

Chapter 1
Introduction to Java EE

for IBM WebSphere Application Server,
Version 7.0

Chapter Topics

• What is WebSphere?
• A brief history of Java EE
• Java EE architecture
• Introducing WebSphere

Business and machines have been partners since the Industrial Revolution. As with any
other business machine, businesses incorporated computers as a means to extend the
productivity of workers, complete long-running tedious tasks without complaint, and
maintain business records—the lifeblood of the business—with the net result being
reduced operational costs. Computers were thus used only within the business—they
were not intended for the customer.

The innovation IBM termed e-business in the 1990s added to the tasks of business
computers that of interfacing with the customer. Since then, as companies the world over
struggle to remain competitive, e-business has emerged as a way to reach a potential
global marketplace, while drastically reducing costs.

Take a moment to consider the significance of this: When customers think of a business,
they most likely think of the services that business offers, the reliability of these services,
how readily accessible they are, and how quickly the business renders the services. Taken

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

2

together, these aspects of a business represent, in the minds of its customers, the quality
of service the business offers.

Inevitably, customers derive their perception of this quality through the “face” of the
business. In the beginning, that face was human: The carrier delivered the newspaper; a
banker granted the loan; and at the better grocery stores, courteous grocery staff carried
the groceries to the car.

The substitution of the human face with the Web interface is perhaps the most delicate
and most critical of all business transitions. Customers certainly will not expect fewer
services or reduced quality from e-business, but, rather, more services and higher quality.
Furthermore, the success of a business is now measured in mouse-clicks, not miles to the
mall. Indeed, it is becoming very difficult to imagine a business that is not an e-business,
or at least not substantially enabled by the Internet.

Change is inevitable and rapid. This is a given in the world of information technology
(IT). The enterprise developer is now at the center of the most significant change in IT
since the advent of the enterprise application: the widespread adoption of service-oriented
architecture (SOA) as the model for e-business.

While enterprise developers still develop and deploy distributed enterprise-level
applications that model an organization’s processes and practices, they must also
incorporate multiple applications into a higher-level architecture. In other words, the
application is no longer the overarching architecture that models the business; rather, the
application itself has become (perhaps) just another component.

Enterprise developers work more closely than ever before with business analysts,
modelers, application architects, application assemblers, and systems administrators to
apply sound object-oriented analysis and design techniques to a business model, without
altering that model in any way. Developers understand application assembly within the
business domain across a multitier architecture, and they must assess carefully the need
for new components, the reuse of existing components, and the integration of existing
computing resources that are not Java related as services. Finally, developers require
system administration skills to tune the application at the code/design level to meet
performance requirements.

The systems we design and build should be limited only by our imagination, not by lack
of interoperability between proprietary technologies, or, worse, our ignorance of the very
existence of an enabling technology. Most importantly, the technologies we use must be
extremely flexible, to match the flexibility required of modern business. IBM has
recognized that the open-source and open-standards movements in the IT industry best
meet the needs of business, and that the merger of open-standards computing with

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

3

creative business analysis is the correct formula to make businesses grow. The
WebSphere Software group has evolved to enable this merger.

What Is WebSphere?
WebSphere is a software platform for e-business and a comprehensive suite of software
offerings to support this platform. The focus of this book is the creation, using the IBM
Rational Software Delivery Platform, of enterprise applications and services that will run
on any server product in the WebSphere suite. In addition to Web Services creation and
enterprise application development and deployment to WebSphere Application Server,
the Rational Software Delivery Platform supports the most comprehensive range of
tooling in the industry—a list too long to include here. Because this book addresses the
role of the enterprise developer, most of the focus will be on the composite set of tooling
known as IBM Rational Application Developer (hereafter referred to as Application
Developer).

