
Database Concurrency

E leven percent (11%) of the DB2 9 Fundamentals certification exam (Exam
730) is designed to test your knowledge of the mechanisms DB2 9 uses to

allow multiple users and applications to interact with a database simultaneously
without negatively affecting data consistency. The questions that make up this
portion of the exam are intended to evaluate the following:

• Your ability to identify the appropriate isolation level to use for a given
situation

• Your ability to identify the characteristics of locks

• Your ability to list objects for which locks can be acquired

• Your ability to identify factors that can influence locking

This chapter is designed to introduce you to the concept of data consistency and
to isolation levels and locks—the mechanisms DB2 uses to maintain data
consistency in both single- and multi-user database environments.

Understanding Data Consistency
In order to understand how DB2 9 attempts to maintain data consistency in both
single- and multi-user environments, you must first understand what data consis-
tency is, as well as be able to identify what can cause a database to be placed in
an inconsistent state. The best way to define data consistency is by example.

Suppose your company owns a chain of hardware stores and uses a database to
keep track of inventory at each store. By design, this database contains an

C H A P T E R 7

inventory table for each hardware store in the chain; whenever supplies are
received or sold by a particular store, its corresponding inventory table is updated.
Now, suppose a case of hammers is physically transferred from one hardware store
to another. The hammer count value stored in the receiving hardware store’s table
needs to be raised, and the hammer count value in the donating store’s table needs
to be lowered, to reflect this inventory move. If a user raises the hammer count
value in the receiving hardware store’s inventory table but fails to lower the
hammer count value in the donating store’s inventory table, the data will be
inconsistent. The total hammer inventory for the entire chain is no longer accurate.

A database can become inconsistent if a user forgets to make all necessary
changes (as in the previous example), if the system crashes while a user is in the
middle of making changes (the hammer count is lowered in donating store’s table,
then a system crash occurs before the hammer count is raised in receiving store’s
table), or if, for some reason, a database application stops execution prematurely.

Inconsistency can also occur when several users attempt to access the same data at
the same time. For example, using the same hardware store scenario, one user
might query the database and discover that no more hammers are available when
some really are, because the query read another user’s changes before all tables
affected by those changes had been properly updated. (Reacting to this misinforma-
tion, the user might then place an order for more hammers when none are needed.)

To ensure that users and applications accessing the same data at the same time do
not inadvertently place that data in an inconsistent state, DB2 relies on two
mechanisms: isolation levels and locks.

Isolation Levels
In Chapter 5, “Working with DB2 Data Using SQL and XQuery,” we saw that a
transaction (otherwise known as a unit of work) is a recoverable sequence of one
or more SQL operations grouped together as a single unit, usually within an
application process. The initiation and termination of a single transaction defines
points of data consistency within a database—either the effects of all SQL
operations performed within a transaction are applied to the database and made
permanent (committed) or the effects of all SQL operations performed are
completely “undone” and thrown away (rolled back).

466 Chapter 7: Database Concurrency

In single-user, single-application environments, each transaction runs serially and
does not have to contend with interference from other transactions. However in
multi-user environments, transactions can execute simultaneously, and each trans-
action has the potential to interfere with any other transaction that has been started
but not yet terminated. Transactions that have the potential of interfering with one
another are said to be interleaved, or parallel, whereas transactions that run
isolated from each other are said to be serializable, which means that the results of
running them simultaneously will be no different from the results of running them
one right after another (serially). Ideally, every transaction should be serializable.

Why is it important that transactions be serializable? Suppose a salesperson is
entering orders into a database system at the same time an accountant is using the
system to generate bills. Now, suppose the salesperson enters an order for Company
X to get a price quote but does not commit the entry. While the salesperson is
relaying the price quote information to an individual from Company X, the
accountant queries the database for a list of all unpaid orders, sees an unpaid order
for Company X, and generates a bill. Now, suppose the individual from Company
X decides not to place the order because the quoted price is higher than anticipated.
The salesperson rolls back the transaction because no order was placed, and the
order information used to produce the price quote is removed from the database.
However, a week later, Company X receives a bill for an order it never placed. If
the salesperson’s transaction and the accountant’s transaction had been isolated
from each other (serialized), this situation wouldn’t have occurred—either the
salesperson’s transaction would have finished before the accountant’s transaction
started or the accountant’s transaction would have finished before the salesperson’s
transaction started. In either case, Company X would not have received a bill.

When transactions are not serializable (which is often the case in multi-user
environments), the following types of events (or phenomena) can occur:

Lost Updates: This event occurs when two transactions read the same data
and both attempt to update that data, resulting in the loss of one of the
updates. For example: Transaction 1 and Transaction 2 read the same row of
data and calculate new values for that row based upon the original values
read. If Transaction 1 updates the row with its new value and Transaction 2
then updates the same row, the update operation performed by Transaction 1
is lost.

Isolation Levels 467

Dirty Reads: This event occurs when a transaction reads data that has not
yet been committed. For example: Transaction 1 changes a row of data, and
Transaction 2 reads the changed row before Transaction 1 commits the
change. If Transaction 1 rolls back the change, Transaction 2 will have read
data that never really existed.

Nonrepeatable Reads: This event occurs when a transaction reads the same
row of data twice and gets different results each time. For example:
Transaction 1 reads a row of data, then Transaction 2 modifies or deletes that
row and commits the change. When Transaction 1 attempts to reread the row,
it will retrieve different data values (if the row was updated) or discover that
the row no longer exists (if the row was deleted).

Phantoms: This event occurs when a row of data matches some search
criteria but isn’t seen initially. For example: Transaction 1 retrieves a set of
rows that satisfy some search criteria, then Transaction 2 inserts a new row
that contains matching search criteria for Transaction 1’s query. If
Transaction 1 re-executes the query that produced the original set of rows, a
different set of rows will be returned (the new row added by Transaction 2
will now be included in the set of rows produced).

Because several different users can access and modify data stored in a DB2 database
at the same time, the DB2 Database Manager must be able to allow users to make
necessary changes while ensuring that data integrity is never compromised. The
sharing of resources by multiple interactive users or application programs at the
same time is known as concurrency. One of the ways DB2 enforces concurrency is
through the use of isolation levels, which determine how data accessed and/or
modified by one transaction is “isolated from” other transactions. DB2 9 recognizes
and supports the following isolation levels:

• Repeatable Read

• Read Stability

• Cursor Stability

• Uncommitted Read

Table 7–1 shows the various phenomena that can occur when each of these
isolation levels are used.

468 Chapter 7: Database Concurrency

Table 7–1: DB2 9’s Isolation Levels and the Phenomena That Can Occur When Each Is Used

The Repeatable Read Isolation Level
The Repeatable Read isolation level is the most restrictive isolation level available.
When it’s used, the effects of one transaction are completely isolated from the
effects of other concurrent transactions. Lost updates, dirty reads, nonrepeatable
reads, and phantoms cannot occur.

When this isolation level is used, every row that’s referenced in any manner by the
owning transaction is locked for the duration of that transaction. As a result, if the
same SELECT SQL statement is issued multiple times within the same transaction,
the result data sets produced are guaranteed to be identical. In fact, transactions
running under this isolation level can retrieve the same set of rows any number of
times and perform any number of operations on them until terminated, either by a
commit or a rollback operation. However, other transactions are prohibited from
performing insert, update, or delete operations that would affect any row that has
been accessed by the owning transaction as long as that transaction remains active.

To ensure that the data being accessed by a transaction running under the
Repeatable Read isolation level is not adversely affected by other transactions,
each row referenced by the isolating transaction is locked—not just the rows that
are actually retrieved or modified. Thus, if a transaction scans 1,000 rows in order
to retrieve 10, locks are acquired and held on all 1,000 rows scanned—not just on
the 10 rows retrieved.

Isolation Levels 469

Table 7–1: DB2 9’s Isolation Levels and the Phenomena That Can Occur When Each Is
Used

IIssoollaattiioonn LLeevveell PPhheennoommeennaa

LLoosstt UUppddaatteess DDiirrttyy RReeaaddss NNoonnrreeppeeaattaabbllee
RReeaaddss

PPhhaannttoommss

Repeatable Read No No No No

Read Stability No No No Yes

Cursor Stability No No Yes Yes

Uncommitted Read No Yes Yes Yes

Adapted from Table 2 on page 55 of the IBM DB2 Version 9 for Linux, UNIX, and Windows Performance
Guide.

