
323

1010
Message APIs

Messages are a way of life with i5/OS. Every time you start, hold, or cancel a
job, the system issues a message. While your job is executing, the system sends
messages to the job log. If the system needs human intervention, such as pressing the
Start button on a printer or loading a tape on a tape drive, the system notifies the
interested parties by sending a message.

Since messages are such an integral part of i5/OS, you would probably like to know
when certain ones are sent on the system. For this, the system provides an exit capability
through watches. Watches allow you to define a program that should be automatically
called when a particular message is sent to the QSYSOPR system-operator message queue,
the QHST history log, the job log of one or more jobs, or a regular message queue. This
chapter first looks at how to write watch exit programs and then how to associate a
watch exit program with messages that might be sent on the system.

Application programs often want to send messages to either another program or a user.
The system provides for many types of messages to meet the various needs of developers.
These messages include completion messages to indicate that a particular piece of work
has finished, status messages to indicate the current status of work, diagnostic messages
to provide possible error-related information, and escape messages to indicate a general

324

CHAPTER 10: Message APIs

failure. This chapter also looks at how to send messages from your application program
using the Send Program Message API, QMHSNDPM.

Messages are frequently stored as message descriptions in a message file. The chapter
concludes with a look at how the Retrieve Message API, QMHRTVM, can be used to
search for messages in a message file that have a particular word in either its first- or
second-level text. Many times, we’ve wondered if there was already a message describing
a certain situation, but had no fast, easy way to determine what that message might be.
With this API, that problem has been solved!

Watch Exit Programs
Watches provide the ability to have i5/OS call one or more user programs when a
particular message is sent to the system operator, the history log, the job log of one or
more jobs, or to a message queue. There is the Start Watch API (QSCSWCH) to begin a
watch session, the End Watch API (QSCEWCH) to end a watch session, and the Watch for
Event exit program capability. All three are discussed in the “Problem Management”
category of System APIs under the subcategory “Monitoring.”

We’ll start by explaining how to write a watch exit program. Following that, you’ll see
how to use the Start Watch API to associate a watch exit program with messages and
message queues on the system. The parameter descriptions for a watch exit program are
shown in Table 10.1.

The first parameter, Watch Option Setting, tells the exit program why it was called.
Watch exit programs can currently be called in two situations. One is if a watched-for
message is sent on the system (*MSGID), and the other is if a watched-for Licensed
Internal Code (LIC) error log entry is recorded on the system (*LICLOG). The two values

Table 10.1: Watch Exit Program Parameters

Parameter Description Type Size

1 Watch Option Setting Input Char(10)

2 Session ID Input Char(10)

3 Error Detected Output Char(10)

4 Event Data Input Char(*)

supported, therefore, are *MSGID and *LICLOG. Although you can start a watch for either
of these situations, we only discuss message watches in this book.

The second parameter, Session ID, is the name of the session calling the exit program.
When a watch is started, a session ID can either be generated by the system or specified
by the user.

The third parameter, Error Detected, is an output from the exit program back to i5/OS. If
the exit program returns blanks for this parameter, no error was encountered in the exit
program, and i5/OS should continue calling the exit program whenever the watched-for
message is sent again. Any other value informs i5/OS that an error has been encountered
within the exit program, and i5/OS will stop calling the exit program.

The fourth parameter, Event Data, is data associated with the message that was sent and
that triggered the call to the watch exit program. For messages (a watch session setting
of *MSGID), the format of this event data is shown in Figure 10.1.

Watch Exit Programs

325

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
D***
D*Watch Exit Program called because a message id and any
D*associated comparison data is matched.
D*This structure is for the user exit program called by
D*STRWCH cmd or Start Watch (QSCSWCH) API
D***
DESCQWFM DS
D* Qsc Watch For Msg
D ESCLWI 1 4B 0
D* Length Watch Information
D ESCMID00 5 11
D* Message ID
D ESCERVED01 12 12
D* Reserved
D ESCMQN 13 22
D* Message Queue Name
D ESCMQL 23 32
D* Message Queue Lib
D ESCJN 33 42
D* Job Name
D ESCUN 43 52
D* User Name

Figure 10.1: A watch message format from QSYSINC/QRPGLESRC member ESCWCHT (part 1 of 3).

CHAPTER 10: Message APIs

326

D ESCJNBR 53 58
D* Job Number
D ESCRSV2 59 62
D* Reserved2
D ESCSPGMN 63 318
D* Sending Program Name
D ESCSPGMM 319 328
D* Sending Program Module
D ESCOSP 329 332B 0
D* Offset Sending Procedure
D ESCLOSP 333 336B 0
D* Length Of Sending Proced
D ESCRPGMN 337 346
D* Receiving Program Name
D ESCRPGMM 347 356
D* Receiving Program Module
D ESCORP 357 360B 0
D* Offset Receiving Procedu
D ESCLORP 361 364B 0
D* Length Of Receiving Proc
D ESCMS 365 368B 0
D* Msg Severity
D ESCMT 369 378
D* Msg Type
D ESCMT00 379 386
D* Msg Timestamp
D ESCMK 387 390
D* Msg Key
D ESCMFILN 391 400
D* Msg File Name
D ESCMFILL 401 410
D* Msg File Library
D ESCRSV3 411 412
D* Reserved3
D ESCOCD01 413 416B 0
D* Offset Comparison Data
D ESCLOCD01 417 420B 0
D* Length Of Comparison Dat
D ESCCA 421 430
D* Compare Against
D ESCRSV4 431 432
D* Reserved4
D ESCCCSID 433 436B 0
D* Comparison Data CCSID
D ESCOCDF 437 440B 0
D* Offset Comparison Data F

Figure 10.1: A watch message format from QSYSINC/QRPGLESRC member ESCWCHT (part 2 of 3).