Beginning with Version 4 and continuing through Version 7.0, WebSphere Application
Server and Application Developer are fully compliant with the Java Enterprise Edition
(Java EE) specification (formerly known as J2EE), thus delivering both open-standard
interoperability beyond the Java programming language and the platform independence
of Java. Furthermore, Java EE allows developers to focus on the integration of IT with
business processes, instead of on low-level implementation details. A brief history of
Java EE can help us understand how WebSphere supports modern enterprise computing.

A Brief History of Java EE
Java EE is the convergence of the Java Programming Language, the Common Object
Request Broker Architecture (CORBA), and X/Open transaction specifications. Thus,
work on Java EE really began with Sun, IBM, and others in the Object Management
Group in 1989. However, the specification called J2EE did not emerge until the late
1990s in an effort to make distributed enterprise computing more agile by simplifying the
tasks of development and deployment. At the heart of the roadmap to enterprise
computing, Java EE promised to separate the programming logic from the technology
plumbing. Developers could focus on the design aspects of computing as they developed
Java components, and the infrastructure would provide the necessary transport and
transaction services in an open, platform-independent way.

Major challenges of e-business include security, dynamic processing, and growth. These
are real business requirements, rather than computing concepts.

First, to conduct e-business, organizations must make information usable, available, and
secure. A traditional storefront business achieves security in physical ways, such as with
locks and keys. To do e-business, our computing model must emulate those physical
security mechanisms.

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

4

Second, data that just sits there is not business: The data needs to be manipulated—
manipulated in such a way as to resemble actual, intuitively satisfying business processes
(e.g., transactions). A transaction models the concept of an indivisible unit of work that
supports the business.

Once we have secure transactions involving business data, we still need one ingredient to
complete an e-business application: growth. Businesses that do not grow do not survive.
Because growth implies that each new customer receives the same, if not improved,
quality of service, a business often must acquire new physical property and hire new
employees to support that growth. In computing terms, this means that throughput must
be scalable, to accommodate increased demand.

CORBA led the way to vendor-independent distributed computing. Many of the good
ideas of Java EE, such as services, which we will be discussing shortly, actually appeared
in CORBA first.

The Java solution for the incorporation of CORBA functionality was Enterprise
JavaBeans (EJBs), a way to incorporate the robustness of the CORBA Object Request
Broker (ORB)’s transactional and secure services into a standard architecture. Existing
CORBA implementations, although based on the same, robust CORBA standards, were
not “standard” (i.e., portable and interoperable). But EJB went beyond CORBA: The
designer of Java wanted the remote procedure-calling architecture to be more intuitive
than the complicated and nongenial CORBA code. Incorporating the intuitiveness and
ease of use of JavaBeans technology into CORBA-compliant components was the
deciding factor in the industry acceptance of EJB over CORBA as the e-business solution
of choice.

With EJB, Java provided a technological basis for implementing robust e-business
solutions, addressing and going beyond the technologies CORBA provided. However, the
picture was not complete. As programmers began to incorporate the new Java
technologies into their solutions, it became apparent that there was no true architectural
standard to which programmers could apply the new technologies. In other words, Java
needed to evolve from a set of technologies into a framework that would standardize not
only the technologies used but also the way in which they were used in architecture. This
standard would become the J2EE specification, which is the basis for this entire book.

Java EE Architecture
When the Java EE specification mentions architecture, it clearly refers to runtime
architecture. (Note: Henceforth, although not always stated explicitly, this discussion is
limited to the Java EE 5 framework specification.) Every discussion of this architecture
must begin with the figure from the specification itself that you see in Figure 1-1.