So how does this isolation level work in a real-world situation? Suppose you use a
DB2 database to keep track of hotel records that consist of reservation and room
rate information, and you have a Web-based application that allows individuals to
book rooms on a first-come, first-served basis. If your reservation application runs
under the Repeatable Read isolation level, a customer scanning the database for a
list of rooms available for a given date range will prevent you (the manager) from
changing the room rate for any of the room records that were scanned to resolve
the customer’s query. Similarly, other customers won’t be able to make or cancel
reservations that would cause the first customer’s list of available rooms to change
if the same query were to be run again (provided the first customer’s transaction
remained active). However, you would be allowed to change room rates for any
room record that was not read when the first customer’s list was produced;
likewise, other customers would be able to make or cancel room reservations for
any room whose record was not read in order to produce a response to the first
customer’s query. Figure 7–1 illustrates this behavior.

470 Chapter 7: Database Concurrency

If an entire table or view is scanned in response to a query, the
entire table or all table rows referenced by the view are locked.
This greatly reduces concurrency, especially when large tables

are used.

Figure 7–1: Example of how the Repeatable Read isolation level can affect application behavior.

The Read Stability Isolation Level
The Read Stability isolation level is not quite as restrictive as the Repeatable Read
isolation level; therefore, it does not completely isolate one transaction from the
effects of other, concurrent transactions. When this isolation level is used, lost
updates, dirty reads, and nonrepeatable reads cannot occur; phantoms, however,
can and may be seen. That’s because when the Read Stability isolation level is
used, only rows that are actually retrieved or modified by the owning transaction
are locked. Thus, if a transaction scans 1,000 rows in order to retrieve 10, locks
are only acquired and held on the 10 rows retrieved, not on the 1,000 rows
scanned. Because fewer locks are acquired, more transactions can run
concurrently. As a result, if the same SELECT SQL statement is issued two or more
times within the same transaction, the result data set produced may not be the
same each time.

As with the Repeatable Read isolation level, transactions running under the Read
Stability isolation level can retrieve a set of rows and perform any number of
operations on them until terminated. Other transactions are prohibited from
performing update or delete operations that would affect the set of rows retrieved
by the owning transaction as long as that transaction exists; however, other
transactions can perform insert operations. (If rows inserted match the selection
criteria of a query issued by the owning transaction, these rows may appear as
phantoms in subsequent result data sets produced.)

So how does this isolation level change the way our hotel reservation application
works? Now, when a customer scans the database to obtain a list of rooms
available for a given date range, you (the manager) will be able to change the rate
for any room that does not appear on the customer’s list. Likewise, other
customers will be able to make or cancel reservations that would cause the first
customer’s list of available rooms to change if the same query were to be run
again. As a result, if the first customer queries the database for available rooms for
the same date range again, the list produced may contain new room rates and/or
rooms that were not available the first time the list was generated. Figure 7–2
illustrates this behavior.

Isolation Levels 471

The Cursor Stability Isolation Level
The Cursor Stability isolation level is even more relaxed than the Read Stability
isolation level in the way it isolates one transaction from the effects of other
concurrent transactions. When this isolation level is used, lost updates and dirty
reads cannot occur; nonrepeatable reads and phantoms, on the other hand, can and
may be seen. That’s because in most cases, the cursor stability isolation level only
locks the row that is currently referenced by a cursor that was declared and opened
by the owning transaction. (The moment a record is retrieved from a result data
set, a pointer—known as a cursor—will be positioned on the corresponding row in
the underlying table, and that row will be locked. The lock acquired will remain in
effect until the cursor is repositioned—more often than not by executing the FETCH
SQL statement—or until the owning transaction terminates.) And because only
one row-level lock is acquired, more transactions can run concurrently. The Cursor
Stability isolation level is the isolation level used by default.

When a transaction using the Cursor Stability isolation level retrieves a row from a
table via a cursor, no other transaction is allowed to update or delete that row
while the cursor is positioned on it. Other transactions, however, can add new rows

472 Chapter 7: Database Concurrency

Figure 7–2: Example of how the Read Stability isolation level can affect application behavior.

to the table as well as perform update and/or delete operations on rows positioned
on either side of the locked row—provided the locked row itself wasn’t accessed
using an index. Once acquired, the lock remains in effect until the cursor is
repositioned or until the owning transaction is terminated. (If the cursor is
repositioned, the lock being held is released and a new lock is acquired for the row
to which the cursor is moved.) Furthermore, if the owning transaction modifies
any row it retrieves, no other transaction is allowed to update or delete that row
until the owning transaction is terminated, even though the cursor may no longer
be positioned on the modified row.

As you might imagine, when the Cursor Stability isolation level is used, if the
same SELECT SQL statement is issued two or more times within the same
transaction, the results returned may not always be the same. In addition,
transactions using the Cursor Stability isolation level will not see changes made to
other rows by other transactions until those changes have been committed.

Once again, let us see how this isolation level affects our hotel reservation
application. Now, when a customer scans the database for a list of rooms available
for a given date range and then views information about each room on the list
produced (one room at a time), you (the manager) will be able to change the room
rates for any room in the hotel except the room the customer is currently looking
at (for the date range specified). Likewise, other customers will be able to make or
cancel reservations for any room in the hotel except the room the customer is
currently looking at (for the date range specified). However, neither you nor other
customers will be able to do anything with the room record the first customer is
currently looking at. When the first customer views information about another
room in the list, you and other customers will be able to modify the room record
the first customer was just looking at (provided the customer did not reserve it for
himself). Again, neither you nor other customers will be able to do anything with
the room record at which the first customer is currently looking. Figure 7–3
illustrates this behavior.

Isolation Levels 473

The Uncommitted Read Isolation Level
The Uncommitted Read isolation level is the least restrictive isolation level
available. In fact, when the Uncommitted Read isolation level is used, rows
retrieved by a transaction are only locked if the transaction modifies data associated
with one or more rows retrieved or if another transaction attempts to drop or alter
the table the rows were retrieved from. Because rows usually remain unlocked
when this isolation level is used, dirty reads, nonrepeatable reads, and phantoms can
occur. Thus, this isolation level is typically used for transactions that access read-
only tables and views and for transactions that execute SELECT SQL statements for
which uncommitted data from other transactions will have no adverse affect.

As the name implies, transactions running under the uncommitted read isolation
level can see changes made to rows by other transactions before those changes
have been committed. However, such transactions can neither see nor access
tables, views, and indexes that are created by other transactions until those
transactions themselves have been committed. The same applies to existing tables,
views, or indexes that have been dropped; transactions using the uncommitted read
will learn that these objects no longer exist only when the transaction that dropped

474 Chapter 7: Database Concurrency

Figure 7–3: Example of how the Cursor Stability isolation level can affect application behavior.

them is committed. (It’s important to note that when a transaction running under
this isolation level uses an updatable cursor, the transaction will behave as if it is
running under the Cursor Stability isolation level, and the constraints of the Cursor
Stability isolation level will apply.)

So how does the Uncommitted Read isolation level affect our hotel reservation appli-
cation? Now, when a customer scans the database to obtain a list of available rooms
for a given date range, you (the manager) will be able to change the room rates for
any room in the hotel over any date range. Likewise, other customers will be able to
make or cancel reservations for any room in the hotel, including the room at which
the customer is currently looking. In addition, the list of rooms produced for the first
customer may contain records for rooms for which other customers are in the
processing of reserving or canceling reservations. Figure 7–4 illustrates this behavior.

Choosing the Proper Isolation Level
In addition to controlling how well the DB2 Database Manager provides
concurrency, the isolation level used determines how well applications running
concurrently will perform. Typically, the more restrictive the isolation level used,
the less concurrency is possible.

Isolation Levels 475

Figure 7–4: Example of how the Uncommitted Read isolation level can affect application behavior.

So how do you decide which isolation level to use? The best way is to identify
which types of phenomena are unacceptable, and then select an isolation level that
will prevent those phenomena from occurring. A good rule of thumb is:

• Use the Repeatable Read isolation level if you’re executing large queries and
you don’t want concurrent transactions to have the ability to make changes
that could cause the query to return different results if run more than once.

• Use the Read Stability isolation level when you want some level of
concurrency between applications, yet you also want qualified rows to
remain stable for the duration of an individual transaction.

• Use the Cursor Stability isolation level when you want maximum concurren-
cy between applications, yet you don’t want queries to see uncommitted data.

• Use the Uncommitted Read isolation level if you’re executing queries on
read-only tables/views/databases or if it doesn’t matter whether a query
returns uncommitted data values.

Always keep in mind that choosing the wrong isolation level for a given situation
can have a significant negative impact on both concurrency and performance—
performance for some applications may be degraded as they wait for locks on
resources to be released.

Specifying the Isolation Level to Use
Although isolation levels control concurrency at the transaction level, they are
actually set at the application level. Therefore in most cases, the isolation level
specified for a particular application is applicable to every transaction initiated by
that application. (It is important to note that an application can be constructed in
several different parts, and each part can be assigned a different isolation level, in
which case the isolation level specified for a particular part is applicable to every
transaction that is created within that part.)