As you can see, a wealth of information about the message is available to the exit
program. This includes the message ID, the qualified message queue name, the name of
the job sending the message, the program sending the message, the message severity, the
message key, the replacement data associated with the message occurrence, and much
more. (It should be pointed out that the exit program does not run in either the job
sending the message or the job receiving the message—it runs in its own job.) With this
amount of information, our exit program can be used in a variety of ways. One possible
application is to automate various tasks on the system.

For example, when the history log of i5/OS becomes full, the messages are written to a
database file. Message CPF2456 is then sent to the QSYSOPR message queue to inform
the operator that the file is full and should be saved. Figure 10.2 shows a watch exit
program that can automate the saving of new QHST files to save files.

Two specific fields within the QSYSINC-provided data structure ESCCQWFM are used in the
example program. The first one, ESCMID00, contains the message ID that caused the
watch program to be called. The other field, ESCORD, contains an offset to the replacement
data associated with the message ESCMID00.

Watch Exit Programs

327

D ESCORD 441 444B 0
D* Offset Replacement Data
D ESCLORD 445 448B 0
D* Length Of Replacement Da
D ESCCCSID00 449 452B 0
D* Replacement Data CCSID
D*ESCSP 453 453
D*
D* variable length data @B2M
D*ESCRP 454 454
D*
D* variable length data @B2M
D*ESCCD01 455 455
D*
D* variable length data @B2M
D*ESCRD 456 456
D*
D* variable length data @B2M

Figure 10.1: A watch message format from QSYSINC/QRPGLESRC member ESCWCHT (part 3 of 3).

CHAPTER 10: Message APIs

328

h dftactgrp(*no)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
d/copy qsysinc/qrpglesrc,escwcht

dFig10_2 pr
d Type 10 const
d Session 10 const
d Error 10
d Data likeds(ESCQWFM)

dFig10_2 pi
d Type 10 const
d Session 10 const
d Error 10
d Data likeds(ESCQWFM)

dCmdExc pr extpgm('QCMDEXC')
d Command 65535 const
d CmdLength 15 5 const
d IGC 3 const options(*nopass)

dMsgDtaPtr s *
dMsgDta ds 75 based(MsgDtaPtr)
d File 1 10
d Lib 11 20

dCommand s 80
dWait s 1

CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq
/free
Error = *blanks; // assume all is well until shown otherwise

// Check to make sure this is a *MSGID watch
if (Type = '*MSGID');

// Check to make sure this is for CPF2456
if (Data.ESCMID00 = 'CPF2456');

// Get to the message replacement data
MsgDtaPtr = %addr(Data) + Data.ESCORD;

Figure 10.2: Watch for the message CPF2456—“Log version &1 in &2 closed and should be saved”
(part 1 of 2).

After initializing the Error parameter to blanks (indicating the exit program has no errors
and should continue to be called by i5/OS), the program checks to see if it is being
called for a message watch (Type = ‘*MSGID’). If not, the appropriate error text is
DSPLYed and the Error parameter is set to *ERROR so that the watch exit program is not
called again. If Type is *MSGID, the program checks to see if it’s being called for message
ID CPF2456 (Data.ESCMID00 = ‘CPF2456’). If not, appropriate error text is DSPLYed and
the Error parameter is again set to *ERROR.

If both checks are successful, the program accesses the message-replacement data by
setting the pointer MsgDtaPtr to the address of the Data parameter and adding to this
address the offset to the replacement data (Data.ESCORD). It does this because message
CPF2456 returns the file name and library name of the new QHST file in the first 20
bytes of the message replacement data, and we have plans for that information. We know
how this replacement data is defined by displaying the message description CPF2456 in
QCPFMSG and looking at the message-replacement variable usage and definitions. The
data structure MsgDta defines the two fields, File and Lib, that map to the replacement
data we are interested in. As MsgDta is BASED on MsgDtaPtr, the program now has direct
access to these values.

Watch Exit Programs

329

// Save the log
Command = 'SAVOBJ OBJ(' + File + ') LIB(' + Lib +

') DEV(*SAVF) SAVF (QGPL/MYSAVES)';
CmdExc(Command :%len(%trimr(Command)));

// Not CPF2456
else;

dsply ('Unexpected ' + Data.ESCMID00 + ' received.') ' ' Wait;
Error = '*ERROR';

endif;

// Not a *MSGID watch
else;

dsply ('Wrong type ' + %trimr(Type) + ' received.') ' ' Wait;
Error = '*ERROR';

endif;

*inlr = *on;
return;

/end-free

Figure 10.2: Watch for the message CPF2456—“Log version &1 in &2 closed and should be saved”
(part 2 of 2).

CHAPTER 10: Message APIs

330

The program then constructs a SAVOBJ command string, using the watched message
replacement data (fields File and Lib) to set the OBJ and LIB parameters of the SAVOBJ

command. The program also specifies that the save is to save file QGPL/MYSAVES. Note
that we have made a simplifying assumption here, namely, that the save file is empty or
previously cleared. In a production environment, you would probably want dynamic
creation of the save file and the usage of appropriately named save files.

After the SAVOBJ command string has been generated, the program uses the Execute
Command API, QCMDEXC (introduced in chapter 4) to run the command. The program
then exits.

Starting a Watch
Having looked at the FIG10_2 program, let’s now look at the Start Watch API, QSCSWCH. It
is used to associate program FIG10_2 with the sending of message CPF2456 to the system
operator message queue. The parameter descriptions for QSCSWCH are listed in Table 10.2.

The first parameter, Session ID, allows you to name the watch. This name will be displayed
on commands such as Work with Watches (WRKWCH), used on APIs such as End Watch
(QSCEWCH), and passed to the watch exit program at run time. A meaningful name can help
both operators and developers. If you don’t care to name a watch session, you can use the
special value *GEN, and the system will generate a watch-session ID name for you.

The second parameter, Started Session ID, is an output from the API that is used to
return the name of the started session. This is primarily used as feedback from the API
when *GEN is used for the first parameter.