Figure

Altho
its ma

1
2

Also
conta
diagr
“fille

We w
will c
comp
discu
their
conta
appli
choic

Introduct

e 1-1: Java E

ough the diag
ain purpose

. That there

. That those
the Web c

implied in th
ainers/compo
ram—in fact
d in” in the t

will use this d
characterize
ponents, syst
ussion of thes
definition re

ainers, as we
cation roles

ce in this boo

tion to Java E

EE 5 Architect

gram in the f
is to outline

e are specific
e componen
container and

he figure is a
onents to one
, absent from
text of the Ja

diagram to p
the Java EE

tem compon
se three arch
eally implies
ell as the tran
as part of th

ok, although

EE for IBM W

ture

figure may i
 two things:

c component
nts need spec
d the EJB co

a connectivi
e another). A
m any diagra
ava EE spec

provide an ou
E platform as

ents, and sta
hitectural ele
s, and was ul
nsport protoc
he platform a
h certainly im

ebSphere Ap

5

imply a prog

ts such as se
cific runtime
ontainer prov

ty specificat
Although the
am in the act
ification.

utline for mo
 being divid

andard servic
ements with
ltimately res
cols, provide
architecture—
mplied within

pplication Se

gramming ar

ervlets, JSPs
e support, wh
vide.

tion (those a
ey are obviou
tual specifica

ost of the res
ded (implicitl
ces (yet to co
the applicati

sponsible for
e. We will tr
—once again
n the Java EE

erver, Versio

rchitecture, a

, and EJBs.
hich containe

arrows that c
usly blank in
ation—the tr

st of this cha
ly) into appl
ome).We wi
ion compone
r, the service
reat the notio
n, a kind of p
E specificati

on 7.0

at some leve

ers such as

onnect the
n this
ransports are

apter: We
lication
ill begin this
ents, becaus
es that the
on of
pedagogical
ion.

l,

e

s
e

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

6

Java EE Architecture: Application Components

This might be a good time to bring out a salient point in the definition of Java EE
application components: The Java Platform, Enterprise Edition specification, v5 (Java EE
5 specification) says, “Application components can be divided into three categories
according to their dependence on a Java EE server”:

• Components that are deployed, managed, and executed on a Java EE server.
These components include Web components and Enterprise JavaBeans
components.

• Components that are deployed and managed on a Java EE server, but are loaded
to and executed on a client machine. These components include HTML pages and
applets embedded in HTML pages.

• Components whose deployment and management is not completely defined by
this specification. Application Clients fall into this category. (Java EE 5
specification)

The Application Client
Instead of starting in the upper left-hand corner of the Figure 1-1 diagram, as is typical in
these reviews, we’ll begin with the component labeled Application Client. Historically,
this is what we’ve always known, simply, as a computer program. Before Java EE was
released, the name for this component in Java terms was just application: a set of related
methods, linked together by a runable method; namely, the main() method. At other times,
this component was referred to as standalone, which implied that it required only the
Java Virtual Machine (JVM)—no container—to execute: The JVM was given the name
of the class, as an argument, which contained the main() method, and the JVM executed
that method. At some point, the Java EE architecture designers realized that the fact that
the application was standalone was inconsistent with the component model, which
already had been applied to servlets and EJBs. In other words, everything, including the
application, should be a component, which by definition, was a software element that
required a container. Thus was born the client container, which was to run application
client components.

In the Java EE 5 architecture, the application client is a largely graphical program, which
gets its data from EJBs, running in an application server, via access to the Java Naming
and Directory Interface (JNDI) namespace. So, put another way, the application that
formerly could stand alone will now be a client to a Java EE server, with the client
container providing access to both the JNDI namespace of that server and the necessary
libraries (e.g., javax.naming).

Application clients also require a JVM to execute in—not the JVM of the application
server variety, but a basic JVM that resides on the client side. We will try to flesh out the
nature of these components in both the container section to follow and in the
packaging/deployment discussion of chapter 16. (If, on the whole, you find the treatment

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

7

of application clients “vague,” it is. The Java EE 5 specification says, “Future versions of
this specification may more fully define deployment and management of Application
Clients.”)

The Applet
The applet (the name implies “little application”) is often compared to the application
(the application client, which we have just discussed above) in early literature. In fact,
many texts contained exercises that asked the developer to convert an application into an
applet, and vice versa.