For embedded SQL applications, the isolation level is specified at precompile time
or when the application is bound to a database (if deferred binding is used). In this
case, the isolation level is set using the ISOLATION [RR | RS | CS | UR] option of
the PRECOMPILE and BIND commands.

The isolation level for Call Level Interface (CLI) and Open Database Connectivity
(ODBC) applications is set at application run time by calling the

476 Chapter 7: Database Concurrency

SQLSetConnectAttr() function with the SQL_ATTR_TXN_ISOLATION connection
attribute specified. (Alternatively, the isolation level for CLI/ODBC applications
can be set by assigning a value to the TXNISOLATION keyword in the db2cli.ini
configuration file; however, this approach does not provide the flexibility of
changing isolation levels for different transactions within the application that the
first approach does.)

Finally, the isolation level for Java Database Connectivity (JDBC) and SQLJ applica-
tions is set at application run time by calling the setTransactionIsolation()
method that resides within DB2’s java.sql connection interface.

When the isolation level for an application isn’t explicitly set using one of these
methods, the Cursor Stability isolation level is used as the default. This holds true
for DB2 commands, SQL statements, and scripts executed from the Command
Line Processor (CLP) as well as to Embedded SQL, CLI/ODBC, JDBC, and SQLJ
applications. Therefore, it’s also possible to specify the isolation level for opera-
tions that are to be performed from the DB2 Command Line Processor (as well as
for scripts that are to be passed to the DB2 CLP for processing). In this case, the
isolation level is set by executing the CHANGE ISOLATION command before a
connection to a database is established.

DB2 Version 8.1 and later provides a WITH clause (WITH [RR | RS | CS | UR]) that
can be appended to a SELECT statement to set a specific query’s isolation level to
Repeatable Read (RR), Read Stability (RS), Cursor Stability (CS), or Uncommitted
Read (UR). A simple SELECT statement that uses this clause looks something like
this:

SELECT * FROM employee WHERE empid = ‘001’ WITH RR

If you have an application that needs to run in a less-restrictive isolation level the
majority of the time (to support maximum concurrency), but contains one or two
queries that must not see some phenomena, this clause provides an excellent way
for you to meet your objective.

Locking
The one thing that all four of the isolation levels available have in common is that
they all acquire one or more locks. But just what is a lock? A lock is a mechanism

Locking 477

that is used to associate a data resource with a single transaction, for the sole purpose
of controlling how other transactions interact with that resource while it is associated
with the transaction that has it locked. (The transaction that has a data resource
associated with it is said to “hold” or “own” the lock.) Essentially, locks in a database
environment serve the same purpose as they do in a house or a car: They determine
who can and cannot gain access to a particular resource—which can be one or more
table spaces, tables, and/or rows. The DB2 Database Manager imposes locks to
prohibit “owning” transactions from accessing uncommitted data that has been
written by other transactions and to prevent other transactions from making data
modifications that might adversely affect the owning transaction. When an owning
transaction is terminated (by being committed or by being rolled back), any changes
made to the resource that was locked are either made permanent or removed, and all
locks on the resource that had been acquired by the owning transaction are released.
Once unlocked, a resource can be locked again and manipulated by another active
transaction. Figure 7–5 illustrates the principles of transaction/resource locking.

478 Chapter 7: Database Concurrency

Figure 7–5: How DB2 9 prevents uncontrolled concurrent access to a resource through the use of locks.

Lock Attributes and Lock States
All locks used by DB2 have the following basic attributes:

Object: This attribute identifies the data resource that is being locked. The
DB2 Database Manager implicitly acquires locks on data resources
(specifically, table spaces, tables, and rows) whenever they are needed.

Size: This attribute identifies the physical size of the portion of the data
resource that is being locked. A lock does not always have to control an
entire data resource. For example, rather than giving an application exclusive
control over an entire table, the DB2 Database Manager can elect to give an
application exclusive control over one or more specific rows within a table.

Duration: This attribute identifies the length of time a lock is held. The
isolation level used has a significant impact on the duration of a lock. (For
example, the lock acquired for a Repeatable Read transaction that accesses
500 rows is likely to have a long duration if all 500 rows are to be updated;
on the other hand, the lock acquired for a Cursor Stability transaction is
likely to have a much shorter duration.)

State (or Mode): This attribute identifies the type of access allowed for the
lock owner, as well as the type of access permitted for concurrent users of
the locked data resource. Table 7–2 shows the various lock states available
(along with their effects) in order of increasing control.

Locking 479

480 Chapter 7: Database Concurrency
Ta

b
le

 7
-2

:
Lo

ck
 S

ta
te

s

OO
tthh

eerr
 LL

oo
cckk

ss
AA

ccqq
uuii

rree
dd

N
on

e

If
th

e
lo

ck
 is

 h
el

d
on

a
ta

bl
e,

 a
 S

ha
re

 (S
)

or
 a

 N
ex

t K
ey

 S
ha

re
(N

S
) l

oc
k

is
 a

cq
ui

re
d

on
 e

ac
h

ro
w

 re
ad

fro
m

 th
at

 ta
bl

e.

N
on

e

In
di

vi
du

al
 ro

w
s

in
 a

ta
bl

e
ca

n
be

 S
ha

re
(S

) l
oc

ke
d,

 p
ro

vi
de

d
th

e
ta

bl
e

its
el

f i
s

no
t

S
ha

re
 (S

) l
oc

ke
d.

 (I
f

th
e

ta
bl

e
is

 S
ha

re
(S

) l
oc

ke
d,

 ro
w

-le
ve

l
lo

ck
s

ca
nn

ot
 b

e
ac

qu
ire

d.
)

CC
oo

nncc
uurr

rree
nntt

TT
rraa

nnss
aacc

ttiioo
nn

AA
cccc

eess
ss

O
th

er
 tr

an
sa

ct
io

ns
 c

an
re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

, h
ow

ev
er

, t
he

y
ca

nn
ot

 d
el

et
e

da
ta

 s
to

re
d

in
 th

e
lo

ck
ed

 re
so

ur
ce

.

O
th

er
 tr

an
sa

ct
io

ns
 c

an
re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

.

O
th

er
 tr

an
sa

ct
io

ns
 c

an
re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

un
co

m
m

itt
ed

 d
at

a)
 s

to
re

d
in

 th
e

lo
ck

ed
 re

so
ur

ce
;

ho
w

ev
er

, t
he

y
ca

nn
ot

m
od

ify
 d

at
a

st
or

ed
 in

 th
e

lo
ck

ed
 re

so
ur

ce
.

O
th

er
 tr

an
sa

ct
io

ns
 c

an
re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

un
co

m
m

itt
ed

 d
at

a)
 s

to
re

d
in

 th
e

lo
ck

ed
 re

so
ur

ce
;

ho
w

ev
er

, t
he

y
ca

nn
ot

m
od

ify
 d

at
a

st
or

ed
 in

 th
e

lo
ck

ed
 re

so
ur

ce
.

LLoo
cckk

 OO
ww

nnee
rr

AA
cccc

eess
ss

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

ll
da

ta
, i

nc
lu

di
ng

 u
nc

om
m

itt
ed

 d
at

a,
st

or
ed

 in
 th

e
lo

ck
ed

 re
so

ur
ce

; h
ow

ev
er

, l
oc

k
ow

ne
r c

an
no

t
m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

 re
so

ur
ce

.
In

te
nt

 N
on

e
lo

ck
s

ar
e

ty
pi

ca
lly

 a
cq

ui
re

d
fo

r r
ea

d-
on

ly
tra

ns
ac

tio
ns

 th
at

 h
av

e
no

 in
te

nt
io

n
of

 m
od

ify
in

g
da

ta
 (t

hu
s,

ad
di

tio
na

l l
oc

ks
 w

ill
 n

ot
 b

e
ac

qu
ire

d
on

 th
e

tra
ns

ac
tio

n'
s

be
ha

lf)
.

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

 u
nc

om
m

itt
ed

da
ta

) s
to

re
d

in
 th

e
lo

ck
ed

 re
so

ur
ce

; h
ow

ev
er

, l
oc

k
ow

ne
r

ca
nn

ot
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

 re
so

ur
ce

.
In

te
nt

 S
ha

re
 lo

ck
s

ar
e

ty
pi

ca
lly

 a
cq

ui
re

d
fo

r t
ra

ns
ac

tio
ns

th
at

 d
o

no
t c

on
ve

y
th

e
in

te
nt

 to
 m

od
ify

 d
at

a
(tr

an
sa

ct
io

ns
th

at
 e

xe
cu

te
 S

E
LE

C
T

FO
R

 U
P

D
AT

E
, U

P
D

AT
E

 W
H

E
R

E
,

or
 IN

S
E

R
T

st
at

em
en

ts
 c

on
ve

y
th

e
in

te
nt

 to
 m

od
ify

 d
at

a)
.

