCE, COPY, and MERGECOPY utilities, to prepare for, make, and

merge copies of table spaces in the database; and the MODIFY RECOVERY

utility, to remove records of copies.

LOAD The LOAD utility, to load tables in the database.

RECOVERDB The RECOVER, REBUILD INDEX, and REPORT utilities, to recover objects in

the database and report their recovery status.

REORG The REORG utility, to reorganize objects in the database.

REPAIR The REPAIR and DIAGNOSE utilities (except REPAIR DBD and DIAGNOSE

WAIT) to generate diagnostic information about, and repair data in, objects in

the database.

STARTDB The START DATABASE command, to start the database.

STATS The RUNSTATS, CHECK, LOAD, REBUILD INDEX, REORG INDEX, and

REORG TABLESPACE utilities, to gather statistics and check indexes and

referential constraints for objects in the database and delete unwanted statistics

history records from the corresponding catalog tables.

STOPDB The STOP DATABASE command, to stop the database.

Subsystem

ARCHIVE The ARCHIVE LOG command, to archive the current active log; the DISPLAY

ARCHIVE command, to give information about input archive logs; the SET LOG

command, to modify the checkpoint frequency specified during installation; and

the SET ARCHIVE command, to control allocation and deallocation of tape

units for archive processing.

BINDADD The BIND subcommand with the ADD option, to create new plans and

packages.

BINDAGENT The BIND, REBIND, and FREE subcommands and the DROP PACKAGE

statement, to bind, rebind, or free a plan or package, or to copy a package, on

behalf of the grantor. The BINDAGENT privilege is intended for separation of

function, not for added security. A bind agent with the EXECUTE privilege

might be able to gain all the authority of the grantor of BINDAGENT.

BSDS The RECOVER BSDS command, to recover the bootstrap data set.

CREATEALIAS The CREATE ALIAS statement, to create an alias for a table or view name.

CREATEDBA The CREATE DATABASE statement, to create a database and have DBADM

authority over it.

CREATEDBC The CREATE DATABASE statement, to create a database and have DBCTRL

authority over it.

CREATESG The CREATE STOGROUP statement, to create a storage group.

CREATETMTAB The CREATE GLOBAL TEMPORARY TABLE statement, to define a created

temporary table.

DEBUGSESSION The DEBUGINFO connection attribute, to control debug session activity for

native SQL and Java stored procedures.

DB2 Object Access 115

Table 3.2: Explicit privileges (continued)

Privilege Provides this usage

DISPLAY The DISPLAY ARCHIVE, DISPLAY BUFFERPOOL, DISPLAY DATABASE,

DISPLAY LOCATION, DISPLAY LOG, DISPLAY THREAD, and DISPLAY

TRACE commands, to display system information.

MONITOR1 Receive trace data that is not potentially sensitive.

MONITOR2 Receive all trace data.

RECOVER The RECOVER INDOUBT command, to recover threads.

STOPALL The STOP DB2 command, to stop DB2.

STOSPACE The STOSPACE utility, to obtain data about space usage.

TRACE The START TRACE, STOP TRACE, and MODIFY TRACE commands, to

control tracing.

Usage

USE OF

BUFFERPOOL

A buffer pool.

USAGE ON JAR A Java class.

USAGE ON

SEQUENCE

A sequence.

USE OF

STOGROUP

A storage group.

USE OF

TABLESPACE

A table space.

Schema

CREATEIN Create distinct types, user-defined functions, triggers, and stored procedures in

the designated schemas.

ALTERIN Alter user-defined functions or stored procedures, or specify a comment for

distinct types, user-defined functions, triggers, and stored procedures in the

designated schemas.

DROPIN Drop distinct types, user-defined functions, triggers, and stored procedures in

the designated schemas.

Distinct type

USAGE ON

DISTINCT TYPE

A distinct type.

Routine

EXECUTE ON

FUNCTION

A user-defined function.

EXECUTE ON

PROCEDURE

A stored procedure.

Sequence Object

ALTER A sequence object.

GRANTing and REVOKEing Privileges

The privileges in Table 3.2 must be GRANTed to an authorization ID. The GRANT and
REVOKE statements are part of the SQL language known as Data Control Language
(DCL). Let’s take a look at some examples of granting and revoking privileges.

To grant the ID DB2EXPT the ability to select data from a particular table, you
would execute the following SQL statement.

GRANT SELECT ON DSN8910.EMP TO DB2EXPT

To grant DB2EXPT the ability to BIND packages to the DB2SAMPL collection, you
would execute this statement:

GRANT BIND ON PACKAGE DB2SAMPL.* TO DB2EXPT

To grant everyone the ability to select, update, insert, or delete data from a
particular table, you’d execute this statement:

GRANT ALL ON DSN8910.EMP TO PUBLIC

Note that the keyword PUBLIC lets any user have the granted privilege.