The Servlet
Servlets are among the “Web components” in the first category of components mentioned
at the beginning of this section. We will cover servlets in detail in chapter 3. The strength
of servlets lies in their ability to generate and deliver dynamic content in response to
requests.

The JavaServer Pages (JSP)
JavaServer Pages (JSP) were a response to the problems inherent in embedding HTML in
servlet code that was ultimately to be compiled by an ordinary Java compiler. Escape
characters need to be included to differentiate between similar notions the compiler
recognizes. Also, the compiler, or the Java editor in Rational Application Developer,
cannot check the validity of the HTML. JSP technology, in contrast, enables an enterprise
developer to write the functionality of a servlet in purely HTML form; the servlet’s
syntax is protected by the system’s HTML editor, such as the Page Designer in IBM
Rational Application Developer.

Moreover, a best-practice idea has been developing that recognizes a design pattern from
SmallTalk called Model-View-Controller (MVC). Simply put, MVC requires that the
code in each element of an application restrict itself solely to the role of that element in
the overall architecture of the application. In other words, code that processes business
data (fulfilling the role of model) should remain separate from code that displays the
results of that processing (fulfilling the role of view). Code that delegates and coordinates
between functions in the view and model—i.e., code that controls the flow between other
functions―falls into the role of controller. The JSP fulfills the role of view. When used
as part of MVC, the JSP page is commonly referred to as a display page. We include a
more complete discussion of JSPs in the MVC pattern in chapter 4.

The Filter
Often, servlets and JSP pages require preprocessing, such as logging and security
checking. The filter is used to perform any preprocessing that a servlet or JSP requires.

JavaServer Faces (JSF)
JavaServer Faces (JSF) technologies have been added to the Java EE specification to
facilitate Web application development. JSF is a framework that provides developers

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

8

with components to develop Web interfaces and gives tool providers a specification in
Java EE that they can build tools around.

The Web Event Notifier
The Java Standard Edition (JSE) provides an event-notification system, which allows
components to be notified of events fired by other components. For a time, this
mechanism was absent from Java EE. As of J2EE 1.3, however, at the Web component
level, an event-notification system, which allows Web components to trigger functions in
other Web components via event notification, was added to the Web container’s
functions.

The Enterprise JavaBean (EJB)
In the earliest stages of development of the EJB specification, one could say that an EJB
was an inherently remote, network-aware, distributed transactional component. Certainly,
the EJB was conceived as Java’s response to the remote procedure call (RPC), of which
CORBA and, now, Web Services are also attempts at a solution. The notion of “bean” in
the name Enterprise JavaBean stems from the design intent of making EJBs reusable
components similar to JavaBeans, which are intended to be self-describing Java software
components. Also, EJBs advertise their properties via getters and setters, and they use
Java Reflection in a comparable way to JavaBeans. But it is important to make a clear
distinction between JavaBeans and Enterprise JavaBeans.

With the advent of EJB 2.0, one can no longer define an EJB as being inherently remote,
since local EJBs are inherently not remote but are still EJBs. Insofar as local EJBs are not
remote, they also are not network aware and, likewise, not truly distributed.

Whereas the Java EE 5 specification states that the EJBs “typically contain the business
logic of a Java EE application,” the entity EJB is probably used more for persistence than
for execution of business logic. The session EJB could be used to execute business logic,
but there are contending design patterns, most notably the EJB Command pattern, that
would place the business logic in JavaBeans and use the stateless session EJBs as
“transaction listeners”—presenting an interface to coarse-grained business processes.

Because of inherent problems in the concept of entity EJBs, and the requirements put on
the shoulders of developers who were responsible for their design, implementation, and
deployment, the Java Persistence API (JPA) and annotations in Java EE are becoming
very popular as an alternative to the traditional entity bean mapped to a backend data
source.

Java EE Architecture: System Components

We continue to follow the organization implied in Figure 1-1, in which the Java EE
platform is divided (implicitly) into application components (which we have just
discussed), system components (the current section), and standard services (yet to come).

