
Services

In this chapter we continue our SOA overview with a focus on services. 
A service includes the following aspects:

• a service implementation

• elementary access details

• a contract

A service implementation is the core business logic, which might be written in
Java, COBOL, Enterprise Generation Language (EGL), or any other
programming language.

Elementary access details include the location, which is an address where the
service implementation resides, and the binding, which identifies the transport
protocol (such as HTTP or Java Message Service) that formats a message at the
start of transmission and unformats it at the end of transmission. Formatting
occurs when the invocation message originates at the requester; in that case,
unformatting occurs when the message arrives at the service location. Formatting
also occurs if the service issues a response; in that case, unformatting occurs
when the response arrives at the requester.

A contract describes the service’s intended behavior and is independent of the
implementation details. The contract includes two elements: a service interface
and a Quality of Service.

C H A P T E R 2



The service interface provides a description of the data that can pass between a
requester and a service, along with details on each operation the service provides.
The interface includes information on the messages and answers the questions,
“What is the format of a message (for example, two strings followed by an
integer)?” and “What are the restrictions on content?” The interface also includes
details on the message exchange patterns, which indicate how the requester and
service interact. “Does the service always respond to the requester?” “Can the
service do a task without reporting back?”

Some aspects of the service’s behavior are implicit in the service interface. For
example, a service might provide a stock quote but return an error message if the
submitted stock symbol is invalid.

An interface is an aspect not only of a service but also of a high-level design for
the service. The interface precedes the implementation in most cases, and the
service implementation (or sometimes the service as a whole) is said to implement
the interface.

The service’s Quality of Service (QoS) is a description of interaction rules that go
beyond those implied by either the elementary access details or the service
interface. For example, the service might require that the invocation message
include authorization details that prove the user’s right to use the service. You’ll
learn more about QoS later in the chapter.

One note about the service contract: Rather than “contract,” we could have used the
phrase “proposed contract” because a requester and service may undertake a
negotiation, possibly at run time, to determine certain details of the interaction. We
expect this kind of negotiation to become more prevalent as time goes by. For
further details, see the description of the WS-Agreement specification in Appendix A.

Last, the terms “service” and “service implementation” are often used
interchangeably. The second term is most appropriate when the focus is on the
details of the business logic.

1122 Chapter 2: Services



Loose Coupling
As you learned in Chapter 1, an important characteristic of an SOA is loose
coupling, which means that one unit of software is largely independent of another.
This independence implies that changes to one unit of software cause less turmoil
and cost to an organization than when the software is more interdependent. It also
means you can substitute one unit of software for an already-deployed unit
relatively easily. The value of loose coupling is greatest when technical changes
are expected over time.

The following questions identify some of the ways in which a service might be
loosely coupled with other software.

How easily can the logic inside a service be revised without changing how the
service is invoked?

The logic and programming language of a service implementation should be
independent of the service contract. You can change the service internals for
greater efficiency without changing the requester in any way.

How protected is the requester from disruption in the face of increased service
capabilities?

An SOA runtime product may support either of two kinds of service interface:

• Remote procedure call (RPC): In this case, the requester submits a set of
arguments to a particular service operation as if invoking a local function.
The service uses each argument as a discrete unit in accordance with the
meaning and type of the related parameter.

• Document: In this case, the requester submits a string of arbitrary length,
and the service reviews that string to determine what operations to perform.

The RPC and Document categories overlap, as when an RPC invocation submits a
single string to a service that in turn dispatches the message to one of several
subroutines. The point, however, is that if the contract between requester and
service features a long string (rather than a set of typed arguments) and if a later
version of the service adds new functionality, the service interface is unaffected.

Loose Coupling 1133



Requester updates (as needed to use the new service functionality) are likely to be
needed only over time rather than in urgent response to a change in the service.

How easily can a service be incorporated into a larger process without changing
the service implementation?

A change to a runtime security mechanism, for example, shouldn’t require the
code for a service to be rewritten or recompiled. The looseness of coupling in this
case may depend on the power of an SOA runtime product because that product
allows more decisions to occur at configuration time.

To what extent is a requester dependent on service availability?

If an SOA runtime product maintains message queues on each side of a remote
transmission, the product can guarantee message delivery between requester and
service, in which case network failures will tend to have less of an effect. The
benefit is greatest if the requester isn’t waiting for a response.