To take away everyone’s delete authority from a particular table, you would execute
this statement:

REVOKE DELETE ON DSN8910.EMP FROM PUBLIC

Revoking a privilege from a user can also cause that privilege to be revoked from
other users. This type of revoke is called a cascade revoke.

Related and Inherited Privileges

DB2 defines sets of related privileges that are identified by administrative
authorities (which we examine the next). This grouping makes it easier to
administer authority because instead of having to grant several individual
privileges to an ID, you can simply grant the administrative authority—which
includes all applicable privileges. Some privileges are also inherited with object
ownership.

Chapter 3: Access and Security116

Authorities

An administrative authority is a set of privileges, often covering a related set of
objects. Authorities often include privileges that aren’t explicit, have no name, and
cannot be specifically granted—for example, the ability to terminate any utility
job, which is included in the SYSOPR authority. The nine DB2 administrative
authorities are

● Installation SYSADM

● SYSCTRL

● SYSADM

● SYSOPR

● Installation SYSOPR

● PACKADM

● DBMAINT

● DBCTRL

● DBADM

Table 3.3 describes the capabilities and privileges of each authority.

DB2 Object Access 117

The DBCTRL authority provides a good way to assign all the
necessary privileges a DBA needs to perform his or her
duties without granting the ability to access the data itself.

Chapter 3: Access and Security118

Table 3.3: DB2 administrative authorities

Authority Capabilities Privileges

Installation

SYSADM

Assigned during DB2 installation, this authority

has all the privileges of the SYSADM authority.

In addition:

● Authority is not recorded in the DB2

catalog. The catalog need not be available

to check installation SYSADM authority.

(The authority outside the catalog is

crucial. If the catalog table space

SYSDBAUT is stopped, for example, DB2

can’t check the authority to start it again.

Only an installation SYSADM can start it.)

● No ID can revoke this authority; it can be

removed only by changing the module that

contains the subsystem initialization

parameters (typically DSNZPARM).

SYSADM IDs can also

● run the CATMAINT utility

● access DB2 when the subsystem is

started with ACCESS(MAINT)

● start databases DSNDB01 and DSNDB06

when they are stopped or in restricted

status

● run the DIAGNOSE utility with the WAIT

statement

● start and stop the database containing the

application registration table (ART) and the

object registration table (ORT)

All privileges of all the

authorities.

SYSCTRL This authority has almost complete control of

the DB2 subsystem but cannot access user

data directly unless granted the privilege to do

so. Designed for administering a system

containing sensitive data, SYSCTRL can

● act with installation SYSOPR authority

(when the catalog is available) or with

DBCTRL authority over any database

● run any allowable utility on any database

● issue a COMMENT ON, LABEL ON, or

LOCK TABLE statement for any table

● create a view for itself or others on any

catalog table

● create tables and aliases for itself or

others

● bind a new plan or package, naming any

ID as the owner

System privileges:

● BINDADD

● BINDAGENT

● BSDS

● CREATEALIAS

● CREATEDBA

● CREATEDBC

● CREATESG

● CREATETMTAB

● MONITOR1

● MONITOR2

● STOSPACE

Privileges on all tables:

● ALTER

● INDEX

● REFERENCES

● TRIGGER

DB2 Object Access 119

Table 3.3: DB2 administrative authorities (continued)

Authority Capabilities Privileges

Without additional privileges, SYSCTRL cannot

● execute SQL Data Manipulation

Language (DML) statements on user

tables or views

● run plans or packages

● set the current SQL ID to a value that is

not one of its primary or secondary IDs

● start or stop the database containing

the ART and ORT

● act fully as SYSADM or as DBADM over

any database

● access DB2 when the subsystem is

started with ACCESS(MAINT)

● revoke a privilege granted by another ID

Note: SYSCTRL authority is intended for

separation of function, not for added security.

Privileges on catalog tables:

● DELETE

● INSERT

● SELECT

● UPDATE

Privileges on all plans:

● BIND

Privileges on all packages:

● BIND

● COPY

Privileges on all collections:

● CREATE IN

Privileges on all schemas:

● ALTERIN

● CREATE IN

● DROPIN

Use privileges on:

● BUFFERPOOL

● STOGROUP

● TABLESPACE

SYSADM This authority includes SYSCTRL, plus access

to all data. SYSADM can

● use all privileges of the DBADM authority

over any database

● use EXECUTE and BIND on any plan or

package and use COPY on any package

● use privileges over views owned by others

● set the current SQL ID to any valid value,

whether it is currently a primary or

secondary authorization ID

● create and drop synonyms and views for

others on any table

● use any valid value for OWNER in BIND

or REBIND

● drop database DSNDB07

● grant any of the privileges listed above to others

Holders of SYSADM authority can also drop or alter

any DB2 object except system databases, issue a

COMMENT ON or LABEL ON statement for any table

or view, and terminate any utility job; however, SYSADM

cannot specifically grant these privileges.