Table 10.2: The Start Watch API (QSCSWCH)

Parameter Description Type Size

1 Session ID Input Char(10)

2 Started Session ID Output Char(10)

3 Watch Program Input Char(20)

4 Watch for Message Input Char(*)

5 Watch for LIC Log Entry Input Char(*)

6 Error Code I/O Char(*)

The third parameter, Watch Program, is the qualified name of the exit program to be
called when the watched-for message is sent to a watched message queue. As with most
qualified names used in API calls, the first 10 bytes is the name of the program, and the
second 10 bytes is the name of the library where the program is located. This program
will be called once each time the watched-for message is sent. If the watched-for
message is sent to multiple message queues, the exit program will be called once for
each occurrence of the message being sent to each of the watched message queues.

The fourth parameter, Watch for Message, is a structure that provides information to the
system on what message(s) and queue(s) are to be watched. This structure starts with a
Binary(4) field indicating how many messages are to be watched for. Immediately
following this field is an array of variable-length sub-structures of the type shown in
Figure 10.3. These sub-structures are where you define the messages to watch for.

The fifth, Watch for LIC Log Entry, is a structure that provides information to the
system on what LIC log-entry identifiers are to be watched. The fifth parameter, Error
Code, is the standard API error-code structure.

Starting a Watch

331

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
D***
D*Format for message information
D***
DQSCWFMF DS
D* Qsc Watch For Msg Fmt
D QSCLMI 1 4B 0
D* Length Message Informati
D QSCMID 5 11
D* Message ID
D QSCERVED 12 12
D* Reserved
D QSCMQN02 13 22
D* Message Queue Name
D QSCMQL 23 32
D* Message Queue Lib
D QSCJN 33 42
D* Job Name
D QSCUN 43 52
D* User Name
D QSCJNBR 53 58
D* Job Number

Figure 10.3: The format from QSYSINC/QRPGLESRC member QSCSWCH for starting a watch (part 1 of 2).

CHAPTER 10: Message APIs

332

There are several fields defined within the QSYSINC-provided QSCWFMF data structure.
The first, QSCLMI, is set to the size of the current occurrence of the QSCWFMF data
structure. This size then provides a displacement for the API to the next occurrence of the
QSCWFMF data structure. The number of occurrences, or array elements, is controlled by
the initial Binary(4) field provided at the start of the fourth parameter.

The QSCWFMF data structure shown in Figure 10.3 allows you to specify what message to
watch for and what message queues to monitor for the watched message. Each structure
can specify one message ID (QSCMID), and you can have up to 100 of these structures
per call to the Start Watch API.

You can specify what queue to monitor for each message. The Message Queue Name
field (QSCMQN02) can be a message queue name or a special value. The defined special
values are *SYSOPR for the QSYSOPR message queue, *JOBLOG for watching the job log of
one or more jobs, and *HSTLOG for the QHST message queue.

If you use the special value *JOBLOG for the message queue, you can also specify what
jobs to watch. The Job Name Field (QSCJN) can be a specific name such as PLANT0001, a
generic name such as PLANT*, or one of two special values. The special values are the
single asterisk (*) for the current job, and *ALL for all jobs on the system. Similar to the
Job Name field, the Job User Name (QSCUN) can be a specific name such as ROBERTS, a
generic name such as ROB*, or the special value *ALL. The Job Number field (QSCJNBR)
likewise supports a special value of *ALL.

You can also specify message-comparison data for each message. This allows you to
filter which occurrences of a message actually cause the watch exit program to be called.

D QSCRSV2 59 64
D* Reserved2
D QSCOCD 65 68B 0
D* Offset Comparison Data
D QSCLOCD 69 72B 0
D* Length Of Comparison Dat
D QSCCA 73 82
D* Compare Against
D*QSCCD 83 83
D*
D* variable length data

Figure 10.3: The format from QSYSINC/QRPGLESRC member QSCSWCH for starting a watch (part 2 of 2).

Starting a Watch

333

You might, for instance, only want the exit program called when a particular watched
message is sent by program PGM01A, or when the message replacement data for a
message contains a particular value (perhaps a specific object name). You can specify
this comparison data by setting the fields QSCOCD, the offset to the comparison data, and
QSCLOD, the length of the supplied comparison data, to appropriate values and then
providing the comparison data at offset QSCOCD.

As you can see, this structure provides a lot of control over determining when you want
your exit program to receive control. Figure 10.4 shows how to use the Start Watch API,
QSCSWCH, to associate program FIG10_2 with message CPF2456 being sent to the
system-operator message queue QSYSOPR.

h dftactgrp(*no)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
d/copy qsysinc/qrpglesrc,qscswch
d/copy qsysinc/qrpglesrc,qusec

dStartWatch pr extpgm('QSCSWCH')
d SessionID 10 const
d StrSsnID 10
d WatchPgm 20 const
d Messages 65535 const options(*varsize)
d LICs 65535 const options(*varsize)
d QUSEC likeds(QUSEC)

dWatchPgm ds
d Pgm 10 inz('FIG10_2')
d Lib 10 inz('*CURLIB')

dMessages ds qualified
d NbrMsgs 10i 0
d MsgFormat likeds(QSCWFMF)

dLICs ds qualified
d NbrLICs 10i 0

dStrSsnID s 10

Figure 10.4: Start a watch for message CPF2456—“Log version &1 in &2 closed and should be
saved” (part 1 of 2).

CHAPTER 10: Message APIs

334

Figure 10.4 defines a data structure, Messages, that has two sub-elements. The first is a
Binary(4) field for the number of messages to be watched, NbrMsgs, and then one
occurrence, MsgFormat, of the QSCWFMF structure defined in Figure 10.3.

After initializing the Error Code Bytes Provided field, QUSBPRV, to zero to indicate we
want exceptions returned as messages, the program sets Messages.NbrMsgs to one and
initializes the Messages.MsgFormat sub-structure. Messages.MsgFormat is first set to all
null values (x’00’), as there are reserved fields within the structure. Then, specific
subfields are set to their appropriate values. The length of the message information,
Messages.MsgFormat.QSCLMI, is set to the size of Messages.MsgFormat, the message ID
is set to CPF2456, the message queue is set to the special value *QSYSOPR, the full
watched job name is set to blanks, and the Compare Against field is also set to blanks.
The program then initializes the number of LIC log entries to watch, LICs.NbrLICs, to
zero, as we’re not interested in LIC log entries.

CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEp
/free
QUSBPRV = 0;

// Watch for CPF2456 in the QSYSOPR message queue
Messages.NbrMsgs = 1;
Messages.MsgFormat = *loval;
Messages.MsgFormat.QSCLMI = %size(Messages.MsgFormat);
Messages.MsgFormat.QSCMID = 'CPF2456';
Messages.MsgFormat.QSCMQN02 = '*SYSOPR';
Messages.MsgFormat.QSCJN = *blanks;
Messages.MsgFormat.QSCUN = *blanks;
Messages.MsgFormat.QSCJNBR = *blanks;
Messages.MsgFormat.QSCCA = *blanks;

// No LIC logs are being watched for
LICs.NbrLICs = 0;

StartWatch('QHSTSAVES' :StrSsnID :WatchPgm :Messages :LICs :QUSEC);

*inlr = *on;
return;

/end-free

Figure 10.4: Start a watch for message CPF2456—“Log version &1 in &2 closed and should be
saved” (part 2 of 2).

Sending Program Messages

335

After this setup is complete, FIG10_4 calls the Start Watch API with a session ID name
of QHSTSAVES, and ends. The watch is now active and, in this scenario, we have now
automated the saving of QHST history files.

To end the watch session, use the Work with Watches command, WRKWCH WCH(*STRWCH).

Select option 2, End, with the QHSTSAVES session.

Sending Program Messages
Applications often need to send messages to end users informing them of what is going
on. This is especially true if the application is performing a long-running task. For this
reason, i5/OS has the concept of status messages. Status messages typically show up at
the bottom of the screen while a function is running, and then disappear. You will now
learn how to send a status message from your application program.

Let’s start by creating a message file named MSGS in the SOMELIB library. A user message
file is not actually required to send messages, but using message files and message
descriptions is a better way to write applications than using text embedded within an
application. If you’ve ever been involved with an application program that needs to
support translations into multiple national languages, you’ll know this all too well! Using
message files is the better way to write an application, so that’s how we’ll build this
example. Figure 10.5 shows the command to create the message file and add the
message description MSG0001 to the MSGS message file.

To send this message to the user, you use the Send Program Message API, QMHSNDPM.
The parameter descriptions for this API are shown in Table 10.3. The full documentation
for the API can be found in the “Message Handling” category of System APIs.

Do not be dismayed by the number of parameters and the references to call stack entries.
In general, using this API is straightforward enough, but there is a lot of flexibility built
into it for those who need direct control when sending messages from one program to
another.

CRTMSGF MSGF(SOMELIB/MSGS)

ADDMSGD MSGID(MSG0001) MSGF(SOMELIB/MSGS) MSG('Job is doing some work.
Please be patient')

Figure 10.5: Create the message file SOMELIB/MSGS.

CHAPTER 10: Message APIs

336

The first parameter, Message Identifier, identifies what message you want to send.
A message ID must be provided if you are sending an escape, notify, or status message.
If you are sending an impromptu message, also known as immediate text, you can use
blanks for this parameter.

The second parameter, Qualified Message File Name, specifies what message file is to
be used to locate the message identifier passed in the first parameter. As with any API
qualified name, the first 10 bytes are the message file name, and the second 10 bytes are
the library where the message file can be found. The special values *CURLIB and *LIBL

can be used for the library portion of this parameter.

Table 10.3: The Send Program Message API (QMHSNDPM)

Parameter Description Type Size

1 Message Identifier Input Char(7)

2 Qualified Message File Name Input Char(20)

3 Message Data or Immediate Text Input Char(*)

4 Length of Message Data or Immediate Text Input Binary(4)

5 Message Type Input Char(10)

6 Call Stack Entry Input Char(*) or Pointer

7 Call Stack Counter Input Binary(4)

8 Message Key Output Char(4)

9 Error Code I/O Char(*)

Optional Parameter Group 1

10 Length of Call Stack Entry Input Binary(4)

11 Call Stack Entry Qualification Input Char(20)

12 Display Program Messages Screen Wait Time Input Binary(4)

Optional Parameter Group 2

13 Call Stack Entry Data Type Input Char(10)

14 Coded Character Set Identifier Input Binary(4)

Sending Program Messages

337

The third parameter, Message Data or Immediate Text, can contain the message
replacement data to be used with a predefined message’s substitution variables (if a
message ID was used for the first parameter), or the immediate text that is to be sent
(if the first parameter was set to blanks).

The fourth parameter, Length of Message Data or Immediate Text, is the length of the
data provided in the third parameter.

The fifth parameter, Message Type, specifies what type of message is being sent. The
supported types are as follows:

● *CMD—Command

● *COMP—Completion

● *DIAG—Diagnostic

● *ESCAPE—Escape

● *INFO—Informational

● *INQ—Inquiry

● *NOTIFY—Notify

● *RQS—Request

● *STATUS—Status

For a complete definition of these types (and other types not supported by this API) see
the Information Center.

The sixth parameter, Call Stack Entry, provides a reference point to an active program or
procedure within your job that you want to send the message to. Special values include
an asterisk (*) for the current call stack entry (that is, yourself) and *EXT for the external
message queue of the job. There are several other special values for this parameter, but
these two will suffice for our discussion of this API.

The seventh parameter, Call Stack Counter, provides the location within your job’s call
stack where the message should be sent. If a value of zero is used, the message is sent to
the call stack entry identified with the sixth parameter. If a value of one is used, the
message is sent to Call Stack Entry 1 before the call stack entry identified with the sixth

CHAPTER 10: Message APIs

338

parameter. If a value of two is used, the message is sent to Call Stack Entry 2 before the
call stack entry identified with the sixth parameter, and so on. If the sixth parameter is
set to the special value *EXT, this parameter is ignored.