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

 u
nc

om
m

itt
ed

da
ta

) s
to

re
d

in
 th

e
lo

ck
ed

 re
so

ur
ce

; h
ow

ev
er

, l
oc

k
ow

ne
r

ca
nn

ot
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

 re
so

ur
ce

.
N

ex
t K

ey
 S

ha
re

 lo
ck

s
ar

e
ty

pi
ca

lly
 a

cq
ui

re
d

in
 p

la
ce

 o
f a

S
ha

re
 (S

) l
oc

k
fo

r t
ra

ns
ac

tio
ns

 th
at

 a
re

 ru
nn

in
g

un
de

r t
he

R
ea

d
St

ab
ili

ty
 (R

S
) o

r C
ur

so
r S

ta
bi

lit
y

(C
S

) i
so

la
tio

n
le

ve
l.

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

 u
nc

om
m

itt
ed

da
ta

) s
to

re
d

in
 th

e
lo

ck
ed

 re
so

ur
ce

; h
ow

ev
er

, l
oc

k
ow

ne
r

ca
nn

ot
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

 re
so

ur
ce

.
S

ha
re

 lo
ck

s
ar

e
ty

pi
ca

lly
 a

cq
ui

re
d

fo
r t

ra
ns

ac
tio

ns
 th

at
 d

o
no

t c
on

ve
y

th
e

in
te

nt
 to

 m
od

ify
 d

at
a

(tr
an

sa
ct

io
ns

 th
at

 e
xe

-
cu

te
 S

E
LE

C
T

FO
R

 U
P

D
AT

E
, U

P
D

AT
E

 W
H

E
R

E
, o

r
IN

S
E

R
T

st
at

em
en

ts
 c

on
ve

y
th

e
in

te
nt

 to
 m

od
ify

 d
at

a)
 th

at
ar

e
ru

nn
in

g
un

de
r t

he
 R

ep
ea

ta
bl

e
R

ea
d

(R
R

) i
so

la
tio

n
le

ve
l.

AA
pp

pp
lliicc

aabb
llee

OO
bb

jjee
cctt

ss

Ta
bl

e
sp

ac
es

,
Ta

bl
es

Ta
bl

e
sp

ac
es

,
Ta

bl
es

R
ow

s

Ta
bl

es
, R

ow
s

LLoo
cckk

 SS
ttaa

ttee
((MM

oo
dd

ee))

In
te

nt
 N

on
e

(IN
)

In
te

nt
 S

ha
re

(IS
)

N
ex

t K
ey

 S
ha

re
(N

S
)

S
ha

re
(S

)

Locking 481

Ta
b

le
 7

-2
:

Lo
ck

 S
ta

te
s

(c
o

nt
in

ue
d

)

OO
tthh

eerr
 LL

oo
cckk

ss
AA

ccqq
uuii

rree
dd

W
he

n
th

e
lo

ck
 o

w
ne

r
w

or
ks

 w
ith

 a
n

In
te

nt
E

xc
lu

si
ve

 (I
X

)-
lo

ck
ed

ta
bl

e,
 a

 S
ha

re
 (S

) o
r

a
N

ex
t K

ey
 S

ha
re

(N
S

) l
oc

k
is

 a
cq

ui
re

d
on

 e
ve

ry
 ro

w
 re

ad
fro

m
 th

at
 ta

bl
e,

 a
nd

bo
th

 a
n

U
pd

at
e

(U
)

an
d

an
 E

xc
lu

si
ve

 (X
)

lo
ck

 is
 a

cq
ui

re
d

on
ev

er
y

ro
w

 to
 b

e
m

od
i-

fie
d.

W
he

n
th

e
lo

ck
 o

w
ne

r
w

or
ks

 w
ith

 a
 S

ha
re

W
ith

 In
te

nt
 E

xc
lu

si
ve

(S
IX

) l
oc

ke
d

ta
bl

e,
 a

n
E

xc
lu

si
ve

 (X
) l

oc
k

is
ac

qu
ire

d
on

 e
ve

ry
ro

w
 in

 th
at

 ta
bl

e
th

at
is

 to
 b

e
m

od
ifi

ed
.

An
 U

pd
at

e
(U

) l
oc

ke
d

ta
bl

e,
 a

n
Ex

cl
us

iv
e

(X
)

lo
ck

 is
 a

cq
ui

re
d

on
ev

er
y

ro
w

 to
 b

e
m

od
i-

fie
d

in
 th

at
 ta

bl
e.

N
on

e

CC
oo

nncc
uurr

rree
nntt

TT
rraa

nnss
aacc

ttiioo
nn

AA
cccc

eess
ss

O
th

er
 tr

an
sa

ct
io

ns
 c

an
re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

.

O
th

er
 tr

an
sa

ct
io

ns
 c

an
re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

un
co

m
m

itt
ed

 d
at

a)
 s

to
re

d
in

 th
e

lo
ck

ed
 re

so
ur

ce
;

ho
w

ev
er

, t
he

y
ca

nn
ot

m
od

ify
 d

at
a

st
or

ed
 in

 th
e

lo
ck

ed
 re

so
ur

ce
.

U
nc

om
m

itt
ed

 d
at

a)
 s

to
re

d
in

 th
e

lo
ck

ed
 re

so
ur

ce
;

ho
w

ev
er

, t
he

y
ca

nn
ot

m
od

ify
 d

at
a

st
or

ed
 in

 th
e

lo
ck

ed
 re

so
ur

ce
.

O
th

er
 tr

an
sa

ct
io

ns
 c

an
re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

un
co

m
m

itt
ed

 d
at

a)
 s

to
re

d
in

 th
e

lo
ck

ed
 re

so
ur

ce
;

ho
w

ev
er

, t
he

y
ca

nn
ot

m
od

ify
 d

at
a

st
or

ed
 in

 th
e

lo
ck

ed
 re

so
ur

ce
.

LLoo
cckk

 OO
ww

nnee
rr

AA
cccc

eess
ss

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

.
In

te
nt

 E
xc

lu
si

ve
 lo

ck
s

ar
e

ty
pi

ca
lly

 a
cq

ui
re

d
fo

r t
ra

ns
ac

-
tio

ns
 th

at
 c

on
ve

y
th

e
in

te
nt

 to
 m

od
ify

 d
at

a
(tr

an
sa

ct
io

ns
th

at
 e

xe
cu

te
 S

E
LE

C
T

FO
R

 U
P

D
AT

E
, U

P
D

AT
E

 W
H

E
R

E
,

or
 IN

S
E

R
T

st
at

em
en

ts
 c

on
ve

y
th

e
in

te
nt

 to
 m

od
ify

 d
at

a)
.

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

.
S

ha
re

 W
ith

 In
te

nt
 E

xc
lu

si
ve

 lo
ck

s
ar

e
ty

pi
ca

lly
 a

cq
ui

re
d

w
he

n
a

tra
ns

ac
tio

n
ho

ld
in

g
a

S
ha

re
 (S

) l
oc

k
on

 a
 re

so
ur

ce
at

te
m

pt
s

to
 a

cq
ui

re
 a

n
In

te
nt

 E
xc

lu
si

ve
 (I

X
) l

oc
k

on
 th

e
sa

m
e

re
so

ur
ce

 (o
r v

ic
e

ve
rs

a)
.

Lo
ck

 o
w

ne
r c

an
 m

od
ify

 a
ll

da
ta

 (e
xc

lu
di

ng
 u

nc
om

m
itt

ed
da

ta
) s

to
re

d
in

 th
e

lo
ck

ed
 re

so
ur

ce
; h

ow
ev

er
, l

oc
k

ow
ne

r
ca

nn
ot

 re
ad

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

 re
so

ur
ce

.
U

pd
at

e
lo

ck
s

ar
e

ty
pi

ca
lly

 a
cq

ui
re

d
fo

r t
ra

ns
ac

tio
ns

 th
at

m
od

ify
 d

at
a

w
ith

 IN
SE

R
T,

 U
PD

AT
E,

 o
r D

EL
ET

E
st

at
em

en
ts

.

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

ll
da

ta
 (e

xc
lu

di
ng

 u
nc

om
m

itt
ed

da
ta

) s
to

re
d

in
 th

e
lo

ck
ed

 re
so

ur
ce

; h
ow

ev
er

, l
oc

k
ow

ne
r

ca
nn

ot
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

 re
so

ur
ce

.
N

ex
t K

ey
 W

ea
k

E
xc

lu
si

ve
 lo

ck
s

ar
e

ty
pi

ca
lly

 a
cq

ui
re

d
on

th
e

ne
xt

 a
va

ila
bl

e
ro

w
 in

 a
 ta

bl
e

w
he

ne
ve

r a
 ro

w
 is

 in
se

rt-
ed

 in
to

 a
ny

 in
de

x
of

 a
 n

on
ca

ta
lo

g
ta

bl
e.