All privileges held by

SYSCTRL and DBADM

Plan privileges:

● EXECUTE

Package privileges:

● BIND

● COPY

Routine privileges:

● EXECUTE

Distinct type and sequence

privileges:

● USAGE

Debug privileges:

● DEBUGSESSION

Chapter 3: Access and Security120

Table 3.3: DB2 administrative authorities (continued)

Authority Capabilities Privileges

SYSOPR This authority can

● issue most DB2 commands except

ARCHIVE LOG, START DATABASE,

STOP DATABASE, and RECOVER BSDS

● terminate any utility job

● execute the DSN1SDMP utility

System privileges:

● DISPLAY

● RECOVER

● STOPALL

● TRACE

Privileges on routines:

● START DISPLAY

● STOP

Installation

SYSOPR

This authority is assigned during DB2 installation

and has the following privileges in addition to

those of SYSOPR:

● Authority is not recorded in the DB2

catalog. The catalog need not be available

to check installation SYSOPR authority.

● No ID can revoke the authority; it can be

removed only by changing the module that

contains the subsystem initialization

parameters (typically DSNZPARM).

The SYSOPR authority can

● access DB2 when the subsystem is started

with ACCESS(MAINT)

● run all allowable utilities on the directory

and catalog databases (DSNDB01 and

DSNDB06)

● run the REPAIR utility with the DBD

statement

● start and stop the database containing the

ART and ORT

● issue dynamic SQL statements that aren’t

controlled by the DB2 governor

● issue a START DATABASE command to

recover objects that have logical page list

(LPL) entries or group buffer pool

recovery-pending status

SYSOPR IDs cannot change the access mode.

All privileges held by

SYSOPR

System privileges:

● ARCHIVE

● STARTDB (cannot

change access mode)

PACKADM This authority has all package privileges on all

packages in specific collections, or on all

collections, plus the CREATE IN privilege on

those collections. If the installation option BIND

NEW PACKAGE is set to BIND, PACKADM

also has the privilege to add new packages or

new versions of existing packages.

Privileges on a collection:

● CREATE IN

Privileges on all packages in

the collection:

● BIND

● COPY

● EXECUTE

GRANTing and REVOKEing Authorities

The authorities in Table 3.3 must be GRANTed to an authorization ID. Just as with
privileges, you can accomplish this task using the GRANT and REVOKE statements.
Let’s look at a couple of examples of granting and revoking authorities.

To grant DBADM authority on the DSN8D91A database to ID DB2EXPT, you’d issue
this statement:

GRANT DBADM ON DSN8D91A TO DB2EXPT

DB2 Object Access 121

Table 3.3: DB2 administrative authorities (continued)

Authority Capabilities Privileges

DBMAINT This authority is granted for a specific database,

in which the ID can create certain objects, run

certain utilities, and issue certain commands. It

can use the TERM UTILITY command to

terminate all utilities except DIAGNOSE,

REPORT, and STOSPACE on the database.

Privileges on one database:

● CREATETAB

● CREATETS

● DISPLAYDB

● IMAGCOPY

● STARTDB

● STATS

● STOPDB

DBCTRL In addition to DBMAINT privileges, the DBCTRL

authority can run utilities that can change the

data.

All privileges held by

DBMAINT on a database

Privileges on one database:

● DROP

● LOAD

● RECOVERDB

● REORG

● REPAIR

DBADM In addition to the privileges held by DBCTRL

over a specific database, DBADM has privileges

to access any of its tables through SQL

statements. It can also drop and alter any table

space, table, or index in the database and issue

a COMMENT ON, LABEL ON, or LOCK TABLE

statement for any table. If the value of field

DBADM CREATE VIEW on installation panel

DSNTIPP was set to YES during DB2

installation, a user with DBADM authority can

create a view for another user ID on any table

or combination of tables and views in a

database.

All privileges held by

DBCTRL on a database

Privileges on tables and

views in one database:

● ALTER

● DELETE

● INDEX

● INSERT

● REFERENCES

● SELECT

● TRIGGER

● UPDATE

To remove PACKADM authority from DB2EXPT, you’d issue this statement:

REVOKE PACKADM FROM DB2EXPT

WITH GRANT OPTION

If you GRANT an authority using the WITH GRANT option, the holder can GRANT the
privileges contained in that authority to others. To grant DB2EXPT DBADM authority
on the DSN8D91A database and permit DB2EXPT to give this authority to others,
you’d issue this statement:

GRANT DBADM ON DSN8D91A TO DB2EXPT WITH GRANT OPTION

Ownership

Implicit privileges are included with ownership of an object. When you create DB2
objects (other than plans and packages) by issuing SQL CREATE statements in
which you name the object, you establish ownership. The owner implicitly holds
certain privileges over the owned object.

Unqualified Objects

If an object name is unqualified, the object ownership established depends on the
type of object. Ownership of tables, views, indexes, aliases, and synonyms with
unqualified names is established differently from ownership of user-defined

Chapter 3: Access and Security122

if the DBADM authority is ever revoked from DB2EXPT, any
ID that has been granted DBADM from this ID will also be
revoked automatically.