The eighth parameter, Message Key, is an output parameter. It can be used with other
APIs to reference the message you are sending. The ninth parameter is the standard
error-code structure found with many APIs. The remaining parameters are not used by
any of the examples in this chapter, and so they are not discussed here. See the
Information Center API documentation if you are interested in learning about these
optional parameters.

The program to actually send the message MSG0001 created in Figure 10.5 is shown in
Figure 10.6. As you can see, the program initializes the Error Code Bytes Available field,
QUSBPRV, to zero, and then calls the Send Program Message API. On the call, we specify
that we want message MSG0001, from the message file MSGS in SOMELIB (QualMsgF),
sent as a *STATUS message to the external (*EXT) message queue associated with the job.

h dftactgrp(*no)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
d/copy qsysinc/qrpglesrc,qusec

dSndPgmMsg pr extpgm('QMHSNDPM')
d MsgID 7 const
d QualMsgF 20 const
d MsgDta 65535 const options(*varsize)
d LenMsgDta 10i 0 const
d MsgType 10 const
d CallStackEntry 65535 const options(*varsize)
d CallStackCntr 10i 0 const
d MsgKey 4
d QUSEC likeds(QUSEC)
d LenCSE 10i 0 const options(*nopass)
d CSEQual 20 const options(*nopass)
d DSPWaitTime 10i 0 const options(*nopass)
d CSEType 10 const options(*nopass)
d CCSID 10i 0 const options(*nopass)

dSleep pr 10u 0 extproc('sleep')
d Seconds 10u 0 value

Figure 10.6: Display a status message (part 1 of 2).

If that was all the program did, you would most likely never see the message. It would be
shown and removed so quickly that you would have a difficult time even knowing it was
there. To make sure you can see the message, we use the sleep API to cause the program
to delay 10 seconds before ending. In a production environment, the program would
presumably be off doing database I/O, heavy computations, or some such. But as we
didn’t have anything like that to do in FIG10_6, we elected just to let the program sleep.

The sleep API documentation can be found in the Information Center in the System API
category “Unix-Type APIs,” and then subcategory “Signal APIs.” The parameter
description for sleep is shown in Figure 10.7.

The sleep API
The sleep API suspends a job, or more technically correct a thread, for a specified number
of seconds. The job consumes no CPU while sleeping; it’s just delayed for the number of
seconds you specify. There are related APIs that can cause the requested sleep period to
be shorter than specified. These are also described in the documentation for the “Signal
APIs” subcategory. In FIG10_6, we expect to sleep for the full specified time period.
You could, though, write an application where you want to sleep for X seconds, but be
awakened if work becomes available for you to process before X seconds have passed.

The sleep API

339

dQualMsgF ds
d MsgF 10 inz('MSGS')
d MsgL 10 inz('SOMELIB')

dMsgKey s 4

CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq
/free
QUSBPRV = 0;
SndPgmMsg('MSG0001' :QualMsgF :' ' :0 :'*STATUS' :'*EXT' :0

:MsgKey :QUSEC);
Sleep(10);
*inlr = *on;
return;

/end-free

Figure 10.6: Display a status message (part 2 of 2).

unsigned int sleep (unsigned int seconds)

Figure 10.7: The sleep API.

The sleep API accepts one parameter, Seconds, which is defined as an unsigned integer
(10u 0). The Seconds parameter specifies the number of seconds the job should be
suspended. The sleep API defines a return value that is also an unsigned integer value. If
the return value is zero, sleep suspended the job for the full requested period of time. If
the return value is a positive value, it represents the number of seconds remaining of the
requested period of time. That is, if you asked for 10 seconds but were awakened after
seven seconds, the return value would be three. If the return value is negative one, an
error was encountered, and ERRNO should be examined to gather additional information.
(Access to ERRNO is described in chapter 14.) In program FIG10_6, we simply ignore the
return value of the sleep API.

Sending Program Messages with Replacement Data
To add a bit more to FIG10_6, and to make more realistic use of a status message, let’s
now send a message with replacement data. The replacement data will be a variable
indicating to the user an estimated time to completion. For the sake of good form, we’ll
also send a completion messages when the program is done. The new messages are
shown in Figure 10.8.

Message MSG0002 is defined as having one replacement variable (&1). The variable &1
is further defined as being a 4-byte binary value. Figure 10.9 shows the modified
FIG10_6, which sends status messages reflecting the current state of the program and a
completion message when finished.

CHAPTER 10: Message APIs

340

ADDMSGD MSGID(MSG0002) MSGF(SOMELIB/MSGS) MSG('Job is doing some work.
Remaining time is &1 seconds.') FMT((*BIN 4))

ADDMSGD MSGID(MSG0003) MSGF(SOMELIB/MSGS) MSG('Job has completed.')

Figure 10.8: Create two more messages.

h dftactgrp(*no)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
d/copy qsysinc/qrpglesrc,qusec

dSndPgmMsg pr extpgm('QMHSNDPM')
d MsgID 7 const

Figure 10.9: Display a status message with replacement data along with a completion message
(part 1 of 2).