AA
pp

pp
lliicc

aabb
llee

OO
bb

jjee
cctt

ss
Ta

bl
e

sp
ac

es
,

Ta
bl

es

Ta
bl

es

Ta
bl

es
, R

ow
s

R
ow

s

LLoo
cckk

 SS
ttaa

ttee
((MM

oo
dd

ee))
In

te
nt

 E
xc

lu
si

ve
(IX

)

S
ha

re
 W

ith
 In

te
nt

E
xc

lu
si

ve
(S

IX
)

U
pd

at
e

(U
)

N
ex

t K
ey

 W
ea

k
E

xc
lu

si
ve

(N
W

)

482 Chapter 7: Database Concurrency
Ta

b
le

 7
-2

:
Lo

ck
 S

ta
te

s
(c

o
nt

in
ue

d
)

OO
tthh

eerr
 LL

oo
cckk

ss
AA

ccqq
uuii

rree
dd

In
di

vi
du

al
 ro

w
s

in
 a

ta
bl

e
ca

n
be

E
xc

lu
si

ve
 (X

) l
oc

ke
d,

pr
ov

id
ed

 th
e

ta
bl

e
its

el
f i

s
no

t E
xc

lu
si

ve
(X

) l
oc

ke
d.

N
on

e

N
on

e

A
da

pt
ed

 fr
om

 T
ab

le
 4

 o
n

pa
ge

s
60

-6
1

of
 th

e
IB

M
 D

B2
 V

er
si

on
 9

 fo
r L

in
ux

, U
N

IX
, a

nd
 W

in
do

w
s

Pe
rfo

rm
an

ce
 G

ui
de

.

CC
oo

nncc
uurr

rree
nntt

TT
rraa

nnss
aacc

ttiioo
nn

AA
cccc

eess
ss

Tr
an

sa
ct

io
ns

 u
si

ng
 th

e
U

nc
om

m
itt

ed
 R

ea
d

is
ol

a-
tio

n
le

ve
l c

an
 re

ad
 a

ll
da

ta
,

in
cl

ud
in

g
un

co
m

m
itt

ed
da

ta
, s

to
re

d
in

 th
e

lo
ck

ed
re

so
ur

ce
; h

ow
ev

er
 th

ey
ca

nn
ot

 m
od

ify
 d

at
a

st
or

ed
in

 th
e

lo
ck

ed
 re

so
ur

ce
.

A
ll

ot
he

r t
ra

ns
ac

tio
ns

 c
an

ne
ith

er
 re

ad
, n

or
 m

od
ify

da
ta

 s
to

re
d

in
 th

e
lo

ck
ed

re
so

ur
ce

.

Tr
an

sa
ct

io
ns

 u
si

ng
 th

e
U

nc
om

m
itt

ed
 R

ea
d

is
ol

a-
tio

n
le

ve
l c

an
 re

ad
 a

ll
da

ta
,

in
cl

ud
in

g
un

co
m

m
itt

ed
da

ta
, s

to
re

d
in

 th
e

lo
ck

ed
re

so
ur

ce
; h

ow
ev

er
, t

he
y

ca
nn

ot
 m

od
ify

 d
at

a
st

or
ed

in
 th

e
lo

ck
ed

 re
so

ur
ce

.
A

ll
ot

he
r t

ra
ns

ac
tio

ns
 c

an
ne

ith
er

 re
ad

 n
or

 m
od

ify
da

ta
 s

to
re

d
in

 th
e

lo
ck

ed
re

so
ur

ce
.

O
th

er
 tr

an
sa

ct
io

ns
 c

an
ne

ith
er

 re
ad

 n
or

 m
od

ify
da

ta
 s

to
re

d
in

 th
e

lo
ck

ed
re

so
ur

ce
.

LLoo
cckk

 OO
ww

nnee
rr

AA
cccc

eess
ss

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

.
E

xc
lu

si
ve

 lo
ck

s
ar

e
ty

pi
ca

lly
 a

cq
ui

re
d

fo
r t

ra
ns

ac
tio

ns
 th

at
re

tri
ev

e
da

ta
 w

ith
 S

E
LE

C
T

st
at

em
en

ts
 a

nd
 th

en
 m

od
ify

 th
e

da
ta

 re
tri

ev
ed

 w
ith

 IN
S

E
R

T,
 U

P
D

AT
E

, o
r D

E
LE

TE
 s

ta
te

-
m

en
ts

.

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

.
W

ea
k

E
xc

lu
si

ve
 lo

ck
s

ar
e

ty
pi

ca
lly

 a
cq

ui
re

d
on

 a
 ro

w
w

he
n

it
is

 in
se

rte
d

in
to

 a
 n

on
sy

st
em

 c
at

al
og

 ta
bl

e.

Lo
ck

 o
w

ne
r c

an
 re

ad
 a

nd
 m

od
ify

 d
at

a
st

or
ed

 in
 th

e
lo

ck
ed

re
so

ur
ce

.
S

up
er

 E
xc

lu
si

ve
 lo

ck
s

ar
e

ty
pi

ca
lly

 a
cq

ui
re

d
on

 a
 ta

bl
e

w
he

ne
ve

r t
he

 lo
ck

 o
w

ne
r a

tte
m

pt
s

to
 a

lte
r t

ha
t t

ab
le

, d
ro

p
th

at
 ta

bl
e,

 c
re

at
e

an
 in

de
x

fo
r t

ha
t t

ab
le

, d
ro

p
an

 in
de

x
th

at
ha

s
al

re
ad

y
be

en
 d

ef
in

ed
 fo

r t
ha

t t
ab

le
, o

r r
eo

rg
an

iz
e

th
e

co
nt

en
ts

 o
f t

he
 ta

bl
e

(w
hi

le
 th

e
ta

bl
e

is
 o

ffl
in

e)
 b

y
ru

nn
in

g
th

e
R

E
O

R
G

 u
til

ity
.

AA
pp

pp
lliicc

aabb
llee

OO
bb

jjee
cctt

ss
Ta

bl
es

, R
ow

s

R
ow

s

Ta
bl

e
sp

ac
es

,
Ta

bl
es

LLoo
cckk

 SS
ttaa

ttee
((MM

oo
dd

ee))
E

xc
lu

si
ve

(X
)

W
ea

k
E

xc
lu

si
ve

(W
E

)

S
up

er
 E

xc
lu

si
ve

(Z
)

How Locks Are Acquired
Except for occasions where the Uncommitted Read isolation level is used, it is
never necessary for a transaction to request a lock explicitly. That’s because the
DB2 Database Manager implicitly acquires locks as they are needed; once
acquired, these locks remain under the DB2 Database Manager’s control until
they are no longer needed. By default, the DB2 Database Manager always
attempts to acquire row-level locks. However, it is possible to control whether
the DB2 Database Manager will attempt to acquire row-level locks or table-
level locks on a specific table resource by executing a special form of the
ALTER TABLE SQL statement. The syntax for this form of the ALTER TABLE
statement is:

ALTER TABLE [TableName] LOCKSIZE [ROW | TABLE]

where:

TableName Identifies the name of an existing table for which the level of
locking that all transactions are to use when accessing it is to be
specified.

For example, when executed, the SQL statement

ALTER TABLE employee LOCKSIZE ROW

will force the DB2 Database Manager to acquire row-level locks for every
transaction that accesses a table named EMPLOYEE. (This is the default behavior.)
On the other hand, if the SQL statement

ALTER TABLE employee LOCKSIZE TABLE

is executed, the DB2 Database Manager will attempt to acquire table-level locks
for every transaction that accesses the EMPLOYEE table.

But what if you don’t want every transaction that works with a particular table to
acquire table-level locks? What if, instead, you want one specific transaction to
acquire table-level locks and all other transactions to acquire row-level locks when
working with that particular table? In this case, you leave the default locking
behavior alone (row-level locking) and use the LOCK TABLE SQL statement to

Locking 483

acquire a table-level lock for the appropriate individual transaction. The syntax for
the LOCK TABLE statement is:

LOCK TABLE [TableName] IN [SHARE | EXCLUSIVE] MODE

where:

TableName Identifies the name of an existing table to be locked.