The privileges inherent in the ownership of an object
cannot be revoked.

functions, stored procedures, distinct types, sequences, and triggers with
unqualified names.

If the name of a table, view, index, alias, or synonym is unqualified, you establish
the object’s ownership in these ways:

● If the CREATE statement is issued dynamically (via SPUFI or the Query
Management Facility), the owner of the created object is the current SQL
ID of the issuer. That ID must have the privileges necessary to create the
object.

● If the CREATE statement is issued statically (by executing a plan or package
that contains it), the ownership of the created object depends on the option
used for the bind operation. You can bind the plan or package with the
QUALIFIER option, the OWNER option, or both.

» With the QUALIFIER option only, the QUALIFIER is the owner of the
object. The QUALIFIER option lets the binder name a qualifier to use for
all unqualified names of tables, views, indexes, aliases, or synonyms
that appear in the plan or package.

» With the OWNER option only, the OWNER is the owner of the object.

» With both the QUALIFIER option and the OWNER option, the QUALIFIER is
the owner of the object.

» If neither option is specified, the binder of the plan or package is
implicitly the object owner.

You establish the ownership a user-defined function, stored procedure, distinct
type, sequence, or trigger in the following ways:

DB2 Object Access 123

The plan or package owner must have all required privileges
on the objects designated by the qualified names.

● If the CREATE statement is issued dynamically, the owner of the created
object is the current SQL ID of the issuer. That ID must have the privileges
necessary to create the object.

● If the CREATE statement is issued statically (by running a plan or package
that contains it), the owner of the object is the plan or package owner. You
can use the OWNER bind option to explicitly name the object owner. If the
OWNER bind option is not specified, the binder of the package or plan is
implicitly the object owner.

The implicit qualifier is determined for an unqualified user-defined function,
stored procedure, distinct type, sequence, or trigger by the name in the dynamic
statements or the PATH bind option in static statements. The owner of a JAR that is
used by a stored procedure or user-defined function is the current SQL ID of the
process that performs the INSTALL_JAR function.

Qualified Objects

If an object name is qualified, the way ownership of the object is established
depends, again, on the type of object.

For tables, views, indexes, aliases, or synonyms created with a qualified name, the
qualifier is the owner of the object and is the schema name. The schema name
identifies the schema to which the object belongs. All objects qualified by the
same schema are related.

If you create a distinct type, user-defined function, stored procedure, sequence, or
trigger with a qualified name, the qualifier will also be the schema name. The
schema name identifies the schema to which the object belongs. You can think of
all objects that are qualified by the same schema name as a group of related
objects. Unlike with other objects, however, this qualifier doesn’t identify the
owner of the object. You establish ownership of a distinct type, user-defined
function, stored procedure, or trigger as follows:

● If you issue the CREATE statement dynamically, the owner of the created
object is your current SQL ID. That ID must have the privileges necessary
to create the object.

Chapter 3: Access and Security124

● If you issue the CREATE statement statically (by running a plan or package
that contains it), the owner of the object is the plan or package owner. You
can use the OWNER bind option to explicitly name the object owner. If the
OWNER bind option is not used, the binder of the package or plan is the
implicit object owner.

For more information about schemas, see Chapter 15.

Objects Within a Trusted Context

Roles can help simplify administration by serving as owners of objects. If the
owner of an object is an authorization ID and you need to transfer the ownership to
another ID, you must first drop the object first and then re-create it with the new
authorization ID as the owner. If the owner is a role, these steps are unnecessary
because all the users that are associated with that role have the owner privilege.

The definition of a trusted context determines the ownership of objects that are
created in the trusted context. Assume you issue the CREATE statement dynamically
and define the trusted context using the ROLE AS OBJECT OWNER clause. In this
case, the associated role is the owner of the objects, regardless of whether the
objects are explicitly qualified.

In contrast, assume you issue the CREATE statement statically and the plan or
package is bound in the trusted context with the ROLE AS OBJECT OWNER clause.
In this case, the role that owns the plan or package also owns the created objects,
regardless of whether the objects are explicitly qualified.

Privileges of Ownership by Object

Table 3.4 lists the privileges that are inherited with ownership of an object.

DB2 Object Access 125

Chapter 3: Access and Security126

Table 3.4: Privileges inherited with object ownership

Object type Implicit privileges of ownership

Storage group ● ALTER or DROP the storage group

● Name the storage group in the USING clause of a CREATE INDEX or

CREATE TABLESPACE statement

Database ● DBCTRL or DBADM authority over the database, depending on the

privilege (CREATEDBA or CREATEDBC) used to create the database.

