
37

4
The Path to DB2 9 XML Capabilities

In this chapter, you’ll learn more about XQuery, XPath, and the XPath
Data Model and receive an introduction to DB2 9’s XML components

and native XML support. The chapter continues to build on XML as the
foundation for effective understanding and use of XML in DB2 9 and
introduces the DB2 9 XML components and architecture.

XQuery and XPath

Just as SQL provides a query language for relational databases, a native
query language for XML was needed due to the synchronization problem
between XML and relational data that we discussed in Chapter 3. To address
this need, the W3C organization developed XQuery, the query language
for XML, defi ning the language in the XQuery 1.0 specifi cation. As of the
writing of this book, the XQuery 2.0 draft is in the works.

XQuery is the main entry point for accessing and processing XML data in
DB2 9. It is a domain-specifi c language designed to work with XML data

38

that is highly variable, unstructured, and unpredictable. XQuery provides
the fl exibility to work with this kind of data. For example, you can use XML
queries to perform the following operations:

● Return results that have mixed types

● Search XML data for objects that are at unknown levels of the hierarchy

● Perform structured transformations on the data (e.g., invert a hierarchy)

XQuery queries use expressions written in the XML Path (XPath) language
to navigate through XML trees and extract XML fragments as well as to
create, sort, aggregate, combine, and iterate over sequences (examine or
manipulate each item in a sequence) and construct new XML data. At the
heart of the XPath language is the path expression, which provides for the
hierarchical addressing of nodes in an XML tree.

The following excerpt from the XML Path Language (XPath) 2.0 W3C
recommendation describes the XPath language in detail.

“XPath 2.0 is an expression language that allows the processing of values
conforming to the data model defi ned in [the] XQuery/XPath Data Model
(XDM) [specifi cation]. The data model provides a tree representation of XML
documents as well as atomic values such as integers, strings, and booleans,
and sequences that may contain both references to nodes in an XML docu-
ment and atomic values. The result of an XPath expression may be a selection
of nodes from the input documents, or an atomic value, or more generally, any
sequence allowed by the data model.”

Note: DB2 supports storing and retrieving well-formed XML data in
a column of a table. XML instances (documents) consisting
of XML that conforms to XML’s syntax rules are legal and are
considered to be well-formed.

CHAPTER 4: The Path to DB2 9 XML Capabilities

39

An XQuery 1.0 expression takes one or more XDM instances as input and
returns an XDM instance as a result. The current XQuery 1.0 specifi cation
does not support updating instances of the XDM. However, DB2 9 provides
facilities to accomplish this; you’ll learn how to do this in Chapter 5.

Like most data models, XDM defi nes the format of the data but not the
application programming interfaces (APIs) to access the data. That is where
specifi c implementations such as DB2 9 come into play. In a nutshell, the
XQuery language is the fundamental query language for querying XML data,
and it is guided by the XDM for data format rules.

Because XQuery is a reference-based language, subsequent expressions on
the result of a path expression may traverse the document in both forward
and reverse direction. With XQuery and XPath, you can store, compose, and
decompose XML documents.

Creating Queries in XQuery

You form queries in XQuery by making declarations in the form of
expressions. Queries consist of an optional prolog and a query body.
Figure 4.1 shows a sample DB2 9 XQuery structure.

XQuery and XPath

Note: XPath is an expression language that allows the processing of
values conforming to the data model defi ned in the XQuery/
XPath Data Model W3C specifi cations. DB2 9 supports these
specifi cations.

Note: The XQuery 1.0 and XPath 2.0 Data Model does not allow for
updating of nodes. As of the writing of this book, extensions
to XQuery 1.0 are being considered that would provide for an
XQuery update facility.

CHAPTER 4: The Path to DB2 9 XML Capabilities

40

The prolog defi nes the processing environment for the query. It is followed
by the query body, which consists of one or more expressions that defi ne the
query results.

Expressions can consist of multiple XQuery expressions that are
combined using various XQuery operators or keywords. In the
example, the prolog contains two declarations: a version declaration,
which specif ies the version of the XQuery syntax to apply to the query,
and a default namespace declaration, which specif ies the namespace
Uniform Resource Identif ier (URI) to use for unprefixed element and
type names.