As you can see, the LOCK TABLE statement allows a transaction to acquire a table-
level lock on a particular table in one of two modes: SHARE mode and EXCLUSIVE
mode. If a table is locked using the SHARE mode, a table-level Share (S) lock is
acquired on behalf of the requesting transaction, and other concurrent transactions
are allowed to read, but not change, data stored in the locked table. On the other
hand, if a table is locked using the EXCLUSIVE mode, a table-level Exclusive (X)
lock is acquired, and other concurrent transactions can neither access nor modify
data stored in the locked table.

For example, if executed, the SQL statement

LOCK TABLE employee IN SHARE MODE

would acquire a table-level Share (S) lock on the EMPLOYEE table on behalf of the
current transaction (provided no other transaction holds a lock on this table), and
other concurrent transactions would be allowed to read, but not change, the data
stored in the table. On the other hand, if the statement

LOCK TABLE employee IN EXCLUSIVE MODE

were executed, a table-level Exclusive (X) lock would be acquired, and no other
transaction would be allowed to read or modify data stored in the EMPLOYEE table
until the owning transaction is terminated.

Lock granularity and concurrency

When it comes to deciding whether to use row-level locks or table-level locks, it
is important to keep in mind that any time a transaction holds a lock on a
particular resource, other transactions may be denied access to that resource
until the owning transaction is terminated. Therefore, row-level locks are usually

484 Chapter 7: Database Concurrency

better than table-level locks, because they restrict access to a much smaller
resource. However, because each lock acquired requires some amount of storage
space (to hold) and some degree of processing time (to manage), often there is
considerably less overhead involved when a single table-level lock is acquired,
rather than several individual row-level locks.

To a certain extent, lock granularity (row-level locking versus table-level
locking) can be controlled through the use of the ALTER TABLE and LOCK TABLE

SQL statements—the ALTER TABLE statement controls granularity at a global
level, while the LOCK TABLE statement controls granularity at an individual
transaction level. So when is it more desirable to control granularity at the
global level rather than at an individual transaction level? It all depends on the
situation.

Suppose you have a read-only lookup table table that is to be accessed by multiple
concurrent transactions. Forcing the DB2 Database Manager to acquire Share (S)
table-level locks globally for every transaction that attempts to access this table
might improve overall performance, since the locking overhead required would be
greatly reduced. On the other hand, suppose you have a table that needs to be
accessed frequently by read-only transactions and periodically by a single
transaction designed to perform basic maintenance. Forcing the DB2 Database
Manager to only acquire an Exclusive (X) table-level lock at the transaction level
whenever the maintenance transaction executes makes more sense than forcing the
DB2 Database Manager to acquire Exclusive (X) table-level locks globally for
every transaction that needs to access the table. If this approach is used, the read-
only transactions are locked out of the table only when the maintenance
transaction runs; in all other situations, they can access the table concurrently
while requiring very little locking overhead.

Which Locks Are Acquired?
Although it is possible to control whether the DB2 Database Manager will acquire
row-level locks or table-level locks, it is not possible to control what type of lock
will actually be acquired for a given transaction. Instead, the DB2 Database
Manager implicitly makes that decision by analyzing the transaction to determine
what type of processing it has been designed to perform. For the purpose of
deciding which particular type of lock is needed for a given situation, the DB2
Database Manager places all transactions into one of the following categories:

Locking 485

• Read-Only
• Intent-to-Change
• Change
• Cursor-Controlled

The characteristics used to assign transactions to these categories, along with the
types of locks that are acquired for each, are shown in Table 7–3.

Table 7–3: Types of Transactions Available and Their Associated Locks

It is important to keep in mind that in some cases, a single transaction will consist
of multiple transaction types. For example, a transaction that contains an SQL
statement that performs an insert operation against a table using the results of a
subquery actually does two different types of processing: Read-Only and Change.
Because of this, locks needed for the resources referenced in the subquery are

486 Chapter 7: Database Concurrency

Table 7–3: Types of Transactions Available and Their Associated Locks

TTyyppee OOff TTrraannssaaccttiioonn …… DDeessccrriippttiioonn…… LLoocckkss AAccqquuiirreedd ……

Read-Only Transactions that contain SELECT SQL
statements (which are intrinsically read-
only), SELECT SQL statements that
have the FOR READ ONLY clause
specified, or SQL statements that are
ambiguous, but are presumed to be
read-only because of the BLOCKING
option specified as part of the precom-
pile and/or bind process

Intent Share (IS) and/or Share (S)
locks for table spaces, tables, and
rows

Intent-to-Change Transactions that contain SELECT SQL
statements that have the FOR UPDATE
clause specified or SQL statements that
are ambiguous, but are presumed to be
intended for change because of the way
they are interpreted by the SQL pre-
compiler

Share (S), Update (U), and
Exclusive (X) locks for tables;
Update (U), Intent Exclusive (IX),
and Exclusive (X) locks for rows

Change Transactions that contain INSERT,
UPDATE, or DELETE SQL statements
but not UPDATE WHERE CURRENT
OF or DELETE WHERE CURRENT OF
SQL statements

Intent Exclusive (IX) and/or
Exclusive (X) locks for table
spaces, tables, and rows

Cursor-Controlled Transactions that contain UPDATE
WHERE CURRENT OF or DELETE
WHERE CURRENT OF SQL
statements

Intent Exclusive (IX) and/or
Exclusive (X) locks for table
spaces, tables, and rows

determined using the rules for Read-Only transactions, while the locks needed for
the target table of the insert operation are determined using the rules for Change
transactions.

Locks and Performance
Although the DB2 Database Manager implicitly acquires locks as they are needed
and, aside from using the ALTER TABLE and LOCK TABLE SQL statements to force
the DB2 Database Manager to acquire table-level locks, locking is out of your
control, there are several factors that can influence how locking affects
performance. These factors include:

• Lock compatibility
• Lock conversion
• Lock escalation
• Lock waits and timeouts
• Deadlocks
• Concurrency and granularity

Knowing what these factors are and understanding how they can affect overall
performance can assist you in designing database applications that work well in
multi-user database environments and, indirectly, give you more control over how
locks are used.

Lock compatibility

If the state of a lock placed on a data resource by one transaction is such that
another lock can be placed on the same resource by another transaction before the
first lock acquired is released, the locks are said to be compatible. Any time one
transaction holds a lock on a data resource and another transaction attempts to
acquire a lock on the same resource, the DB2 Database Manager will examine
each lock’s state and determine whether they are compatible. Table 7–4 contains a
lock compatibility matrix that identifies which locks are compatible and which
are not.

Locking 487

488 Chapter 7: Database Concurrency

Table 7-4: Lock Compatibility Matrix

LLoocckk RReeqquueesstteedd bbyy SSeeccoonndd TTrraannssaaccttiioonn

LLoocckk
SSttaattee IINN IISS NNSS SS IIXX SSIIXX UU NNWW XX WWEE ZZ

LLoo
cckk

 HH
eell

dd
 bb

yy
FF

iirr
sstt

 TT
rraa

nnss
aacc

ttiioo
nn

IINN Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

IISS Yes Yes Yes Yes Yes Yes Yes No No No No

NNSS Yes Yes Yes Yes No No Yes Yes No No No

SS Yes Yes Yes Yes No No Yes No No No No

IIXX Yes Yes No No Yes No No No No No No

SSIIXX Yes Yes No No No No No No No No No

UU Yes Yes Yes Yes No No No No No No No

NNWW Yes No Yes No No No No No No Yes No

XX Yes No No No No No No No No No No

WWEE Yes No No No No No No Yes No No No

ZZ No o No No No No No No No No No

Yes Locks are compatible; therefore, the lock request is granted immediately.

No Locks are not compatible; therefore, the requesting transaction must wait for
the held lock to be released or for a lock timeout to occur before the lock
request can be granted.

LLoocckk SSttaatteess::

IN Intent None U Update

IS Intent Share NW Next Key Weak Exclusive

NS Next Key Share X Exclusive

S Share WE Weak Exclusive

IX Intent Exclusive Z Super Exclusive

SIX Share With Intent Exclusive

Adapted from Table 5 on page 72 of the IBM DB2 Version 9 for Linux, UNIX, and Windows
Performance Guide.

Locking 489

Lock conversion

If a transaction holding a lock on a resource needs to acquire a more restrictive
lock on the same resource, the DB2 Database Manager will attempt to change the
state of the existing lock to the more restrictive state. The action of changing the
state of an existing lock to a more restrictive state is known as lock conversion.
Lock conversion occurs because a transaction can hold only one lock on a specific
data resource at any given time. Figure 7–6 illustrates a simple lock conversion
process.

In most cases, lock conversion is performed on row-level locks, and the
conversion process is fairly straightforward. For example, if an Update (U) lock is
held and an Exclusive (X) lock is needed, the Update (U) lock will be converted to
an Exclusive (X) lock. However, Share (S) locks and Intent Exclusive (IX) locks
are special cases, since neither lock is considered more restrictive than the other.