DBCRTL authority does not include the privilege to access data in

tables in the database

Table space ● ALTER or DROP the table space

● Name the table space in the IN clause of a CREATE TABLE statement

Table ● ALTER or DROP the table or any indexes on it

● Use LOCK TABLE, COMMENT ON, or LABEL on the table

● CREATE an index or view on the table

● SELECT or UPDATE any row or column

● INSERT or DELETE any row

● Use the LOAD utility for the table

● Define referential constraints on any table or set of columns

● CREATE a trigger on the table

Index ● ALTER or DROP the index

View ● DROP, COMMENT ON, or LABEL the view, or SELECT any row or

column

● UPDATE any row or column

● INSERT or DELETE any row (if the view is not read-only)

Synonym ● USE or DROP the synonym

Trusted context ● CREATE, ALTER, COMMIT, REVOKE, or COMMENT ON the trusted

context

Package ● BIND, REBIND, FREE, COPY, DROP, EXECUTE, or DROP the

package

JAR ● REPLACE, USE, or DROP the JAR

Plan ● BIND, REBIND, FREE, or EXECUTE the plan

Alias ● DROP the alias

Distinct type ● USE or DROP a distinct type

Role ● CREATE, ALTER, COMMIT, DROP, or COMMENT ON the role

Sequence ● ALTER, COMMENT ON, USE, or DROP the sequence

User-defined

functions

● EXECUTE, ALTER, DROP, START, STOP, or DISPLAY a user-defined

function

Stored procedure ● EXECUTE, ALTER, DROP, START, STOP, or DISPLAY a stored

procedure

Plan or Package Ownership

An application plan or a package can take many actions on many tables, all of
them requiring one or more privileges. The owner of the plan or package must hold
every required privilege. Another ID can execute the plan with just the EXECUTE

privilege. In this way, another ID can exercise all the privileges used in validating
the plan or package, but only within the restrictions imposed by the SQL
statements in the original program.

The executing ID can use some of the owner’s privileges, within limits. If the
privileges are revoked from the owner, the plan or the package is invalidated; it
must be rebound, and the new owner must have the required privileges.

The BIND and REBIND subcommands create or change an application plan or
package. On either subcommand, use the OWNER option to name the owner of the
resulting plan or package. When naming an owner, keep the following points in
mind.

● If you use the OWNER option:

» Any user can name the primary or any secondary ID.

» An ID with the BINDAGENT privilege can name the grantor of that
privilege.

» An ID with SYSADM or SYSCTRL authority can name any authorization
ID on a BIND command, but not on a REBIND command.

● If you omit the OWNER option:

» On a BIND command, the primary ID becomes the owner.

» On a REBIND command, the previous owner retains ownership.

Unqualified Names

A plan or package can contain SQL statements that use unqualified table and view
names. For static SQL, the default qualifier for these names is the owner of the
plan or package. However, you can use the QUALIFIER option of the BIND command
to specify a different qualifier.

DB2 Object Access 127

For plans or packages that contain static SQL, using the BINDAGENT privilege and
the OWNER and QUALIFIER options gives you considerable flexibility in performing
bind operations. For plans or packages that contain dynamic SQL, the
DYNAMICRULES behavior determines how DB2 qualifies unqualified object names.

For unqualified distinct types, user-defined functions, stored procedures,
sequences, and trigger names in dynamic SQL statements, DB2 finds the schema
name to use as the qualifier by searching schema names in the CURRENT PATH

special register. For static statements, the PATH bind option determines the path that
DB2 searches to resolve unqualified distinct types, user-defined functions, stored
procedures, and trigger names.

However, an exception exists for ALTER, CREATE, DROP, COMMENT ON, GRANT, and
REVOKE statements. For static SQL, specify the qualifier for these statements in the
QUALIFIER bind option. For dynamic SQL, the qualifier for these statements is the
authorization ID of the CURRENT SQLID special register.

Trusted Context

You can issue the BIND and REBIND commands in a trusted context with the ROLE

AS OBJECT OWNER clause to specify the ownership of a plan or package. In this
trusted context, you can specify only a role, not an authorization ID, as the OWNER

of a plan or package. If you specify the OWNER option, the specified role becomes
the owner of the plan or package. If you don’t specify the OWNER option, the role
that is associated with the binder becomes the owner. If you omit the ROLE AS

OBJECT OWNER clause for the trusted context, the current rules for plan and
package ownership apply.

If you want a role to own the package at a remote DB2 data server, you need to
define the role ownership in the trusted context at the remote server. Be sure to
establish the connection to the remote DB2 as trusted when binding or rebinding
the package at the remote server.

If you specify the OWNER option in a trusted connection during the remote BIND

processing, the outbound authorization ID translation is not performed for the
OWNER.

Chapter 3: Access and Security128

If the plan owner is a role and the application uses a package bound at a remote
DB2 for z/OS data server, the privilege of the plan owner to execute the package is
not considered at the remote DB2 server. The privilege set of the authorization ID
(either the package owner or the process runner, depending on the DYNAMICRULES

behavior) at the DB2 for z/OS data server must have the EXECUTE privilege on the
package at the DB2 data server.

Plan Execution Authorization

The plan or package owner must have authorization to execute all static SQL
statements that are embedded in the plan or package. These authorizations do not
need to be in place when the plan or package is bound, nor do the objects that are
referred to need to exist at that time.

