
EGL System Resources

exception handling.

Our focus remains on core EGL functionality. The help system for Rational
Business Developer provides details on other areas, including the extensive
EGL support for the data-access technologies DL/I and WebSphere MQ; for
the transaction managers CICS and IMS; and for the user-interface
technologies described as Text UI, Console UI, and Web transactions.

EGL Statements

In this section, we describe EGL statements for general use. In the next
chapter, we lists statements that access files and relational databases.

Table 5-1 list the statements covered here.

C H A P T E R 5

This chapter reviews three EGL resources that are available when you
write functions: statements, system libraries, and a mechanism for

Table 5-1: Selected EGL Statements for General Use

Statement Type Purpose

assignment To assign the value of an expression to a data area

call To transfer control to another program

case To run one of several alternative sets of statements

EGL.book Page 81 Wednesday, April 23, 2008 9:23 PM

82 Chapter 5: System Resources

Code Documentation

A comment lets you add documentation to your code and is useful almost
anywhere in an EGL source file, not only in functions.

comment To document code

function invocation To run a function

continue
To return control to the start of an enclosing loop in the same
function

exit
To end the processing of the nearest enclosing statement of
a stated kind

for
To define a block of statements that run in a loop until a
specified value is reached

forward
To transfer control from a JSF handler to (in most cases) a
Web page

if, else
To define a block of statements that run if and only if a
specified condition applies; also, to define an alternative
block

move
To copy data from a source to a target, with processing not
available in assignment statements

return
To return control from a function and optionally to return a
value to the invoker

set To establish characteristics of a record or record field.

transfer To transfer control from one main program to another

while
To define a block of statements that run in a loop until a test
fails

Table 5-1: Selected EGL Statements for General Use (Continued)

Statement Type Purpose

EGL.book Page 82 Wednesday, April 23, 2008 9:23 PM

EGL Statements 83

A single-line comment begins with double slashes (//), as shown next, in
boldface.

A comment that can span multiple lines begins with a slash and asterisk (/*)
and ends with an asterisk and slash (*/), as shown next.

Data Assignment

You assign data by coding the assignment, move, and set statements.

Assignment

The primary data-assignment statement copies an expression into a data area.
In the following example, fullString receives the value Welcome to EGL.

 Move

The move statement copies data from a source area to a target area, in any of
three ways. First, byte by byte; second, by matching the field names in the
target and source; and third, by matching the field positions in the target and
source. The move statement provides additional options for copying values
from one array to another.

i INT = 2;

// a while loop follows
while(i > 0)
 sysLib.writeStdOut(i);
 i = i-1
end

i INT = 2;

/* a while loop
 does not follow */

sysLib.writeStdOut(i);

oneString, fullString STRING;
oneString = "Welcome ";
fullString = oneString + "to EGL";

EGL.book Page 83 Wednesday, April 23, 2008 9:23 PM

84 Chapter 5: System Resources

Here are two Record parts.

Here are two declarations.

The effect of move by name is to copy the values only for fields whose names
match. The result of the next example is to copy a value from one field named
title to another.

In contrast, the effect of move by position is to copy the values for each field
in a record, without regard to the field names. .

Record MyCustomerOneType type BasicRecord
 ID INT;
 title STRING;
end

Record MyCustomerTwoType type BasicRecord
 age INT;
 title STRING;
end

myCustomer01 MyCustomerOneType;
myCustomer02 MyCustomerTwoType;

myCustomer01.ID = 25;
myCustomer01.title = "Doctor";
myCustomer02.age = 40;
myCustomer02.title = "Officer";
move myCustomer01 to myCustomer02 byname;

sysLib.writeStdOut(myCustomer02.age); // 40
sysLib.writeStdOut(myCustomer02.name); // Doctor

myCustomer01.ID = 25;
myCustomer01.title = "Doctor";
myCustomer02.age = 40;
myCustomer02.title = "Officer";
move myCustomer01 to myCustomer02 byposition;

sysLib.writeStdOut(myCustomer02.age); // 25
sysLib.writeStdOut(myCustomer02.name); // Doctor

EGL.book Page 84 Wednesday, April 23, 2008 9:23 PM

EGL Statements 85

The last example is with arrays. The assumption in each of the following
cases is that the target array has the number of elements needed to accept the
content being copied.