Figure 7–6: A simple lock conversion scenario—in this example, a Share (S) lock is converted to an Exclusive
(X) lock.

490 Chapter 7: Database Concurrency

As a result, if one of these locks is held and the other is requested, the held lock is
converted to a Share With Intent Exclusive (SIX) lock. With all other conversions,
the lock state of the current lock is changed to the lock state being requested—
provided the lock state being requested is a more restrictive state. (Lock
conversion only occurs if the lock held can increase its restriction.) Once a lock
has been converted, it stays at the highest level attained until the transaction
holding the lock is terminated and the lock is released.

Lock escalation

When a connection to a database is first established, a specific amount of memory
is set aside to hold a structure that DB2 uses to manage locks. This structure,
known as the lock list, is where the locks held by every application concurrently
connected to a database are stored after they are acquired. (The actual amount of
memory that gets set aside for the lock list is determined by the locklist
database configuration parameter.)

Because a limited amount of memory is available, and because this memory must
be shared by everyone, the DB2 Database Manager imposes a limit on the amount
of space each transaction is allowed to use in the lock list to store its own locks.
(This limit is determined by the maxlocks database configuration parameter). To
prevent a specific database agent from exceeding its lock list space limitations, a
process known as lock escalation is performed whenever too many locks
(regardless of their type) have been acquired on behalf of a single transaction.
During lock escalation, space in the lock list is freed by converting several row-
level locks into a single table-level lock. Figure 7–7 illustrates a simple lock
escalation process.

So just how does lock escalation work? When a transaction requests a lock and the
database’s lock list is full, one of the tables associated with the transaction is
selected, a table-level lock is acquired on behalf of the transaction, and all row-
level locks for that table are released to create space in the lock list. The table-
level lock acquired is then added to the lock list. If this process does not free up
the storage space needed to acquire the lock that was requested, another table is
selected and the process is repeated until enough free space is made available—
only then will the requested lock be acquired and the transaction be allowed to
continue execution. If however, the lock list space needed is still unavailable after
all of the transaction’s row-level locks have been escalated, an SQL error code is
generated, all changes that have been made to the database since the transaction
was initiated are rolled back, and the transaction is gracefully terminated.

Locking 491

Figure 7–7: Lock escalation—several individual row-level locks are changed to a single table-level lock.

Use of the ALTER TABLE SQL statement or the LOCK TABLE
SQL statement does not prevent normal lock escalation from
occurring. However, it may reduce the frequency with which

lock escalations take place.

Lock waits and timeouts

Any time a transaction holds a lock on a particular resource (table space, table, or
row), other transactions may be denied access to that resource until the owning
transaction terminates and frees all locks it has acquired. Thus, without some sort
of lock timeout detection mechanism in place, a transaction might wait
indefinitely for a lock to be released. For example, suppose a transaction in one
user’s application is waiting for a lock being held by a transaction in another user’s
application to be released. If the other user leaves his or her workstation without
performing some interaction that will allow the application to terminate and
release all locks held, the application waiting for the lock to be released will be
unable to continue processing for an indeterminable amount of time.
Unfortunately, it would also be impossible to terminate the application waiting for
the lock to be released without compromising data consistency.

To prevent situations like these from occurring, an important feature known as
lock timeout detection has been incorporated into the DB2 Database Manager.
When used, this feature prevents applications from waiting indefinitely for a lock
to be released. By assigning a value to the locktimeout configuration parameter
in the appropriate database configuration file, you can control when lock timeout
detection occurs. This parameter specifies the amount of time that any transaction
will wait to obtain a requested lock; if the requested lock is not acquired before
the time interval specified in the locktimeout configuration parameter has
elapsed, the waiting application receives an error message, and the transaction
requesting the lock is rolled back. Once the transaction has been rolled back, the
waiting application will, by default, be terminated. (This behavior prevents data
inconsistency from occurring.)

492 Chapter 7: Database Concurrency

By default, the locktimeout configuration is set to –1, which
means that applications will wait indefinitely to acquire the
locks they need. In many cases, this value should be changed

to something other than the default value. In addition, applications
should be written such that they capture any timeout (or deadlock) SQL
return code returned by the DB2 Database Manager and respond
appropriately.

Deadlocks

In most cases, the problem of one transaction waiting indefinitely for a lock to be
released can be resolved by establishing lock timeouts. However, that is not the case
when lock contention creates a situation known as a deadlock. The best way to
illustrate how a deadlock can occur is by example: Suppose Transaction 1 acquires
an Exclusive (X) lock on Table A, and Transaction 2 acquires an Exclusive (X) lock
on Table B. Now, suppose Transaction 1 attempts to acquire an Exclusive (X) lock on
Table B, and Transaction 2 attempts to acquire an Exclusive (X) lock on Table A. We
have already seen that processing by both transactions will be suspended until their
second lock request is granted. However, because neither lock request can be granted
until one of the owning transactions releases the lock it currently holds (by perform-
ing a commit or rollback operation), and because neither transaction can perform a
commit or rollback operation because they both have been suspended (and are wait-
ing on locks), a deadlock has occurred. Figure 7–8 illustrates this deadlock scenario.

Locking 493

Figure 7–8: A deadlock scenario—Transaction 1 is waiting for Transaction 2 to release its lock on Table B, and
Transaction 2 is waiting for Transaction 1 to release its lock on Table A; however, neither transaction can release
their respective locks because they have been suspended and are waiting to acquire other locks.

A deadlock is more precisely referred to as a deadlock cycle, because the
transactions involved form a circle of wait states; each transaction in the circle
waits for a lock held by another transaction in the circle to be released (see
Figure 7–8). When a deadlock cycle occurs, all transactions involved will wait
indefinitely for a lock to be released unless some outside agent steps in and breaks
the cycle. With DB2, this agent is a background process, known as the deadlock
detector, and its sole responsibility is to locate and resolve any deadlocks found in
the locking subsystem.

Each database has its own deadlock detector, which is activated as part of the
database initialization process. Once activated, the deadlock detector stays
“asleep” most of the time but “wakes up” at preset intervals and examines the
locking subsystem to determine whether a deadlock situation exists. Normally, the
deadlock detector wakes up, sees that there are no deadlocks in the locking
subsystem, and goes back to sleep. If, however, the deadlock detector discovers a
deadlock cycle, it randomly selects one of the transactions involved to roll back
and terminate; the transaction chosen (referred to as the victim process) is then
sent an SQL error code, and every lock it had acquired is released. The remaining
transaction(s) can then proceed, because the deadlock cycle has been broken. It is
possible, but very unlikely, that more than one deadlock cycle exists in a
database’s locking subsystem. If several deadlock cycles exist, the detector locates
each one and terminates one of the offending transactions in the same manner,
until all deadlock cycles have been broken. Eventually, the deadlock detector goes
back to sleep, only to wake up again at the next predefined interval and repeat the
process.

While most deadlock cycles involve two or more resources, a special type of
deadlock, known as a conversion deadlock, can occur on one individual resource.
Conversion deadlocks occur when two or more transactions that already hold
compatible locks on an object request new, incompatible locks on that same
object. This typically takes place when two or more concurrent transactions search
for rows in a table by performing an index scan, and then try to modify one or
more of the rows retrieved.

494 Chapter 7: Database Concurrency

Practice Questions

Question 1

Question 2

Question 3

Practice Questions 495

Application A holds an Exclusive lock on table TAB1 and needs to acquire an Exclusive
lock on table TAB2. Application B holds an Exclusive lock on table TAB2 and needs to
acquire an Exclusive lock on table TAB1. If lock timeout is set to -1 and both
applications are using the Read Stability isolation level, which of the following will
occur?

❍ A. Applications A and B will cause a deadlock situation

❍ B. Application B will read the copy of table TAB1 that was loaded into memory
when Application A first read it

❍ C. Application B will read the data in table TAB1 and see uncommitted
changes made by Application A

❍ D. Application B will be placed in a lock-wait state until Application A releases
its lock

Two applications have created a deadlock cycle in the locking subsystem. If lock
timeout is set to 30 and both applications were started at the same time, what action
will the deadlock detector take when it “wakes up” and discovers the deadlock?

❍ A. It will randomly pick an application and rollback its current transaction

❍ B. It will rollback the current transactions of both applications

❍ C. It will wait 30 seconds, then rollback the current transactions of both
applications if the deadlock has not been resolved

❍ D. It will go back to sleep for 30 seconds, then if the deadlock still exists, it will
randomly pick an application and rollback its current transaction

Application A is running under the Repeatable Read isolation level and holds an
Update lock on table TAB1. Application B wants to query table TAB1 and cannot wait
for Application A to release its lock. Which isolation level should Application B run
under to achieve this objective?