Sending Program Messages with Replacement Data

341

d QualMsgF 20 const
d MsgDta 65535 const options(*varsize)
d LenMsgDta 10i 0 const
d MsgType 10 const
d CallStackEntry 65535 const options(*varsize)
d CallStackCntr 10i 0 const
d MsgKey 4
d QUSEC likeds(QUSEC)
d LenCSE 10i 0 const options(*nopass)
d CSEQual 20 const options(*nopass)
d DSPWaitTime 10i 0 const options(*nopass)
d CSEType 10 const options(*nopass)
d CCSID 10i 0 const options(*nopass)

dSleep pr 10u 0 extproc('sleep')
d Seconds 10u 0 value

dQualMsgF ds
d MsgF 10 inz('MSGS')
d MsgL 10 inz('SOMELIB')

dMsgTxt ds
d Seconds 10i 0

dMsgKey s 4

CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq
/free
QUSBPRV = 0;
Seconds = 10;
SndPgmMsg('MSG0002' :QualMsgF :MsgTxt :%size(MsgTxt)

:'*STATUS' :'*EXT' :0 :MsgKey :QUSEC);
Sleep(5);
Seconds = 5;
SndPgmMsg('MSG0002' :QualMsgF :MsgTxt :%size(MsgTxt)

:'*STATUS' :'*EXT' :0 :MsgKey :QUSEC);
Sleep(5);
SndPgmMsg('MSG0003' :QualMsgF :' ' :0 :'*COMP' :'*EXT' :0

:MsgKey :QUSEC);
*inlr = *on;
return;

/end-free

Figure 10.9: Display a status message with replacement data along with a completion message
(part 2 of 2).

FIG10_9 defines the data structure MsgTxt to hold the message replacement data for
message MSG0002. This data structure has one sub-element, Seconds, which is defined
as a 4-byte integer (10i 0). Seconds reflects the amount of time remaining for FIG10_9 to
continue running. MsgTxt is then passed as the third parameter, along with the size of
MsgTxt as the fourth parameter, on the first two calls to the Send Program Message API.
The first two calls use message MSG0002 as a status message indicating the amount of
time remaining until the task finishes. At the end of the program, FIG10_9 sends the
completion message MSG0003.

Using Retrieve Message to Read Message
Descriptions
Many applications have hundreds, if not thousands, of message descriptions stored in
message files. The next sample program will show you how to read these message
descriptions and process them within your application program. Specifically, the sample
program will scan all messages in a specified message file, looking to see if a given
word is found in either the first level or second level text of the message. If found, the
program will print the message ID. Many more types of applications are possible with
this technique—merging message descriptions across message files, printing all messages
within a given range, etc.—but the prerequisite for any of these types of applications is
the ability to read a message file. You will see that by using the Retrieve Message API
(QMHRTVM), this is fairly straightforward.

Table 10.4 shows the parameters for the Retrieve Message API. Although it has quite a
few parameters, the API itself is just like any other retrieve API.

The first parameter is the receiver variable where the Retrieve Message API returns data
to the API caller. The second parameter is the size of the receiver variable, and the third
parameter is the format you want used in returning the data.

The Retrieve Message API supports four formats. Formats RTVM0100 and RTVM0200 are
primarily used when you are reading a specific message description and you know in
advance the ID of the message you want. Formats RTVM0300 and RTVM0400 can be used
for either keyed access by the message ID (similar to how RTVM0100 and RTVM0200 are
used) or when sequentially reading through the message file. We will be sequentially
reading all messages in the message file, so we will use the RTVM0300 format. This
format returns all of the information necessary to the application. Format RTVM0400 also
returns all of the necessary information, but it also returns additional information that we

CHAPTER 10: Message APIs

342

don’t need. To get the best performance, select the format that provides the least amount
of unnecessary information. Figure 10.10 shows the QSYSINC definition for format
RTVM0300.

The fourth parameter is the message identifier for the message description we want
returned. The fifth parameter is the qualified message file name.

The sixth parameter is the replacement data for the message. When retrieving the message
description, you can optionally provide the replacement data for the substitution variables
defined in the message. The values passed in this parameter would be used in the same
way that the third parameter of the Send Program Message API was used when sending
status messages in FIG10_9, and the values will be merged into the message text returned
in the receiver variable. The seventh parameter is the length of the replacement data in
the sixth parameter.

Using Retrieve Message to Read Message Descriptions

343

Table 10.4: The Send Program Message API (QMHSNDPM)

Parameter Description Type Size

1 Message Information Output Char(*)

2 Length of Message Information Input Binary(4)

3 Format Name Input Char(8)

4 Message ID Input Char(7)

5 Qualified Message File Name Input Char(20)

6 Replacement Data Input Char(*)

7 Length of Replacement Data Input Binary(4)

8 Replace Substitution Values Input Char(10)

9 Return Format Control Characters Input Char(10)

10 Error Code I/O Char(*)

Optional Parameter Group 1

11 Retrieve Option Input Char(10)

12 CCSID to Convert to Input Binary(4)

13 CCSID of Replacement Data Input Binary(4)

The eighth parameter allows you to control whether or not the substitution variables
defined in the message are replaced by the replacement data provided in the sixth
parameter. A *NO indicates that you want the substitution variables (the literals &1, &2,
&3, etc.) returned. A *YES indicates that you want the substitution variables replaced by
the replacement data provided in the sixth parameter.

The ninth parameter allows you to specify whether or not format-control characters
(such as &N and &P) are returned in the message second level text. A *NO indicates
you do not want the format control characters returned, a *YES indicates you do.

The tenth parameter is the standard error-code structure.

The eleventh parameter, Retrieve Option, is what allows us to sequentially read through a
message file. Three special values can be used. The first, *MSGID, indicates that we want
the API to return the message description associated with the message ID passed in the
fourth parameter. This value is not going to help us initially in our current task, as we
don’t know the message IDs. The second special value, *NEXT, indicates that we want
the API to return the message description associated with the next message following the
message ID passed in the fourth parameter. This special value is closer to what we’re
looking for. All we need now is to be able to identify the first message ID within the
message file, and then we can use *NEXT to read through the rest of the file. The third
special value, *FIRST, retrieves the first message in the message file and ignores the
fourth parameter. With this, we now have the necessary retrieval options to read all
message descriptions stored in any message file!

The remaining two parameters are related to CCSID conversions of the message text and
CCSID processing of the replacement data. These are important functions, but they’re
not something we need to be concerned with for our sample program.

CHAPTER 10: Message APIs

344

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
D***
D*Type Definition for the RTVM0300 format.
D**** ***
D*NOTE: The following type definition only defines the fixed
D* portion of the format. Any varying length field will
D* have to be defined by the user.
D***

Figure 10.10: Format RTVM0300 from QSYSINC/QRPGLESRC member QMHRTVM (part 1 of 3).