 Set

The set statement establishes characteristics of a record, form, or field. The
statement has many variations. For example, in relation to a record, you can
reset the field values to those initially specified in the Record part definition.
The boldface statement in the following code has that effect.

The code writes Sales and then Marketing and then Sales.

Conditional Processing

The if and embedded else statements provide conditional processing, as does
the case statement.

// move "Buy" to elements 2, 3, and 4 in temp
move "Buy" to temp[2] for 3;

// move elements 2, 4, and 4 from temp
// into elements 5, 6, and 7 in final
move temp[2] to final[5] for 3;

Record DepartmentPart type BasicRecord
 Department STRING = "Sales";
 BudgetCode INT;
end
Function MyFunction()
 MyDept DepartmentPart;
 SysLib.writeStdOut(MyDept.Department);
 MyDept.Department = "Marketing";
 SysLib.writeStdOut(MyDept.Department);
 set MyDept.Department initial;
 SysLib.writeStdOut(MyDept.Department);
end

EGL.book Page 85 Wednesday, April 23, 2008 9:23 PM

86 Chapter 5: System Resources

 If, Else

The if statement defines a block of statements that run if and only if a
specified condition applies. The else statement defines an alternative block of
statements.

The following code sets msgText in various cases. If msgStatus equals 1,
msgText is set to Yes!; if msgStatus equals 0, msgText is set to No!; and
otherwise, msgText is set to Service invocation failed.

 Case

The case statement runs one of several alternative sets of statements.

You can specify a value for comparison, as shown next.

In this example, if msgStatus evaluates to 1, msgText receives the value Yes!;
if msgStatus evaluates to 0, msgText receives No!; and if msgStatus
evaluates to any other value, msgText receives Service invocation failed!

The case statement runs all statements in a given when or otherwise clause,
and control never passes to more than one clause. In the next example, if

if (msgStatus == 1)
 msgText = "Yes!";
else
 if (msgStatus == 0)
 msgText = "No!";
 else
 msgText = "Service invocation failed!";
 end

end

case (msgStatus)
 when(1)
 msgText = "Yes!";
 when(0)
 mgText = "No!";
 otherwise
 msgText = "Service invocation failed!";
end

EGL.book Page 86 Wednesday, April 23, 2008 9:23 PM

EGL Statements 87

myCode evaluates to 1, the functions myFunction01 and myFunction02 run
and the others do not.

If you don’t specify a value for comparison, the case statement runs the first
clause for which a condition resolves to true. In the following example, if
myCode evaluates to 4, the function myFunction03 runs.

Loop Control

The for, while, and continue statements provide loop control.

For

The for statement defines a block of statements that run in a loop until a
specified value is exceeded. For example, the following code writes the
numbers 10, 20, 30, and 40 to the standard output.

case (myCode)
 when (1)
 myFunction01();
 myFunction02();
 when (2, 3, 4)
 myFunction03();
 otherwise
 myDefaultFunction();
end

case
 when (myCode == 3)
 myFunction01();
 when (myCode > 3)
 myFunction03();
 otherwise
 myDefaultFunction();
end

for (i int from 10 to 40 by 10)
 sysLib.writeStdOut(i);
end

EGL.book Page 87 Wednesday, April 23, 2008 9:23 PM

88 Chapter 5: System Resources

The following code writes the numbers 40, 30, 20, and 10.

 While

The while statement defines a block of statements that run in a loop until a test
fails. The following code writes the numbers 10, 20, 30, and 40.