Can the requester continue running in the absence of a response?

If the requester can invoke a service and continue running, the requester is less
dependent on service availability.

Is the service dependent on state information?

A specific requester might invoke the same service repeatedly to fulfill a single
task (to update a checking account, for example), and the service might need to
retain state information (such as a checking-account number) between each
invocation. In general, state information is the set of values that are needed for the
service to maintain a conversation with a specific requester.

If a service needs to retain state information, the SOA runtime product won’t be
able to direct processing to an identical service at a second location, as might be
necessary in response to network traffic. If the SOA runtime product can redirect
the state information as well, the restriction does not apply.

1144 Chapter 2: Services



Service Registry
A requester must be able to reference a service’s access and proposed contract
details, which are often available in an online registry. Such a registry often
conforms to the rules of Universal Description, Discovery, and Integration
(UDDI), as described in Chapter 5.

A company can create its own registry for internal use and can create additional
public registries, often in concert with other companies in the same industry. In
addition, the company SAP AG operates a public UDDI registry.

In theory, the requester can retrieve the registered information at run time;
however, this kind of programmatic retrieval is rare in practice. In most cases, the
registered information is retrieved earlier. The registered information may be
available to the requester at development time, as reflected in the requester’s code
or in the requester’s call to a library that contains the details. The library may be
written either before or after the requester is developed.

Alternatively, the registered information may be available to a network
administrator or other professional who configures and then deploys the requester.
This availability gives an organization greater flexibility because the selection of a
service can occur relatively late.

Chapter 9 describes configuration-time opportunities that are available when
you’re working with Service Component Architecture.

Service Level Agreements
A Service Level Agreement (SLA) is a document that gives human readers the
information necessary to decide how and whether to invoke a particular service
from other software. The presence and use of an SLA varies by SOA vendor and
corporate user. If present, the SLA

• includes elementary-access and proposed-contract details in most cases

• may be written by software designers to help negotiate what functionality is
to be included in a given service

• may communicate plans to potential service users and other interested parties

Service Registry 15



• may be the basis of a legal document that indicates what level of reliability the
service offers (for example, how many hours per week the service is available)

• may be used as an input to an automated process that creates invocation
details for use when developing a requester

Message Exchange Patterns
A service supports one or more message exchange patterns (MEPs), or kinds of
interaction between requester and service. At this writing, only two elementary
MEPs are widely used.

Figure 2.1 depicts a one-way pattern (sometimes called in-only or fire-and-forget),
in which the requester invokes the service with a request (an input message) but
does not receive a response.

Figure 2.2 depicts a request-response pattern (sometimes called in-out), in which
the requester invokes the service with a request and receives a response.

Two other elementary MEPs are uncommon but will be supported over time.

1166 Chapter 2: Services

Figure 2.1: One-way pattern

Figure 2.3: Notification pattern

Figure 2.2: Request-response pattern



In a notification pattern (sometimes called out-only), the service submits a
message in the absence of an ongoing conversation, as when a service sends news
to a subscriber. Figure 2.3 illustrates this pattern.

Figure 2.4 depicts a solicit-response pattern (sometimes called out-in), in which
the service submits a notification to a requester and receives a response.

The following advanced features are available for the first two MEPs and will be
available for the others in the future:

• A message in the returning direction can be optional.

• A service or requester can submit a fault message, which is data sent in
response to a runtime error.

Synchronous and Asynchronous Communication
The request-response pattern and the solicit-response pattern represent
synchronous communication, which means that the initiator of the message
suspends processing until the initiator receives a response. In contrast, the one-way
and notification patterns represent asynchronous communication, which means
that the initiator of the message continues running the next coded statement, with-
out suspending processing.

Callbacks
Assume that Service01 invokes Service02. To complete the interaction, Service02
may issue a callback, which is an invocation of an operation that can be provided
by Service01. The invoked operation is called a callback operation, as shown in
Figure 2.5.

Message Exchange Patterns 1177

Figure 2.4: Solicit-response pattern



Service02 could be a credit-rating service that can respond to a request for
customer details only after an hour, while Service01 is a service that requests
credit details. Service01 shouldn’t wait for the details, because the wait would use
memory and other resources. Instead, the overall business process can ensure that
Service02 invokes a callback operation in Service01.