❍ A. Repeatable Read

❍ B. Read Stability

❍ C. Cursor Stability

❍ D. Uncommitted Read

Question 4

Question 5

Question 6

Chapter 7: Database Concurrency496

Application A holds a lock on a row in table TAB1. If lock timeout is set to 20, what will
happen when Application B attempts to acquire a compatible lock on the same row?

❍ A. Application B will acquire the lock it needs

❍ B. Application A will be rolled back if it still holds its lock after 20 seconds have
elapsed

❍ C. Application B will be rolled back if Application A still holds its lock after 20
seconds have elapsed

❍ D. Both applications will be rolled back if Application A still holds its lock after
20 seconds have elapsed

To which of the following resources can a lock NOT be applied?

❍ A. Tablespaces

❍ B. Buffer pools

❍ C. Tables

❍ D. Rows

Which of the following modes, when used with the LOCK TABLE statement, will cause
the DB2 Database Manager to acquire a table-level lock that prevents other concurrent
transactions from accessing data stored in the table while the owning transaction is
active?

❍ A. SHARE MODE

❍ B. ISOLATED MODE

❍ C. EXCLUSIVE MODE

❍ D. RESTRICT MODE

Question 7

Question 8

Question 9

Practice Questions 497

Application A wants to read a subset of rows from table TAB1 multiple times. Which of
the following isolation levels should Application A use to prevent other users from
making modifications and additions to table TAB1 that will affect the subset of rows
read?

❍ A. Repeatable Read

❍ B. Read Stability

❍ C. Cursor Stability

❍ D. Uncommitted Read

A transaction using the Read Stability isolation level scans the same table multiple
times before it terminates. Which of the following can occur within this transaction’s
processing?

❍ A. Uncommitted changes made by other transactions can be seen from one
scan to the next.

❍ B. Rows removed by other transactions that appeared in one scan will no
longer appear in subsequent scans.

❍ C. Rows added by other transactions that did not appear in one scan can be
seen in subsequent scans.

❍ D. Rows that have been updated can be changed by other transactions from
one scan to the next.

An application has acquired a Share lock on a row in a table and now wishes to update
the row. Which of the following statements is true?

❍ A. The application must release the row-level Share lock it holds and acquire
an Update lock on the row

❍ B. The application must release the row-level Share lock it holds and acquire
an Update lock on the table

❍ C. The row-level Share lock will automatically be converted to a row-level
Update lock

❍ D. The row-level Share lock will automatically be escalated to a table-level
Update lock

Question 10

Chapter 7: Database Concurrency498

Application A issues the following SQL statements within a single transaction using the
Uncommitted Read isolation level:

SELECT * FROM department WHERE deptno = ‘A00’;
UPDATE department SET mgrno = ‘000100’ WHERE deptno = ‘A00’;

As long as the transaction is not committed, which of the following statements is
FALSE?

❍ A. Other applications not running under the Uncommitted Read isolation level
are prohibited from reading the updated row

❍ B. Application A is allowed to read data stored in another table, even if an
Exclusive lock is held on that table

❍ C. Other applications running under the Uncommitted Read isolation level are
allowed to read the updated row

❍ D. Application A is not allowed to insert new rows into the DEPARTMENT
table as long as the current transaction remains active

Answers

Question 1

The correct answer is A. If Application B did not already have an Exclusive lock on table
TAB2, Application B would be placed in a lock-wait state until Application A released its
locks. However, because Application B holds an Exclusive lock on table TAB2, when
Application A tries to acquire an Exclusive lock on table TAB2 and Application B tries to
acquire an Exclusive lock on table TAB1, a deadlock will occur – processing by both
transactions will be suspended until their second lock request is granted. Because neither
lock request can be granted until one of the owning transactions releases the lock it currently
holds (by performing a commit or rollback operation), and because neither transaction can
perform a commit or rollback operation because they both have been suspended (and are
waiting on locks), a deadlock has occurred.

Question 2

The correct answer is A. When a deadlock cycle occurs, all transactions involved will wait
indefinitely for a lock to be released unless some outside agent steps in and breaks the cycle.
With DB2, this agent is a background process, known as the deadlock detector, and its sole
responsibility is to locate and resolve any deadlocks found in the locking subsystem. Each
database has its own deadlock detector, which is activated as part of the database
initialization process. Once activated, the deadlock detector stays “asleep” most of the time
but “wakes up” at preset intervals and examines the locking subsystem to determine whether
a deadlock situation exists. If the deadlock detector discovers a deadlock cycle, it randomly
selects one of the transactions involved to roll back and terminate; the transaction chosen
(referred to as the victim process) is then sent an SQL error code, and every lock it had
acquired is released. The remaining transaction(s) can then proceed, because the deadlock
cycle has been broken.

Question 3

The correct answer is D. Typically, locks are not acquired during processing when the
Uncommitted Read isolation level is used. Therefore, if Application B runs under this
isolation level, it will be able to retrieve data from table TAB1 immediately – lock
compatibility is not an issue that will cause Application B to wait for a lock.

Answers 499

Question 4

The correct answer is A. Anytime one transaction holds a lock on a data resource and
another transaction attempts to acquire a lock on the same resource, the DB2 Database
Manager will examine each lock’s state and determine whether they are compatible. If the
state of a lock placed on a data resource by one transaction is such that another lock can be
placed on the same resource by another transaction before the first lock acquired is released,
the locks are said to be compatible and the second lock will be acquired. However, if the
locks are not compatible, the transaction requesting the incompatible lock must wait until
the transaction holding the first lock is terminated before it can acquire the lock it needs. If
the requested lock is not acquired before the time interval specified in the locktimeout
configuration parameter has elapsed, the waiting transaction receives an error message and
is rolled back.

Question 5

The correct answer is B. Locks can only be acquired for tablespaces, tables, and rows.

Question 6

The correct answer is C. The LOCK TABLE statement allows a transaction to explicitly
acquire a table-level lock on a particular table in one of two modes: SHARE and EXCLUSIVE.
If a table is locked using the SHARE mode, a table-level Share (S) lock is acquired on behalf
of the transaction, and other concurrent transactions are allowed to read, but not change, the
data stored in the locked table. If a table is locked using the EXCLUSIVE mode, a table-level
Exclusive (X) lock is acquired, and other concurrent transactions can neither access nor
modify data stored in the locked table.

Question 7

The correct answer is C. If a transaction holding a lock on a resource needs to acquire a
more restrictive lock on the same resource, the DB2 Database Manager will attempt to
change the state of the existing lock to the more restrictive state. The action of changing the
state of an existing lock to a more restrictive state is known as lock conversion. Lock
conversion occurs because a transaction can hold only one lock on a specific data resource
at any given time. In most cases, lock conversion is performed on row-level locks, and the
conversion process is fairly straightforward. For example, if an Update (U) lock is held and
an Exclusive (X) lock is needed, the Update (U) lock will be converted to an Exclusive (X)
lock.

500 Chapter 7: Database Concurrency

Question 8

The correct answer is A. When the Repeatable Read isolation level is used, the effects of one
transaction are completely isolated from the effects of other concurrent transactions; when
this isolation level is used, every row that’s referenced in any manner by the owning
transaction is locked for the duration of that transaction. As a result, if the same SELECT
SQL statement is issued multiple times within the same transaction, the result data sets
produced are guaranteed to be the identical. Other transaction are prohibited from
performing insert, update, or delete operations that would affect any row that has been
accessed by the owning transaction as long as that transaction remains active.

Question 9

The correct answer is C. When the Read Stability isolation level is used by a transaction that
executes a query, locks are acquired on all rows returned to the result data set produced, and
other transactions cannot modify or delete the locked rows; however, they can add new rows
to the table that meet the query’s search criteria. If that happens, and the query is run again,
these new rows will appear in the new result data set produced.

Question 10

The correct answer is D. When the Uncommitted Read isolation level is used, rows retrieved
by a transaction are only locked if the transaction modifies data associated with one or more
rows retrieved or if another transaction attempts to drop or alter the table the rows were
retrieved from. As the name implies, transactions running under the uncommitted read
isolation level can see changes made to rows by other transactions before those changes have
been committed. On the other hand, transactions running under the Repeatable Read, Read
Stability, or Cursor Stability isolation level are prohibited from seeing uncommitted data.
Therefore, applications running under the Uncommitted Read isolation level can read the row
Application A updated while applications running under a different isolation level cannot.
Because no locks are needed in order for Application A to read data stored in other tables, it
can do so – even if a restrictive lock is held on that table. However, there is nothing that
prohibits Application A from performing an insert operation from within the open
transaction.

Answers 501