A bind operation always checks whether a local object exists and whether the
owner has the required privileges on it. Any failure results in a message. To choose
whether the failure prevents the bind operation from being completed, use the
VALIDATE option of the BIND PLAN and BIND PACKAGE subcommands and also the
SQLERROR option of BIND PACKAGE. If you permit the operation to be completed,
the checks occur again at run time. The corresponding checks for remote objects
are always made at run time.

Authorization to execute dynamic SQL statements is also checked at run time.

To include a package in a plan’s PKLIST, the owner will need to be given execute
authority on the package.

For more information about plans and packages, see Chapter 11.

Catalog Table Information for Object Access

Table 3.5 provides information about the authorities and privileges currently held
on various objects in the DB2 subsystem.

DB2 Object Access 129

Controlling Access with Views

By using views, you can control what data a user can see, whether it be certain
columns, certain rows, or even a combination of rows and columns. Views thus
give you a way, in addition to granting privileges and authorities, to further
restrict access to data. You implement this type of access control by creating a
view that lets users see only certain columns or rows and then permitting them
access to only the view, not the base table.

The following example permits the user of the view to see the names of
employees who work in department D01.

CREATE VIEW EMPVIEW
AS
SELECT FIRSTNME, LASTNAME
FROM DSN8910.EMP
WHERE WORKDEPT = 'D01'

Chapter 3: Access and Security130

Table 3.5: DB2 catalog table authorities and privileges

DB2 catalog table Authorities/Privileges

SYSIBM.SYSCOLAUTH Update column authority

SYSIBM.SYSDBAUTH Database privileges

SYSIBM.

SYSPACKAUTH

Package privileges

SYSIBM.

SYSPLANAUTH

Plan privileges

SYSIBM.SYSRESAUTH Buffer pool, storage group, collection, table space, and distinct type use

privileges

SYSIBM.

SYSROUTINEAUTH

User-defined functions and stored procedure privileges

SYSIBM.

SYSSCHEMAAUTH

Schema privileges

SYSIBM.

SYSEQUENCEAUTH

Sequence object privileges

SYSIBM.SYSTABAUTH Tables and view privileges

SYSIBM.

SYSUSERAUTH

System authorities

Multilevel Security

Multilevel security enables a more granular approach to setting security,
combining hierarchical and categorical security schemes. Organizations can use
this type of security to prevent individuals from accessing data at a higher
security level or from declassifying data.

DB2 supports multilevel security at the row level. With row-level security, the
system restricts individual user access to a specific set of rows in a table. This
security method requires Fz/OS 1.5 RACF at a minimum.

The security enforcement occurs automatically at statement run time and lets
you perform new security checks that are difficult to express using SQL views
or queries. Multilevel security doesn’t rely on special views or database
variables, and the controls are consistent and integrated across the system.

User security classification is maintained in the RACF security database only.

To support multilevel security, the DB2 tables require a new column, defined as
AS SECURITY LABEL. This column contains the security label. Every row has a
specific security label; these values correspond to security label definitions. For
each accessed row, DB2 calls the RACF Security Exit to check authorization. If
access is authorized, normal data access is permitted; otherwise, data is not
returned. To reduce overhead, the security labels are cached.

Security Function DB2_SECURE_VAR

DB2 provides a way to feed external security information into SQL. The
variables are set by the connection/sign-on exit routines. Built-in function
DB2_SECURE_VAR lets you retrieve the value for a variable. You can use this
variable in views, triggers, stored procedures, functions, and constraints to
enforce security policies.

Here’s an example of using function DB2_SECURE_VAR in a view.

CREATE VIEW MY_DATA AS
SELECT *

FROM SHARED_DATA
WHERE COL_OWNER

= DB2_SECURE_VAR('SEC_OWNER')

Multilevel Security 131

Chapter 3: Access and Security132

Auditing

This chapter answers some fundamental auditing questions, the following two
before foremost among them:

● Who is privileged to access what objects?

● Who has actually accessed the data?

The DB2 catalog holds the answer to the first question: it contains a primary audit
trail for the DB2 subsystem. Most of the catalog tables describe the DB2 objects,
such as tables, views, table spaces, packages, and plans. Several other tables (those
with “AUTH” in their name) hold records of every grant of a privilege or authority
on different types of objects. Each grant record contains the name of the object,
the ID that received the privilege, the ID that granted it, the time of the grant, and
other information. You can retrieve data from the catalog tables by writing SQL
queries.

Audit Trace

Another primary audit trail for DB2 is the audit trace. The trace can record
changes in authorization IDs for a security audit as well as changes made to the
structure of data (e.g., dropping a table) or to data values (e.g., updating or
inserting records) for an audit of data access. You can also use the audit trace to
track access attempts by unauthorized IDs, the results of GRANT and REVOKE
statements, the mapping of Kerberos security tickets to RACF IDs, and other
activities of interest to auditors.