 Continue

The continue statement returns control to the start of an enclosing loop in the
same function. For example, the following code writes the numbers 1, 2,
and 4 to the standard output.

Transfer of Control Within a Program

Function invocations and the return and exit statements transfer control
within a program or handler.

Function Invocation

A function invocation runs a function and includes arguments to match the
function parameters. The arguments must match the parameters in number,
with some variation allowed in the data type, as specified in compatibility
rules.

for (i int from 40 to 10 decrement by 10)
 sysLib.writeStdOut(i);
end

i INT = 10;
while (i <= 40)
 sysLib.writeStdOut(i);
 i = i + 10;
end

for (i int from 1 to 4 by 1)
 if (i == 3)
 continue;
 end
 sysLib.writeStdOut(i);
end

EGL.book Page 88 Wednesday, April 23, 2008 9:23 PM

EGL Statements 89

The next statement passes a string to a function.

If a function returns a value, two rules apply. First, you can code a variable to
receive that value from the function, but the variable is not required. Second,
you can code the function invocation inside a larger expression. For example,
if the function in the next expression returns the name Smith, the string sent to
the standard output is Customer 23 is Smith.

Return

The return statement returns control from a function and optionally returns a
value to the invoker. In the next example, the statement returns 0.

Exit

The exit statement ends the processing of the nearest enclosing statement of a
stated kind. For example, the following code stops processing the for
statement when the value if i is 3.

The code writes the numbers 1 and 2 to the standard output.

myFunction("test this string");

sysLib.writeStdOut("Customer 23 is "
 + getCustomerName(23));

for (i int from 10 to 40 by 10)
 sysLib.writeStdOut(i);
end
return(0);

for (i int from 1 to 4 by 1)
 if (i == 3)
 exit for;
 end
 sysLib.writeStdOut(i);
end

EGL.book Page 89 Wednesday, April 23, 2008 9:23 PM

90 Chapter 5: System Resources

Transfer of Control Out of a Program

The call, forward, and transfer statements transfer control to logic that’s
outside the program or handler.

Call

The call statement transfers control to another program. The arguments must
match the program parameters in number and type.

Forward

The forward statement in a JSF handler transfers control; in most cases, to
another Web page.

The current example forwards control to the logic that the JavaServer Faces
runtime identifies as myWebPage. In most cases, that logic is (essentially) a
Web page. We cover JavaServer Faces in later chapters.

Transfer

The transfer statement transfers control from one main program to another,
ending the first program and optionally passing a record. The following code
transfers control to Program02 and passes a record named myRecord.

System Libraries

In addition to developing libraries that include variables, constants, and
functions, you can access EGL system libraries such as the following ones.

myCustomerNumber = 23;
myCustomerName = "Smith";
call myProgram(myCustomerNumber, myCustomerName);

forward to "myWebPage";

transfer to Program Program02 passing myRecord;

EGL.book Page 90 Wednesday, April 23, 2008 9:23 PM

Exception Handling 91

• The sysLib library lets you write to an error log or a standard
location, commit or roll back database changes, retrieve properties
and messages from text files, wait for time to elapse, or run an
operating-system command.

• The strLib library lets you format date and time variables and
manipulate strings.

• The mathLib library lets you perform common mathematical and
trigonometric operations. You can round a number in various ways
and determine the maximum or minimum of two numbers.

• The datetimeLib library lets you retrieve the current date and time
and lets you process dates, times, and intervals in various ways.

• The serviceLib library lets you specify a service location to be
accessed at run time.

• The lobLib library lets EGL-generated Java code work with variables
of type BLOB (binary large object) or CLOB (character large object).
You can associate a file with a variable of one of those types, transfer
data to and from the file, and gain access to a string that represents the
data.

Some libraries are specific to a runtime technology; for example:

• The sqlLib library lets you interact with relational database
management systems; for example, to connect to a database at run
time.

• The j2eeLib library lets you interact with a Web application server
from an EGL JSF handler.