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

9

When we refer to system components, we are talking about those features in the
architecture that provide the runtime environment for the application components. At one
point historically, system components were loosely referred to as engines—for example,
there was reference to the “servlet engine.” This notion would have been useful to carry
forward, but it seems to have gotten lost. However, engine would not have allowed the
easy incorporation of a resource adapter, and the resource adapter is indeed a system-
level runtime component.

Let’s characterize system components as those components that provide the runtime layer
between the application components and the external operating system, and any other
external runtimes (e.g., enterprise information system (EIS).

Resource Adapters
The resource adapter is somewhat ambiguous in that, while it is indeed a component, it
does not need to be a part of a Java EE Enterprise application, nor does it execute in a
Java EE container. It is used to provide a bridge between Java applications and non-Java
applications. For example, if a Java EE application needs to call and retrieve data from
the Customer Information Control System (CICS), a CICS resource adapter is installed in
the Java EE server. Interestingly, since the relational database is technically a non-Java
application (true, DB2 is implemented in Java), WebSphere wraps database access in a
relational resource adapter.

Containers
A container’s basic function is to manage and provide the runtime support for the
components it contains. This support can be broken down into four separate functions:

1. To provide access to all the necessary Java EE and JSE APIs (essentially, class
libraries) that the components will call.

2. To isolate the contained components from the other components in the Java EE
server.

3. To take care of the communication between components running in different
containers.

4. To manage the life cycles of objects, creating them so that they are available
when requested and destroying them when they are no longer needed. The final
function includes providing a way for the objects to persist themselves.

The necessity of the first function is clear: Precompiled class libraries have long been
used as a means of deferring many of the mechanical complexities of the runtime from
the programmer. This makes programming more intuitive, closer to resembling human
thought. The second function, that of isolation, provides the essence of this programming
model: It allows the runtime to be uniquely configured and managed through the use of
deployment descriptors, which the containers read and implement at deployment time. As
stated, the third function is really a logical follow-on of the first two: The complexities of
intercomponent communication are deferred to the containers, thus freeing the

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

10

programmer from the details, while at the same time allowing for isolation or grouping of
varied processes.

With regard to the first function of providing necessary APIs, we can see from Figure 1-1
that all containers must provide the Java 2 Platform Standard Edition 5 (J2SE 5) APIs
(many people believe all package names in J2SE 5 begin with the topmost package name
of java—e.g., java.sql; but there are plenty of javax and org packages). The Applet
container, uniquely, can provide the JSE through the Java plug-in product; most of us
have seen the dialog box concerning this plug-in after we have installed a new browser.

 The diagram also shows that containers must provide access to additional APIs from the
Java EE, although not uniformly but on a per-container basis. (These packages all have
javax for the topmost package name, indicating they are standard extensions to Java.)
These APIs often work in conjunction with the J2SE 5 packages to support the services
the containers provide, which we discuss in the following section.

Because containers must perform the functionality outlined in the deployment
descriptors, it goes without saying that the containers must understand the packaging
conventions and instructions contained in the deployment descriptors.

Java EE Server
Although JVMs are all based on the standard J2SE technology, they can be highly
specialized to provide server-side functionality. Such a JVM is referred to as a Java EE
server or, variously, an application server (the server being simply a set of threads that
run through instances of classes running on a standard JVM). The Java EE server is
minimally a JVM that is capable of managing the containers described above, with some
additional standard transaction-processing infrastructure. Also, there must be some
mechanism for interaction with application clients. The Java EE server must, ultimately,
fully implement the Java EE specification.

Drivers
The functionality of Java EE servers will be extended through their coupling (network
connectivity) with external resource managers, by implementing Java EE Service
Provider Interfaces (SPIs). The SPI guarantees that the implementation classes will work
with any and all Java EE products. These implementation classes are packaged software
collections, referred to as resources manager drivers, or, most commonly, just drivers.
Many external resource applications have corresponding Java APIs, such as Java
Database Connectivity (JDBC). Other external applications using non-Java APIs can be
connected to Java drivers through connectors.