A callback doesn’t necessarily involve asynchronous processing, although the two
ideas often come together. Consider the following variations:

• Service01 requests a credit report and receives a confirmation of the request,
then waits for the report as before.

• Service01 allows Service02 to issue synchronous callbacks that request
additional details.

From a business point of view, a callback operation is like any other. Service01
can have multiple operations, and the callback operations in Service01 are those
invoked by services that previously received requests from Service01.

Quality of Service
A service interface defines the interaction between a service and a requester in a
narrow sense, but the interaction can have many additional characteristics. In some
contexts, Quality of Service refers only to reliability guarantees, such as the
percentage of time a service is promised to be available. In our view, however,
QoS refers to all runtime processing aspects that go beyond the service interface.

1188 Chapter 2: Services

Figure 2.5: Request and callback



QoS also includes advanced aspects of runtime processing:

• reliability guarantees

• security mechanisms

• service coordination, including transaction control

• runtime update of address, binding, and message content

A particular service may be offered with different QoS characteristics, as when a
company charges a different fee in exchange for a different level of reliability.

In describing the QoS issues, we hope to give you a sense of the flexibility and
power of an advanced SOA runtime product.

Reliability Guarantees
Reliability guarantees may be described in a Service Level Agreement. The
guarantees can be affected by the quality of the network hardware, and most are
quantitative. For example:

• During what percentage of time will the service be available, or during what
hours?

• What is the expected throughput — the number of messages to which the
service will respond in a given duration?

• What is the expected latency period — the waiting time between a service
request and response?

• What is the probability of a successful response within the latency period?

• Is message receipt assured, even if the network fails?

Security Mechanisms
Security mechanisms are often affected by features of the SOA runtime:

• Authentication: How does the SOA runtime ensure that a message is from a
specified requester?

Quality of Service 1199



• Authorization: How does the SOA runtime ensure that a specified requester
is allowed to access a specified service?

• Confidentiality: How does the SOA runtime ensure that the content of a
message isn’t viewed during transmission?

• Integrity: How does the SOA runtime verify that a given message was
unchanged during transmission and was delivered with all data in the
appropriate order?

• Non-repudiation: How does the SOA runtime verify the integrity of a given
message and ensure that the message came from the specified requester?
Non-repudiation proves (for example) that a party to a transaction made a
promise, as in an online purchase.

• Protection from denial-of-service attacks: How does the SOA runtime 
prevent a flood of messages from reaching a given service?

Service Coordination
Service coordination concerns how services work together to fulfill a business
process. Coordination takes one of two forms: orchestration or choreography.

As Figure 2.6 illustrates, orchestration refers to a form of processing in which one
service acts as a controlling hub in relation to other services, which act as spokes.
The hub might receive a message from one spoke and make decisions based on
that message, as by changing the format or content of the data and invoking some
other spoke.

2200 Chapter 2: Services

Figure 2.6: Orchestration



As Figure 2.7 shows, choreography refers to a more decentralized form of
processing, where multiple services interact without submitting messages to a hub.
This sort of processing is based on rules known to each service and may be
enabled by establishing a local configuration file for each service.

Often, orchestration is said to coordinate services in the same company, while 
choreography is said to guide the interactions of trading partners. Usage of the
terms is inconsistent, and some analysts employ them interchangeably.

An important subset of service coordination is transaction control, which primarily
concerns how services handle the update of databases. In general, a service may
commit changes (ensuring that changes are permanent) or rollback changes
(returning the database to a previous level of update). Among the QoS issues:

• Is the service allowed to revise database changes that were made (but not
committed) by the requester and possibly by other services?

• Is the service prohibited from issuing a commit or rollback? A prohibition is
likely if the requester is responsible for committing changes made by the
service.

• Does the service depend on a compensating service? A compensating service
is one that will be invoked only if necessary to make up for a runtime change
(in this case, a database change) that is later found to be undesirable. As
invoked by a coordinating service, for example, Service01 commits a

Quality of Service 2211

Figure 2.7: Choreography



database change (to indicate that a purchase was completed); days later, the
coordinating service receives a cancellation and invokes a compensating
service to reverse the effect of the committed change.