The audit trace can answer the question of who has accessed data. When started,
the trace creates records of actions of certain types and sends them to a named
destination. From these records, you can obtain information such as

● the ID that initiated an activity

● the LOCATION of the ID that initiated the activity (if the access was
initiated from a remote location)

● the type of activity and the time it occurred

● the DB2 objects affected

● whether access was denied

● who owns a particular plan and package

Whether a request comes from a remote location or from the local DB2, it can be
audited. For a remote request, the authorization ID on a trace record is the ID that
is the final result of any outbound translation, inbound translation, or activity of an
authorization exit routine — that is, it is the same ID to which you’ve granted
access privileges for your data. Requests from your location to a remote DB2 are
audited only if an audit trace is active at the remote location. The trace output
appears only in the records at that location.

Trace Details

The audit trace doesn’t record everything. The actual changed data is recorded in
the DB2 log. If an agent or transaction accesses a table more than once in a single
unit of recovery, the trace records only the first access, and then only if you’ve
started the audit trace for the appropriate class of events.

Some utilities are not audited. The first access of a table by the LOAD utility is
audited, but access by COPY, RECOVER, and REPAIR is not. Access by standalone
utilities, such as DSN1CHKR and DSN1PRNT, is not audited. (For more information
about these DB2 utilities, see Chapter 7.)

When you start the trace, you choose the events to audit by supplying one or more
numbers to identify classes of events. Trace records are limited to 5,000 bytes, so
descriptions that contain long SQL statements may be truncated. Table 3.6 lists the

Auditing 133

Using the audit trace, you can also determine which primary
ID is responsible for the action of a secondary ID when that
information might not appear in the catalog.

Everything comes at a cost. Auditing does impose some
overhead and can produce more data than necessary.

available classes and the events they include. (For more information about trace
classes, see Chapter 17.)

Chapter 3: Access and Security134

Table 3.6: Audit trace event classes

Class Events traced

1 Access attempts that DB2 denies because of inadequate authorization. This class is the

default.

2 Explicit GRANT and REVOKE statements and their results. This class does not include

implicit grants and revokes.

3 CREATE, ALTER, and DROP operations affecting audited tables, and their results.

This class includes the dropping of a table caused by DROP TABLESPACE or DROP

DATABASE and the creation of a table with AUDIT CHANGES or AUDIT ALL. The trace

audits ALTER TABLE statements only when they change the AUDIT option for the table.

4 Changes to audited tables. Only the first attempt to change a table, within a unit of

recovery, is recorded. (If the agent or the transaction issues more than one COMMIT

statement, the number of audit records increases accordingly.) The changed data isn’t

recorded, only the attempt to make a change. If the change is not successful and is rolled

back, the audit record remains; it is not deleted. This class includes access by the LOAD

utility. The trace also audits accesses to a dependent table that are caused by attempted

deletions from a parent table. The audit record is written even if the delete rule is

RESTRICT, which prevents the deletion from the parent table. The audit record is also

written when the rule is CASCADE or SET NULL, which can result in deletions cascading

to the dependent table.

5 All read accesses to tables identified as AUDIT ALL. As in class 4, only the first access

within a DB2 unit of recovery is recorded, and references to a parent table are audited.

6 The bind of static and dynamic SQL statements of the following types:

● INSERT, UPDATE, DELETE, CREATE VIEW, and LOCK TABLE statements for

audited tables. Except for the values of host variables, the audit record contains

the entire SQL statement.

● SELECT statements to tables identified as AUDIT ALL. Except for the values of

host variables, the audit record contains the entire SQL statement.

7 Assignment or change of an authorization ID through an exit routine (default or

user-written) or SET CURRENT SQLID statement, through an outbound or inbound

authorization ID translation, or because the ID is being mapped to an RACF ID from a

Kerberos security ticket.

8 The start of a utility job, and the end of each phase of the utility.

9 The writing of various types of records to IFCID 0146 by the IFI WRITE function.

10 CREATE and ALTER TRUSTED CONTEXT statements, establish trusted connection

information, and switch user information.

The audit trace does not audit DB2 commands.

Auditing Specific IDs or Roles

You can start the audit trace for a particular plan name, a particular primary
authorization ID, or a combination of both. Having audit traces on at all times can
be useful for IDs with SYSADM authority, for example, because they have complete
access to every table. If you have a network of DB2 subsystems, you might need to
trace multiple authorization IDs for those users whose primary authorization ID is
translated several times.

By using the ROLE and XROLE filters, you can also start traces for a particular role
in a trusted context.

Starting/Stopping the Trace

To start the audit trace, you execute the –START TRACE command. The following
example starts a trace that audits data changes and captures the text of any
dynamic SQL.

-START TRACE (AUDIT) DEST (SMF)
COMMENT ('Trace data changes; include text of dynamic DML statements.')