Database
As stated in the Java EE specification 5, the Java EE platform requires a database that is
accessible by all components, with the optional exception of applets, through the JDBC

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

11

API. It follows then that all such database vendors and/or third-party vendors would have
to provide JDBC drivers.

JPA
The JPA is a standard for mapping objects to relational databases that Java EE requires.
This provides a standard management API for both Java EE and JSE components.

Management
For a time, there was no unified way to manage a Java EE server’s runtime: A plethora of
administration clients was developed, each with different capabilities. The Java EE
management specification provides an API to manage Java EE servers. There are
additional APIs under the heading Java Management Extensions (JMX)—obviously
extensions to the core APIs. Although the two are often interchanged, they are not the
same thing.

Web Services
While Web services evolved independently of Java EE, Java EE incorporated a number
of APIs in support of Web services. These include the Java API for XML-based RPC
(JAX-RPC) and its successor, the Java API for XML Web Services (JAX-WS), which
provides support for Web service calls using the SOAP/HTTP protocol. The SOAP with
Attachments API for Java (SAAJ) provides support for manipulating low-level SOAP
messages; the Java Architecture for XML Binding (JAXB) defines the mapping between
Java classes and XML; the Web Services for Java EE specification fully defines the
deployment of Web service clients and Web service endpoints in Java EE, as well as the
implementation of Web service endpoints using enterprise beans; and the Java API for
XML Registries (JAXR) provides client access to XML registry servers.

Java EE Architecture: Standard Services

In its effort to standardize the distributed computing environment, the Java EE Platform
requires a set of services. The term services is rather all-encompassing and so might
benefit from a bit of delineation at this point. The following paragraphs outline elements
of the specification that are considered services.

Naming and Directory
The Java Naming and Directory Interface service delivers a critical piece of the puzzle
with regard to distributed enterprise computing by providing the ability to organize and
locate components. Seen from the outside, this is simply the ability to bind a name to an
object so that that same object can later be located by only its name. A “name” object is
simply a string identifier bound to a specific location in memory or on a network. A
directory is a more robust “name” object that has attributes. For example, a Microsoft
Windows shortcut is an example of an icon that is bound, somehow internally within the
operating system (OS), to the location of the executable that is launched when a user
clicks the icon. Likewise, the directory C:\WINDOWS is the string identifier "C:\WINDOWS"

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

12

bound to the location in storage at which "files" (another type of directory) for the OS are
located. This WINDOWS directory has attributes, such as size and access permissions.

Resource Processing and Compilers
Extensible Markup Language (XML) has become an integral format for structured data
transfer. Its powerful structured data processing is reliant on a strict parsing mechanism
that can load highly configurable parsing grammars. Two such parsing engines are
referred to as Document Object Model (DOM) and Simple API for XML (SAX). DOM
parses documents by creating a tree structure from the grammar and storing that tree
along with the parsed data, so that it can be reconstructed. The SAX parser parses without
the tree structure—that is, in a linear, event style, thus saving on memory space. The Java
API for XML Parsing (JAXP) has APIs for both these parsing paradigms, as well as APIs
for XML Stylesheet Language for Transformations (XSLT) transform engines. The
Streaming API for XML (StAX) provides parsing capabilities for XML in applications
that require the capability to pull XML elements (in contrast to XML being pushed at an
application). Thus, Java EE components are guaranteed interoperability with XML-
centric applications.

EIS Interoperability Enablement
The Java EE Connector Architecture (JCA) is perhaps one of the most powerful services
added to the Java EE specification. The goal was to enable existing Enterprise
Information Systems (EIS) that had over the years proven their robustness, but that were
neither necessarily object-oriented nor CORBA-enabled, to be incorporated into the Java
EE architecture. Examples of such systems include the industry-tested CICS, from IBM;
in-house applications, such as those employed by JD Edwards; and third-party workflow
systems, such as PeopleSoft. It was clear that such systems could, on an individual basis,
connect to Java objects in much the same way the messaging and database connectivity
had been achieved—through a type of adapter.