Last, the term coordination sometimes refers specifically to a kind of orchestra-
tion that is detailed in the WS-Coordination specification, as described in
Appendix A.

Runtime Update of Message Content or Destination
Some QoS issues are especially meaningful in the context of a network that handles
a variety of services, computer types, and data-traffic patterns. Among the issues:

• Can the flow of traffic be changed at run time? The change usually has one
of two purposes: to provide faster access to higher-priority services or to
equally distribute the data being directed to services that provide the same
functionality but reside at different locations.

The process of altering data traffic to conform more closely to a
performance ideal is called load balancing. This process might occur in
response to a configuration setting or to an operator’s intervention.

• Can a message be reformatted at run time — for example, to allow
transmission to a computer that uses a different transport protocol? If so, a
configuration setting may be involved.

• Can a service be configured to send messages to a destination other than the
requester — for example, to print a runtime error or to invoke an additional
service in some cases but not others? If so, either a configuration setting or
details in the message itself can cause the change.

Endpoints, State, and Correlation
The language of SOA is a bit messy, with the same terms having different
meanings in different contexts and in different minds. This section tells the
relatively absolute truth.

An endpoint is a location: the addressing details that are necessary and sufficient
to access or provide a service at run time. If service A is on both machine 1 and

2222 Chapter 2: Services



machine 2, you can speak of two endpoints, and in this case, endpoint is
synonymous with service location.

The endpoint is a step removed from the implementation. The operating system

• receives inbound data at the endpoint and presents that data to the
implementation code. The implementation is said to be listening at the endpoint.

• accepts outbound data at the endpoint and transmits that data to a service at
another endpoint.

From the point of view of a network administrator, a service instance is an
implementation that is listening at a particular endpoint. If service A is on
machines 1 and 2, two service instances are available. When a request arrives at
run time, the service instance dispatches the request to a thread of execution,
which is an operating-system facility that runs the service. If two requests arrive at
the same time, each request is given its own thread.

Most services (specifically, most service implementations) are stateless, which
means that the runtime code never relies on data from a previous invocation. A
stock-quote service, for example, receives a trading symbol and returns a quote,
and the data used in one invocation is independent of the data used in the next.

A stateful service, in contrast, sometimes needs access to values that were
assigned in a previous invocation of the same or another service. The need arises
because the service participates in a multi-step conversation, which is a sequence
of invocations that constitute a relationship between the service and a requester.

In the usual situation, a requester’s invocation initiates the conversation, and
subsequent requests from the same requester are valid only if they arrive in a
specific sequence. The service has a technology-specific way to ensure that each
request is directed to the appropriate conversation rather than to a conversation
occurring at the same time between the service and a different requester.

A conversation can be based on a persistent connection, but two other options are
far more likely, especially in services that run for days or months. In one option,
an SOA runtime product uses the input message or a system value to direct the
message to the appropriate conversation. In a second option, the service

Endpoints, State, and Correlation 2233



implementation itself uses the input message. In either case, state is a processing
status — the sequential position of the last received message in the sequence of
messages that are expected on the service’s side of the conversation.

Figure 2.8 illustrates a service conversation over time. As shown, a purchasing
service establishes a conversation with a manufacturing service and expects a
sequence of messages (confirmed, shipped, invoiced) for a specific order. When
the endpoint of the purchasing service receives the confirmed message, for
example, the service implementation ensures that

• the message applies to the appropriate conversation

• the state of the purchasing service changes so that at the next receipt of data
from the requester, only a shipped message is considered valid

When a business analyst talks about “directing a message to the correct service
instance,” the meaning is really to direct a message to the appropriate conversation.
We’ll accept this point of view, using the term service instance (or process
instance) to mean the runtime logic that handles a conversation with a specific
requester.

2244 Chapter 2: Services

Figure 2.8: Conversation over time



To ensure that a message is directed appropriately, you often need to include
specific IDs in the message — for example, a customer ID, an order ID, an invoice
number, or some combination of identifiers. Those identifiers also correlate the
processing done by the instance of one service (for example, the service that sends
a purchase order) with the processing done by instances of other services 
(to confirm an order, send a shipment notification, and so on).

We say more about correlation in the chapters on Business Processing Execution
Language (BPEL).

Endpoints, State, and Correlation 2255