The sample query body contains an expression that constructs a sku_list
element. The content of the sku_list element is a list of sku_master
elements. The sample query uses the for expression along with the $stku
variable to iterate through the description subelements of the sku_

master elements contained in the SKU_MASTER.DESCRIPTION column.
The /sku_master/description path expression iterates through every
node in the expression on the left (the context) and for each such node
performs the selection on the right (the step). Last, the return expression

Figure 4.1: Basic XQuery structure

41

indicates that for each iteration, the value of $stku is returned. The
constructed sku_list element is a list of sku_master elements sorted in
descending order.

DB2 9 supports queries written in SQL, XQuery, or a combination of SQL
and XQuery. Both languages are supported as primary query languages, and
each provides functions for invoking the other language.

Before we delve into specifi c aspects of DB2 9 support for XML, it will be
helpful to take a closer look at details of the XPath Data Model.

XPath Data Model

The XQuery 1.0 and XPath 2.0 Data Model (XDM) W3C recommendation
(23 January 2007) defi nes the data model used by XQuery 1.0, XPath 2.0,
and Extensible Stylesheet Language Transformations (XSLT) 2.0. as follows:

“The XQuery 1.0 and XPath 2.0 Data Model . . . serves two purposes. First,
it defi nes the information contained in the input to an XSLT or XQuery
processor. Second, it defi nes all permissible values of expressions in the
XSLT, XQuery, and XPath languages.”

XDM provides support for XML Schema types and extends the Infoset
model by providing precise type information and supporting the representa-
tion of collections of documents and complex values.

Every value in the XDM is the sequence of zero or more items. An item may
be a node or an atomic value. A sequence may contain nodes, atomic values,
or any mixture of nodes and atomic values. A node is one of the seven kinds
of nodes defi ned by the XPath 2.0 specifi cation:

Note: An XML sequence returned by the db2-fn:xmlcolumn or db2-fn:
sqlquery function can contain any XML values, including atomic
values and nodes.

XPath Data Model

CHAPTER 4: The Path to DB2 9 XML Capabilities

42

● Document nodes encapsulate XML documents and have the following
properties, which can be empty:

base-uri

children

unparsed-entities

document-uri

● Element nodes encapsulate elements and have the following properties:

base-uri

node-name

parent (can be empty)

type

children (can be empty)

attributes (can be empty)

namespaces (can be empty)

nilled

● Attribute nodes represent XML attributes and have the following
properties:

node-name

string value

parent (can be empty)

type

● Text nodes contain XML character content and have the following
properties:

content

parent

● Namespace nodes contain information about XML namespaces:

prefi x (can be empty)

uri

parent (can be empty)

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

43

● Processing instruction nodes contain XML processing instructions
and have the following properties:

target

content

base-uri (can be empty)

parent (can be empty)

● Comment nodes contain XML comments and have the following
properties:

content

parent

Although namespace nodes are part of the XPath 2.0 specifi cation, support
for them by applications (in this case, by DB2 9) is application-dependent.
In DB2 9, namespace nodes are not supported; instead, IBM has chosen
to represent namespaces in an internal format that complies with the
specifi cation. However, I’ve included namespace nodes in this section
to give you an overall understanding of node types.

Table 4.1 provides a complete list of the rules defi ned by the W3C for the
seven types of nodes.

Table 4.1: Rules for XPath Data Model node types

Document nodes

1. Every document must have a unique identity, distinct from all other nodes.

2. The children must consist exclusively of element, processing instruction, comment, and
text nodes if the property is not empty. Attribute, namespace, and document nodes can
never appear as children.

3. The sequence of nodes in the children is ordered and must be in document order.

4. The children property must not contain two consecutive text nodes.

5. If node N is a child of a document node D, the parent of N must be D.

6. If N has a parent document node D, N must be among the children of D.

7. The children property must not contain two nodes with the same identity.

»

»

»

»

»

»

XPath Data Model

CHAPTER 4: The Path to DB2 9 XML Capabilities

44

Table 4.1: Rules for XPath Data Model node types (contiuned)

Element nodes

1. Every element node must have a unique identity, distinct from all other nodes.

2. The children must consist exclusively of element, processing instruction, comment, and
text nodes if the property is not empty. Attribute, namespace, and document nodes can
never appear as children.