Security
Clearly, the most difficult standardization effort would be security. Security mechanisms,
even physical ones, can be characterized as nonstandard—that is, we wouldn’t want just
one key that would allow entry to any car! In the J2EE 1.2 specification, inroads to such a
standardization were attempted with a broad set of application requirements, including
authentication; application-internal (thus, portable) authorization; and a delegation
mechanism for EJB, referred to as “run-as” mode. At the 1.3 level, rather than relying on
generalities (which would, of necessity, be implemented in a wide variety of proprietary
ways), the specification brought to the fore a set of Java APIs referred to collectively as
Java Authentication and Authorization Service(s) (JAAS). JAAS is actually an extension
of the pluggable authentication module (PAM) framework. The Java Authorization
Service Provider Contract for Containers (JACC) defines a standard contract between
Java EE servers and authorization service providers to allow pluggable authorization
providers for Java EE, further expanding security options.

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

13

Asynchronous Messaging
Often in an e-business application, processes must be synchronous—in this sense, we
mean that the pieces of a transaction must be executed serially, each piece waiting for
completion before continuing to the next. For example, the output of one action must be
the input of another action. The subsequent action cannot proceed before the prior action
has completed successfully.

While this is desirable for transactions whose flow must be serial, it has serious
performance implications. The locking behavior in databases, connections, EJBs, and so
on can slow the processing of many such transactions to an unacceptable level—even to
the point of halting the processing of the entire set of transactions (deadlock). Yet, given
the critical nature of the transactional integrity of today’s e-business applications, this is a
necessary evil.

The Java EE architecture requires that its components have access to such systems in a
standardized way. The Java Message Service (JMS) offers to Java EE components both
point-to-point and publish-subscribe asynchronous messaging, and it requires an external
service that can offer these options. Point-to-point messaging is characterized by the
notion that there must be a unique receiver for a given message, and that that receiver
must be connected at the time of delivery. The message delivery is considered successful
when the specific receiver acknowledges receipt of the message. Publish-subscribe
implies that messages are sent to many interested receivers, but the messages are retained
in a queue and delivered when a subscriber connects. Message delivery is said to be
successful when all subscribers have received a given message.

The message provider is configured administratively, and the service is offered through a
JNDI lookup. We will cover JMS in the context of message-driven beans in chapter 9.

Transactions
The backbone of any enterprise application is the ability to provide transactional integrity
for all the components and services mentioned in the Java EE architecture. This integrity
is made possible through two sets of Java interfaces: the Java Transaction API (JTA) and
the Java Transaction Service (JTS). Chapter 11 provides a thorough discussion of
transactions.

Java EE Architecture: Roles

At this point, most of our discussion is complete. We have defined a programming
model, the component style, delineating thoroughly the types of software components
that are required. In turn, the component design model implies a highly stylized runtime
environment, and we have delineated all of the services required of this runtime, even
breaking the runtime down into tiers of runtime support. Thus, the mechanics are in place
and ready to go. Because of the complexities of full Java EE implementations, certain
responsibilities must be assigned to persons and firms having specific roles, so that all the

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

14

tasks necessary for the development and deployment of enterprise applications are
accomplished.

Java EE Product Provider
IBM WebSphere Application Server is a Java EE product that provides the containers
and services, as well as other related features. These products are generally referred to as
servers in the architecture. They provide the runtime infrastructure. They do not refer to
development tools, which have their own role distinction. Thus, vendors such as IBM
provide Java EE-compliant application servers, database servers, and Web servers.
Because many of the services required of these servers are at the system level, OS
vendors such as IBM are well suited as product providers. The product provider must
provide the system-level integration with all the services the containers and server
require, but not necessarily the services themselves; vendors of messaging services,
transaction services, email services, and the like are not necessarily Java EE product
providers.