To stop this trace, issue the –STOP TRACE command:

-STOP TRACE (AUDIT)

This command simply stops the last trace started. If more than one trace is
executing, you can use the –DISPLAY TRACE command to identify a particular trace
by number. (For more information about DB2 commands, see Chapter 2.)

Auditing Specific IDs or Roles 135

You can configure the audit trace to start automatically when
DB2 is started by using an option on the DSNTIPN panel when
you install DB2. You can set the AUDIT TRACE option to NO,

YES, or a list of audit trace classes.

Auditing a Table

For the audit trace to be effective at the table level, you must first choose, by
specifying an option of the CREATE or ALTER statement, whether to audit the table.
This example shows how to indicate that you want to audit changes.

CREATE TABLE DSN8910.EMP
(EMPNO CHAR(6) NOT NULL

...
IN DSN8D91A.DSN8S91E
AUDIT CHANGES

Possible AUDIT values are CHANGES, ALL, and NONE, with the default being NONE

(no auditing). To turn off auditing at the table level, you’d simply perform an ALTER

specifying AUDIT NONE.

Summary

In this chapter, we discussed several topics related to data access. We covered
security with respect to the subsystem, data sets, and DB2. DB2 lets you control
subsystem security in a variety of ways, such as via CICS, IMS, and Kerberos and
RACF. In some situations, you also need to consider securing access at the data-set
level because DB2 stores its data into individual data sets that can be accessed
outside DB2.

We discussed authorizations IDs (both primary and secondary), roles, and how
both are assigned. DB2 provides several administrative authority levels: SYSADM,
SYSCTRL, DBADM, DBCTRL, PACKADM, and so on. We discussed each of these
authority types and the privileges they possess. Object ownership also comes with
inherited authorities and privileges that can be granted to other authorizations IDs.

Chapter 3: Access and Security136

You cannot audit auxiliary tables or catalog tables.

We examined the granting and revoking of database object privileges using the
GRANT and REVOKE SQL statements.

We talked in detail about the DB2 audit trace, which lets you carefully monitor
critical tables to see who is manipulating data or, in some very sensitive cases, who
is simply trying to access data.

The trusted context and roles are new to DB2 9 and provide another level of
security and manageability for your databases and applications. All these levels of
security can work together to keep your data and your subsystem safe.

Additional Resources

IBM DB2 9 Administration Guide (SC18-9840)
IBM DB2 9 SQL Reference (SC18-9854)

Additional Resources 137

Practice Questions

Question 1

DBA1 needs to be able to create tables in a database and be able to run periodic REORGs.

However, DBA1 is not permitted to access the data or manipulate it. Which of the following

authorities would be the most appropriate?

❍ A. SYSADM

❍ B. DBADM

❍ C. DBCTRL

❍ D. DBMAINT

Question 2

To limit exposure for an application, a company creates an APP1 trusted context and an

APP1_DBA role. DBA1 was assigned to this role and all the objects. What happens if DBA1

leaves the company and the ID is removed?

❍ A. The objects and privileges of the role are untouched.

❍ B. All privileges need to be re-granted.

❍ C. All dependent privileges are cascade revoked.

❍ D. The objects need to be dropped and re-created.

Question 3

A user ID is required to attach a client to the current application/process connection to

enable client application testing of native SQL or Java procedures that are executed within

the session. Which of the following system privileges is required?

❍ A. TRACE

❍ B. MONITOR1

❍ C. MONITOR2

❍ D. DEBUGSESSION

Chapter 3: Access and Security138

Question 4

A DBA wants to create a new plan using the BIND PLAN PKLIST option and specifying

individual packages. What authority/privilege must the DBA have for the operation to be

successful?

❍ A. COPY to copy the individual packages

❍ B. EXECUTE authority on each package specified in the PKLIST

❍ C. CREATE IN to name the collection containing the individual packages

❍ D. BINDAGENT to bind all the individual packages on behalf of their owner

Question 5

Which level of authority is required to revoke a privilege that another ID has granted?

❍ A. DBADM

❍ B. DBCTRL

❍ C. SYSOPR

❍ D. SYSCTRL

Practice Questions 139

Answers

Question 1

The correct answer is C, DBCTRL. This authority will let DBA1 create tables in a specified
database as well as run some utilities, such as REORG, on the table spaces in the database.
This authority does not permit SQL Data Manipulation Language (DML) to be executed
against the objects in the database.

Question 2

The correct answer is A, the objects and privileges of the role are untouched. One benefit of
roles is the fact that if the ID assigned to the role is removed, nothing happens to the objects
or privileges assigned to the role.

Question 3

The correct answer is D, DEBUGSESSION. This is a new privilege with DB2 9 that provides
the ability to control debug session activity for native SQL and Java stored procedures.

Question 4

The correct answer is B, EXECUTE authority on each package specified in the PKLIST. To be
able to create a new plan with packages, you must have EXECUTE authority on the
packages in the PKLIST.

Question 5

The correct answer is D, SYSCTRL. This is the only level of authority that can revoke a
privilege granted by another ID.

Chapter 3: Access and Security140