3. The sequence of nodes in the children property is ordered and must be in document order.

4. The children property must not contain two consecutive text nodes.

5. The children property must not contain two consecutive nodes with the same identity.

6. The attributes of an element must have distinct xs:QNames.

7. The namespace nodes of an element must have distinct names. At most one of the
namespace nodes of an element has no name (this is the default namespace).

8. If node N is a child of element E, the parent of N must be E.

9. Exclusive of attribute and namespace nodes, if a node N has a parent element E, N must
be among the children of E. (Attribute and namespace nodes have a parent, but they do not
appear among the children of their parent.)

10. If an attribute node A has a parent element E, A must be among the attributes of E.

11. If a namespace node has a parent element E, N must be among the namespaces of E.

Attribute nodes

1. Every attribute node must have a unique identity, distinct from all other nodes.

2. If an attribute node A has a parent element E, A must be among the attributes of E.
 Attribute nodes are permitted without parents, but such attributes must not appear among
the attributes of any element node.

Text nodes

1. A text node must not contain the empty string as its content. Two consecutive text nodes
cannot appear as adjacent siblings.

Namespace nodes

1. Every namespace node must have a unique identity, distinct from all other nodes.

2. If a namespace node N has a parent element E, N must be among the namespaces of E.
Namespace nodes without parents are permitted in special cases.

Processing instruction nodes

1. Every processing instruction node must have a unique identity, distinct from all other nodes.

2. The target must be an NCName.

Comment nodes

1. Every comment node must have a unique identity, distinct from all other nodes.

2. The string “--” must not occur within the content.

45

Figure 4.2 shows how you can browse XML documents, elements, and
attributes using the DB2 9 Control Center. You can also use the Control
Center to drill down to each node type and to view entire documents.

DB2 9 Hybrid Architecture

Key to DB2 9’s hybrid architecture is the integration of the native DB2
XML data type into the existing relational engine. This integration enables
a company to store both relational and XML data in the DB2 9 hybrid data
server. This integration of XML data in the DB2 9 database engine and
seamless XML support is packaged as IBM’s pureXML technology.

Figure 4.2: Browsing XML documents with the DB2 Control Center

DB2 9 Hybrid Architecture

CHAPTER 4: The Path to DB2 9 XML Capabilities

46

Although DB2 9 provides complete XML support, this support is offered as
an option and does not come with the base DB2 9 product. This approach is in
keeping with today’s fl exible software confi guration and pricing movement. With
this fl exibility, you can customize your DB2 installations to use just the features
you need. This capability can help to reduce annual database licensing costs. So,
even though pureXML is tightly integrated into DB2 9, the feature is optional.

Components of DB2 9 XML Support

Figure 4.3 provides an overview of the DB2 9 pureXML architecture.

As the diagram depicts, DB2 9’s XML support can be broken down into several
areas. DB2 9 supports the XQuery language through the XML interface and
supports SQL through existing relational interfaces. The hybrid architecture
supports combinations of SQL, SQL/XML, and XQuery. The DB2 9
architecture supports the W3C XQuery 1.0 and XPath 2.0 specifi cations.

Figure 4.3: DB2 hybrid data server architecture

47

DB2 9 Optimizer Extensions

Chapter 3 outlined how IBM integrated DB2 9 native XML support using
the existing DB2 architecture. Key to this integration was the fact that the
optimizer component of DB2 was designed from the beginning in a modular
fashion. Thanks to this modularity, DB2 9 developers were able to “extend”
the optimizer components to support XML expressions. In DB2 9, XQuery is
represented with an internal query graph model. The optimizer Query Graph
Model (QGMX) has been modifi ed to incorporate the internal data fl ow
model, with native constructs that are specifi c to XML and represent complex
navigation of XQuery and XPath.

Figure 4.4 provides an overview of the hybrid query compiler.

Figure 4.4: Hybrid SQL/XQuery compiler

DB2 9 Hybrid Architecture

CHAPTER 4: The Path to DB2 9 XML Capabilities

48

The XQuery parser is new in DB2 9; all other components were extended
to support the XQuery language and the XPath Data Model. As the fi gure
illustrates, an SQL statement or XQuery expression is compiled into an internal
data fl ow graph. In the next step, rewrite transformations are applied to optimize
the data fl ow. The optimizer then uses the data fl ow graph to generate a physical
query plan, which the code-generation step translates into executable code.