Using Retrieve Message to Read Message Descriptions

345

DQMHM030000 DS
D* Qmh Rtvm RTVM0300
D QMHBR03 1 4B 0
D* Bytes Return
D QMHBAVL09 5 8B 0
D* Bytes Available
D QMHMS09 9 12B 0
D* Message Severity
D QMHAI00 13 16B 0
D* Alert Index
D QMHAO03 17 25
D* Alert Option
D QMHLI02 26 26
D* Log Indicator
D QMHMID 27 33
D* Message ID
D QMHERVED19 34 36
D* Reserved
D QMHNRDF 37 40B 0
D* Number Replace Data
D QMHSIDCS07 41 44B 0
D* Text CCSID Convert
D QMHSIDCS08 45 48B 0
D* Data CCSID Convert
D QMHCSIDR07 49 52B 0
D* Text CCSID Returned
D QMHORT 53 56B 0
D* Offset Reply Text
D QMHLRRTN00 57 60B 0
D* Length Reply Return
D QMHLRAVL00 61 64B 0
D* Length Reply Availa
D QMHOMRTN 65 68B 0
D* Offset Message Retu
D QMHLMRTN04 69 72B 0
D* Length Message Retu
D QMHLMAVL04 73 76B 0
D* Length Message Avai
D QMHOHRTN 77 80B 0
D* Offset Help Returne
D QMHLHRTN04 81 84B 0
D* Length Help Returne
D QMHLHAVL04 85 88B 0
D* Length Help Availab
D QMHOF 89 92B 0
D* Offset Formats

Figure 10.10: Format RTVM0300 from QSYSINC/QRPGLESRC member QMHRTVM (part 2 of 3).

CHAPTER 10: Message APIs

346

Format RTVM0300 returns quite a bit of information related to a message description.
We’re specifically interested in the following fields:

● The message ID, to identify the message containing the searched-for word

● The first-level message text, so it can be scanned for the searched-for word

● The second-level text, so it can be scanned for the searched-for word

In scanning the fields of the QSYSINC-provided QMHM030000 data structure, we quickly
find that the message ID is returned in field QMHMID. However, the first- and second-
level text fields for a message do not appear to be returned at a fixed location or with a
fixed length. Given the variable-length nature of these fields, this makes sense. Instead,
we find that the API returns an offset to the first level text, QMHOMRTN, the length of the
first level text, QMHLMRTN04, an offset to the second level text, QMHOHRTN, and the
length of the second level text, QMHLHRTN04. With this, we have everything we need.

D QMHLFRTN 93 96B 0
D* Length Formats Retu
D QMHLFAVL 97 100B 0
D* Length Formats Avai
D QMHLFE 101 104B 0
D* Length Format Eleme
D*QMHRSV203 105 105
D*
D* Varying length
D*QMHDR00 106 106
D*
D* Varying length
D*QMHSSAGE04 107 107
D*
D* Varying length
D*QMHMH04 108 108
D*
D* Varying length
D*QMHRDF 18 DIM(00001)
D* QMHLSRD00 9B 0 OVERLAY(QMHRDF:00001)
D* QMHFSODP00 9B 0 OVERLAY(QMHRDF:00005)
D* QMHSVT00 10 OVERLAY(QMHRDF:00009)
D*
D*
D* Varying length

Figure 10.10: Format RTVM0300 from QSYSINC/QRPGLESRC member QMHRTVM (part 3 of 3).

Using Retrieve Message to Read Message Descriptions

347

Figure 10.11 shows how this information is used to scan for a given word within the
first- and second-level text. Program FIG10_11 accepts one parameter, Word. This
parameter is the word that the program will scan for in the retrieved message’s first- and
second-level text.

h dftactgrp(*no)

fqsysprt o f 132 printer

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++
dFig10_11 pr
d Word 10 const

dFig10_11 pi
d Word 10 const

d/copy qsysinc/qrpglesrc,qmhrtvm
d/copy qsysinc/qrpglesrc,qlg
d/copy qsysinc/qrpglesrc,qusec

dGetMsg pr extpgm('QMHRTVM')
d Receiver 1 options(*varsize)
d LenReceiver 10i 0 const
d Format 8 const
d MsgID 7 const
d QualMsgF 20 const
d RplDta 65535 const options(*varsize)
d LenRplDta 10i 0 const
d RplSubs 10 const
d RtnCtls 10 const
d QUSEC likeds(QUSEC)
d RtvOption 10 const options(*nopass)
d CCSIDTo 10i 0 const options(*nopass)
d CCSIDRplDta 10i 0 const options(*nopass)

dConvertCase pr extproc('QlgConvertCase')
d Request 65535 const options(*varsize)
d InputData 65535 const options(*varsize)
d OutputData 1 options(*varsize)
d InputDataLen 10i 0 const
d QUSEC likeds(QUSEC)

dReceiver ds qualified
d Base likeds(QMHM030000)
d Variable 10000

Figure 10.11: Find all messages using a particular word, and print the message ID (part 1 of 3).