Exception Handling

EGL-generated code can encounter an exception during the following runtime
operations: a program call or transfer; access of a service or library; a function
invocation; access of persistent storage; a data comparison; or a data
assignment. You also can throw—register—an exception in response to some
runtime event; for example, a user’s entering an invalid customer ID at a Web
browser.

EGL.book Page 91 Wednesday, April 23, 2008 9:23 PM

92 Chapter 5: System Resources

To make an exception available to be caught—that is, to be handled—you
embed business logic inside a try block. Here’s an outline of a try block.

The try block includes zero to many onException blocks. Each onException
block is essentially an error handler and is similar to a function that accepts a
single parameter—an exception record—and returns no value. Unlike a
function, the onException block has no end statement; instead, the block ends
at the start of the next onException block, if any, or at the bottom of the try
block.

The use of a try block has a performance cost, so you may decide to embed
only the most exception-prone code in such a block.

In the following example, the attempt to add content to an uninitialized array
causes an exception that we describe with the phrase “NullValueException.”

try
 // place your business logic here

 onException
 (exceptionRecord ExceptionType01)
 // handle the exception here

 onException
 (exceptionRecord ExceptionType02)
 // handle the exception here
end

Program myProgram type BasicProgram
 myStringArray STRING[];
 Function main()
 try
 myStringArray.appendElement("One"); // error
 onException (exception NullValueException)
 myStringArray = new STRING[];
 sysLib.writeStdErr ("NullValueException");
 onException (exception AnyException)
 sysLib.writeStdErr ("AnyException");
 end

 sysLib.writeStdErr
 ("Size of array is " +
 myStringArray.getSize());
 end
end

EGL.book Page 92 Wednesday, April 23, 2008 9:23 PM

Exception Handling 93

In this example, an onException block catches the exception, initializes the
array, and writes the name of the exception type to the standard error output.
A statement outside the try block then writes the following string to that
output: Size of array is 0.

In general, the exception is caught by the first onException block that is
specific to the exception type; here, the type is NullValueException. However,
if no onException block is specific to the exception type, the EGL runtime
invokes the AnyException block, if any. The placement of the AnyException
block in the list of OnException blocks is not meaningful; the AnyException
block is invoked only as a last resort.

An OnException block can itself include try blocks, to any level of
nesting. In the following example, a statement in a try block also throws a
NullValueException.

The last statement in the example writes the string Size of array is 1.

We say that an exception is cleared if the code continues running without
being interrupted again by that exception. The exception is cleared in the
following two cases: the exception causes invocation of an OnException
block at the current nesting level; or the exception occurs in a try block that
has no OnException handlers at all. That second case has little practical value

Program myProgram type BasicProgram
 myStringArray STRING[];
 myStringArray02 STRING[];
 Function main()
 try
 myStringArray.appendElement("One");
 onException (e01 NullValueException)
 try
 myStringArray.appendElement("One");
 onException
 (e02 NullValueException)
 myStringArray = new STRING[];
 myStringArray.appendElement("One");
 end
 end
 sysLib.writeStdErr
 ("Size of array is " +
 myStringArray.getSize());
 end
end

EGL.book Page 93 Wednesday, April 23, 2008 9:23 PM

94 Chapter 5: System Resources

because you probably don’t want your code to continue running unless you
first correct the error or at least log the details.

The function ends immediately in the following case: an exception occurs and
the try block at the current nesting level includes onException blocks, but
none of the blocks catches the exception.

Propagation

The next example of error handling is similar to an earlier one, but the
business logic in this case invokes the function appendToArray, which in turn
invokes the function doAppend.

Listing 5.1: Propagation of exception

The NullValueException exception now occurs in doAppend, but the
exception is handled as before, in the main function.

Figure 5.1 illustrates the general rule.