XML Schema Repository

The XML Schema Repository (XSR) is a DB2 9 repository for all XML
artifacts used to validate and process XML instance documents stored in
XML columns. The XSR is unique to DB2 9 and is based on the W3C XML
Schema specifi cation.

DB2 9 uses the XSR to validate XML instance documents pointed to by
a URI associated with an XML schema, DTD, or other external entity.
The XSR enables DB2 9 well-formed documents to be validated without
requiring external resources that could be unavailable when needed. For
example, if an XML instance document contained a reference to an external
URI and that external URI wasn’t available to complete the validation, the
situation would cause validations to fail and would adversely impact DB2 9
processing and be beyond the control of the DB2 9 database system. For this
reason, the XSR is internal to DB2, and there is an XSR for each database.

Each DB2 9 database contains an XSR that is composed of catalog tables, fi ve
catalog views, and system-provided stored procedures to enable schemas to be
defi ned to the XSR. Each XML schema, DTD, or external entity registered with
the XSR is represented as an XSR object. The XSR object is used to validate
and process DB2 XML instance documents stored in XML columns.

You can register an XSR object using any of the following methods:

● DB2 9–provided stored procedures
● A Java application

● The DB2 command line processor

49

Using stored procedures, XSR object registration is a three-step process:

1. Register the primary XML schema document by calling the SYSPROC.

XSR_REGISTER stored procedure.

2. Add any additional XML schema documents to be included with the
primary XML schema by using the SYSPROC.XSR_ADDSCHEMADOC
stored procedure.

3. Complete the registration by calling the SYSPROC.XSR_COMPLETE
stored procedure.

Using the DB2 command line processor involves a similar three-step process:

1. Register the primary XML schema document using the REGISTER

XMLSCHEMA command.

2. Optionally add any additional XML schema documents to be
included with the primary XML schema using the ADD XMLSCHEMA

DOCUMENT command.

3. Complete the registration by issuing the COMPLETE XMLSCHEMA
command.

To register using a Java application, call the previously mentioned stored
procedures. In addition, the following methods let you perform the same
operations from a Java application program.

● DB2Connection.registerDB2XMLSchema registers an XML schema
using one or more XML schema documents.

● DB2Connection.deregisterDB2XMLObject removes an XML schema
defi nition from DB2.

Note that by default the XSR samples aren’t installed in DB2 9; to create
them, run the db2sample_XML command line processor script contained in
the DB2 9 samples subdirectory. You’ll see a complete example of the XML
Schema registration process using the Developer Workbench (DWB) in
Chapter 5.

DB2 9 Hybrid Architecture

CHAPTER 4: The Path to DB2 9 XML Capabilities

50

DB2 9 Native XML Storage Architecture

Together, native XML data-type integration into the database engine and
integration of XML support into the DB2 Storage Model form the pillars of
the XML support provided by the DB2 9 hybrid data server. Figure 4.5 gives
a high-level overview of the DB2 9 native XML storage architecture. The
diagram illustrates how both relational and XML storage are integrated into
the DB2 Storage Model.

Although DB2 9 stores the two types of data differently, it uses the same
DB2 storage “subsystem” to manage both types of storage, providing seam-
less integration for applications accessing both relational and XML data.
This powerful solution increases productivity because developers don’t have
to spend time writing interfaces to access XML documents stored elsewhere.

Figure 4.5: DB2 9 integrated storage architecture

51

DB2 stores XML instance documents in columns of type XML, and their
hierarchical structure and meaning are preserved. The amount and nature of
XML data can vary widely, from small XML documents to large XML docu-
ments that can be many gigabytes in length. Retrieval and update frequency
can also vary widely. In such an environment, documents must be able to
span disk pages because a single text node could be larger than a page.

The DB2 9 solution to this problem is to implement a storage model that
stores XML documents as instances of the XDM in a structured, type-
annotated tree. DB2 9 stores the binary representation of type-annotated
XML trees, which avoids the repeated parsing and validation of documents.
This approach also enables digital signatures to be preserved, a capability
that is increasingly important in the fi nancial sector, where digital signatures
are used to provide proof of authorization for sensitive fi nancial transactions,
such as buy and sell orders.