CHAPTER 10: Message APIs

348

dMsgTxt s 132 based(MsgTxtPtr)
dHlpTxt s 3000 based(HlpTxtPtr)
dNewMsgTxt s 132
dNewHlpTxt s 3000
dQualMsgF s 20 inz('QCPFMSG QSYS ')
dNewWord s 10
dMsgID s 7
dHit s 10u 0
dwait s 1

CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq
/free
if %parms = 0;

dsply 'Required word parameter not passed' ' ' wait;
else;
QUSBPRV = 0;

// Convert the parameter value to uppercase
QLGIDRCB00 = *loval; // set input structure to x'00'
QLGTOR02 = 1; // use CCSID for monocasing
QLGIDOID00 = 0; // use the job CCSID
QLGCR00 = 0; // convert to uppercase
ConvertCase(QLGIDRCB00 :Word :NewWord

:%len(%trimr(Word)) :QUSEC);

// Get the first message in QualMsgF
GetMsg(Receiver :%size(Receiver) :'RTVM0300' :' ' :QualMsgF

:' ' :0 :'*NO' :'*NO' :QUSEC :'*FIRST' :0 :0);

dow (Receiver.Base.QMHMID <> *blanks);

// Convert to uppercase the first level message text
if (Receiver.Base.QMHLMRTN04 > 0);

MsgTxtPtr = %addr(Receiver) + Receiver.Base.QMHOMRTN;
ConvertCase(QLGIDRCB00 :MsgTxt :NewMsgTxt

:Receiver.Base.QMHLMRTN04 :QUSEC);
Hit = %scan(%trim(NewWord) :NewMsgTxt);
NewMsgTxt = *blanks;

endif;

// if not found in first level text, look at second level text
if (Hit = 0) and Receiver.Base.QMHLHRTN04 > 0;

HlpTxtPtr = %addr(Receiver) + Receiver.Base.QMHOHRTN;
ConvertCase(QLGIDRCB00 :HlpTxt :NewHlpTxt

:Receiver.Base.QMHLHRTN04 :QUSEC);
Hit = %scan(%trim(NewWord) :NewHlpTxt);
NewHlpTxt = *blanks;

endif;

Figure 10.11: Find all messages using a particular word, and print the message ID (part 2 of 3).

Using Retrieve Message to Read Message Descriptions

349

Program FIG10_11 first tests to see if the Word parameter was passed. If not, it DSPLYs
appropriate error text. If a parameter was passed, the program initializes the Bytes
Provided field of the error-code structure to zero to indicate that errors should be
returned as exception messages to the program. The program then uses the Convert Case
API, QlgConvertCase, to convert the variable Word to uppercase and store the results in
variable NewWord. (The Convert Case API was discussed in chapter 9.)

The program then calls the Retrieve Message API, QMHRTVM, requesting that the *FIRST

message in message file QualMsgF (QCPFMSG in QSYS) be returned in the receiver
variable, using format RTVM0300. The receiver variable is defined as being
LIKEDS(QMHM030000), which is the QSYSINC include for format RTVM0300, followed by
10,000 bytes for the variable data that might be returned by the API. This variable data
will include the first-level text, the second-level text, the substitution variable formats,
and more. Based on the current maximums for these fields, we feel that 10,000 bytes
would be sufficient. (If you really wanted to be sure you had sufficient storage, you
could enhance this program by using the dynamic receiver variable approach introduced
in chapter 2.)

After the message has been retrieved, the program falls into a do-while (DOW) loop that
is exited when the returned messaged ID, Receiver.Base.QMHMID, is all blanks. When

if (Hit <> 0);
MsgID = Receiver.Base.QMHMID;
except GotOne;
Hit = 0;

endif;

// Get the next message
GetMsg(Receiver :%size(Receiver) :'RTVM0300'

:Receiver.Base.QMHMID :QualMsgF :' ' :0 :'*NO' :'*NO'
:QUSEC :'*NEXT' :0 :0);

enddo;
endif;

*inlr = *on;
return;

/end-free

oqsysprt e GotOne
o MsgID 10

Figure 10.11: Find all messages using a particular word, and print the message ID (part 3 of 3).

using the special values *FIRST or *NEXT for the Retrieve Options parameter, a blank
message ID field indicates that the end of the message file has been encountered.

If a message description was returned, and first-level text exists for the message
(Receiver.Base.QMHLMRTN04 > 0), then the first-level text is accessed by setting the
pointer MsgTxtPtr to the address of the Receiver variable (%addr(Receiver)), plus the
offset to the message text value (QMHOMRTN). As MsgTxtPtr is defined as the BASED

pointer for the MsgTxt field, the program now has direct access to the first-level text of
the message. The first-level text, MsgTxt, is now converted to uppercase by the
QlgConvertCase API. The uppercased results are stored in the work field NewMsgTxt.

FIG10_11 then scans the uppercased NewMsgTxt field for occurrences of the uppercased
value stored in the NewWord field. If that value is found in NewMsgTxt, the field Hit is
set to a positive value. Technically, this positive value is the first position in NewMsgTxt
where the value was found, but we really don’t care about the position (in this application,
anyway). All we are interested in is whether the value is found or not. If Hit is zero, the
value was not found in NewMsgTxt. The program sets NewMsgTxt to blanks after the
%scan to make sure there are no trailing characters remaining in NewMsgTxt when a
subsequent call to the Retrieve Message API has a message with shorter first-level text
than the current message. If the value is not found in NewMsgTxt (Hit = 0), the same
process is applied to the second-level text. If the word is found in either the first- or
second-level text (Hit <> 0), the message ID is written to the QSYSPRT printer file.

Whether the word is found or not, the program next calls the Retrieve Message API
asking for the *NEXT message description following the current message ID
(Receiver.Base.QMHMID is being passed as the fourth parameter of the API call). It then
continues the DOW loop. When all messages have been processed, the program ends.

Summary
This chapter provides some tools and examples for using message-handling APIs to
watch for a message, send a message, and read message descriptions from a message
file. However, there are many more APIs that deal with handling messages. This chapter
barely scratches the surface of all that is available. Be sure to explore the message APIs
on your own.

CHAPTER 10: Message APIs

350

Check Your Knowledge
Earlier in this chapter, you saw how to send status and completion messages. Add two new
messages to the SOMELIB/MSGS message file. The first message is message description
MSG0006, with a first-level text of “I found a problem with my input.” The second message
is MSG0007 with a first-level text of “This problem has caused me to stop running.”

Write a program that sends message MSG0006 as a diagnostic message to your program’s
caller. This diagnostic message should be followed by message MSG0007 as an escape
message to your caller. To get you started, your program’s caller is one call stack entry
above your program boundary in the call stack.

One possible solution to this task can be found in Figure D.10.B of appendix D.

Check Your Knowledge

351