Program myProgram type BasicProgram
 myStringArray STRING[];
 Function main()
 try
 appendToArray("One");
 onException (exception NullValueException)
 myStringArray = new STRING[];
 sysLib.writeStdErr ("NullValueException");
 end

 sysLib.writeStdErr
 ("Size of array is " +
 myStringArray.getSize());
 end
 Function appendToArray (theInput STRING IN)
 doAppend(theInput);
 sysLib.writeStdErr ("You won't see the message.");
 end
 Function doAppend (theString STRING IN)
 myStringArray.appendElement(theString);
 sysLib.writeStdErr ("You won't see the message.");
 end
end

EGL.book Page 94 Wednesday, April 23, 2008 9:23 PM

Exception Handling 95

If a function throws an error that is not cleared,
the function immediately ends, and the
exception propagates—moves its influence—
to the function’s invoker, which clears the
error or immediately ends. An uncleared
exception propagates to the immediate invoker
and then to progressively higher-level
invokers until the exception is cleared or the
program ends.

An exception also propagates from a called
program to progressively higher-level callers.
However, a failed service returns
ServiceInvocationException, regardless of the exception that caused the
service failure.

Exception Fields

Two fields—message and messageID—are available in every exception
record. In relation to an exception that is defined by EGL, the message field
contains a series of messages, each with an error number, and the messageID
field contains the error numbers alone. For example, we might have coded
one of our earlier OnException blocks as follows.

In EGL-generated Java code, the new-line character (\n) makes the first error
message appear on a new line, as shown next.

onException (exception NullValueException)
 myStringArray = new STRING[];
 sysLib.writeStdErr
 ("Handled this issue: \n" + exception.message);

Handled this issue:
EGL0098E The reference variable named myStringArray is null.
EGL0002I The error occurred in the myProgram program.

 Figure 5.1: Propagation

EGL.book Page 95 Wednesday, April 23, 2008 9:23 PM

96 Chapter 5: System Resources

Our next example shows a way to throw an exception of your own. We begin
with an SQL Record part and an Exception part.

After we declare a record that is based on the SQL Record part, we assign a
customer number and code an EGL get statement to retrieve details about the
customer identified by that number. The logic is similar to what is shown
here.

We ignore the need to handle an SQL exception but show how to throw an
exception of your own. In the following program, the CustomerException
block uses the following fields: customerID, which was defined explicitly in
the CustomerException part, and message, which is of type STRING and is
present in any Exception record.

Listing 5.2: Throwing an Exception (part 1)

Record MyCustomerRecord type SQLRecord
 { keyItems = [customerNumber],
 tableNames = [["Customer"]] }
 customerNumber STRING;
 creditScore INT;
end

Record CustomerException type Exception
 customerID STRING;
end

myCustomer MyCustomerRecord;
myCustomer.customerNumber = "A1234";
get myCustomer;

Program myProgram type BasicProgram

 Function main()
 myCustomer MyCustomerRecord;
 myCustomer.customerNumber = "A1234";
 try
 retrieveOne(myCustomer);
 onException (exception CustomerException)
 sysLib.writeStdErr
 ("Customer: " + exception.customerID
 + "\nIssue: " + exception.message);
 end
 end

EGL.book Page 96 Wednesday, April 23, 2008 9:23 PM

Exception Handling 97

Listing 5.2: Throwing an Exception (part 2)

After the get statement runs, the record theCustomer includes the credit score
for the customer whose number is A1234. If the score is less than 310, the
throw statement creates a new record, initializing the record fields for use in
the CustomerException block. The output is as follows.

 Function retrieveOne(theCustomer MyCustomerRecord)
 get theCustomer;
 if (theCustomer.creditScore < 310)
 throw new CustomerException
 { customerID = theCustomer.customerNumber,
 message = "No Credit" };
 end
 end
end

Customer: A1234
Issue: No Credit

EGL.book Page 97 Wednesday, April 23, 2008 9:23 PM

EGL.book Page 98 Wednesday, April 23, 2008 9:23 PM