In most cases, you won’t want to concern yourself with how DB2 9 internally
manages XML storage; however, to help you understand what DB2 9 is doing
under the covers, I’ll briefl y discuss how XML data is managed internally
using the sample document shown in Figure 4.6 as an example.

Figure 4.6: Customerinfo document

DB2 9 Native XML Storage Architecture

CHAPTER 4: The Path to DB2 9 XML Capabilities

52

As the fi gure shows, the customerinfo document contains multiple elements
represented in a hierarchy. The customerinfo root element contains subele-
ments and attributes such as name, address, city, and state. Figure 4.7 is a
representation of the customerinfo document in hierarchical form.

When this document is stored, DB2 preserves its internal structure and
converts its tag names and other information into integer values. Figure 4.8
shows how DB2 assigns StringIDs internally to nodes.

Figure 4.7: Hierarchical representation of the customerinfo document

53

Replacing tags with StringIDs enables DB2 to provide excellent query
performance. StringIDs let DB2 perform node comparisons using integers
instead of strings. DB2 9 also stores extra information with each node. Child
slots are associated with element nodes and have hints within them to provide
information about what the child represents, enabling non-qualifying children
to be skipped. This mechanism helps reduce I/O by allowing navigation
across child nodes.

A unique identifi er is assigned to each node and provides for logical and
physical addressability that may be used for indexing and query optimiza-

Figure 4.8: Hierarchical representation of customerinfo document with StringIDs

DB2 9 Native XML Storage Architecture

54

tion. If a document tree doesn’t fi t on one page, DB2 9 will split it into
regions containing subtrees of nodes. Regions are connected by a region
index, which is created automatically for every table that contains one
or more XML columns. Region indexes enable DB2 9 to use effi cient
prefetching techniques. Finally, because logical node identifi ers are inde-
pendent of physical node locations, it’s much easier to insert, update, and
delete nodes or subtrees. Similarly, documents or page reorganization is
facilitated.

Querying DB2 9 XML Data

DB2 9 contains two XQuery functions for obtaining input XML data from
DB2 9 databases. The db2-fn:xmlcolumn function (which you saw used
in a sample query earlier in the chapter) retrieves an entire XML column.
The db2-fn:sqlquery function retrieves XML values based on an SQL
fullselect.

The db2-fn:xmlcolumn function takes as input a string literal that identifi es
an XML column (defi ned as a DB2 XML data type) and returns a sequence
consisting of all document nodes in the specifi ed column. The following
example shows how you use this function.

for $c in db2-fn:xmlcolumn ("ORDERS.PO_ORDER")
where $c/order/customer/custid = 4388
return $c/tot_qty

You can use db2-fn:xmlcolumn multiple times in a single XQuery to
reference different XML columns in the same or separate tables or to
reference the same XML column several times.

The db2-fn:sqlquery function lets you restrict the input to an XQuery based
on conditions placed on relational columns in the same or related tables. This
function accepts any select statement that returns a single XML column. The

CHAPTER 4: The Path to DB2 9 XML Capabilities

55

following example fi lters the set of input documents to XQuery by using a
predicate and a join on another relational table.

for $c in db2_fn:sqlquery ('select po_order from purchases, ship-
ping where purchases.cust_id = shipping.SORDER and purchases.sku
="12345"')/order/
customer
where $c/cust_ID =4388
return $C/tot_qty

DB2 9 Methods of Querying XML Data

DB2 9 provides four ways to query and/or manipulate DB2 XML data:

● XQuery-only

● XQuery that invokes SQL

● SQL-only

● SQL/XML functions that execute XQuery expressions

The preceding examples demonstrated retrieving XML data via
the XQuery-only method. Which method you choose depends on
the type of data to be accessed and the processing to be performed,
whether by the DB2 application or an application (e.g., a Web service)
downstream.

XQuery-Only

A query that invokes XQuery directly in DB2 9 must begin with the
keyword XQUERY. By specifying this keyword, you indicate to DB2
that XQuery is being used and that the query must be processed in
accordance with the case-sensitivity rules that apply to the XQuery
language.

Querying DB2 9 XML Data