It is important to note that Java EE describes the minimum requirements for product
providers, specifically outlining the places where proprietary value-adds and
enhancements may be offered and where they may not.

The product provider also is responsible for the mapping to services tools, deployment
tools, and systems administration tools.

Tool Provider
Tool providers make tools for packaging and development of components, for
deployment into Java EE-compliant containers. IBM is such a provider. IBM Rational
Application Developer for WebSphere Software, Rational Software Architect for
WebSphere Software, and WebSphere Integration Developer are prime examples of
IBM’s contributions as a Java EE tool provider.

The tool specification draws a distinction at the point of deployment. Up to deployment,
these tools can be platform independent. Deployment and post-deployment tools may be
platform dependent; that is, tools for deployment, monitoring, and management of
applications do not have to be interoperable.

Application Component Provider
Component providers are developers of Java EE components. The specification implies
subroles, such as HTML designers and EJB programmers, but ultimately leaves the
sublist open. An enterprise developer using IBM Rational Application Developer for
WebSphere Software Version 7.5 is a prime example of an application component
provider.

Interestingly, application component providers do not assemble their components into
complete enterprise applications. Also, they do not necessarily implement security in

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

15

their EJB/Web methods. These functions are deferred to the application assembler and
the system administrator, respectively, per the strict definition in the Java EE
specification.

System Component Provider
This role was added to Java EE 1.4 to separate those components that were solely Java-
centric from those that incorporated EIS technologies—specifically, resource adapters.

Application Assembler
The application assembler puts it all together, optionally assembling components and
modules into enterprise applications. Because of the advanced tool-to-tool integration
between IBM Rational Application Developer and WebSphere Application Server, an
application assembler is not always required. The complete enterprise application is
ultimately packaged into an enterprise archive, known as an Enterprise Archive (EAR)
file. In chapter 16, we will explore packaging, as well as deployment and installation.

Deployer
The deployer is responsible for installation and configuration of an enterprise application,
which can include customization for the operating environment. In Java EE, deployment
can entail generation and compilation of the Java source in order to generate the stubs,
ties, and implementation classes specific to the operating environment. During the
installation of the application, the deployer maps the logical security roles onto real
principals (users and groups) defined in the authentication server. Thus, a deployer may
need to understand the application, as well as the security infrastructure of the enterprise,
in order to assign the roles to users correctly. The deployer does not establish security
policy but does, in a sense, implement security policy. Also, it is at this point that JNDI
names are configured and placed in the Java namespace. Finally, the deployer runs the
application.

System Administrator
The system administrator’s role doesn’t really begin until the application is installed. Of
course, it will probably fall to the administrator to install WebSphere Application Server
in the first place, create additional clones of that application server, and federate nodes on
a multiserver environment. Clearly, the administrator is solely responsible for the
configuration of networking and the general computing environment. Finally, it is the
administrator’s job to keep the application running, and running as quickly as possible.
To this end, the administrator must collect performance data, using the Performance
Monitoring Infrastructure (PMI) and Java Virtual Machine Profiler Interface (JVMPI) —
special interfaces implemented by the JVM to produce performance data, which we will
discuss in detail in chapter 15—and understand the application’s baseline performance.
Eventually, the administrator will tune the Java EE server.

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

16

The WebSphere Java EE Toolset
As stated at the beginning of this chapter, WebSphere is a software platform for e-
business. Let us now introduce in further detail the two products we will be concerned
with for the remainder of this book.

WebSphere Application Server

The specification describes a minimum set of facilities that all Java EE products must
provide. Most Java EE products will provide facilities beyond the minimum required by
this specification. This specification includes only a few limits to a product’s ability to
provide extensions. In particular, it includes the same restrictions as JSE on extensions to
Java APIs. A Java EE product may not add classes to the Java programming language
packages included in this specification, and it may not add methods or otherwise alter the
signatures of the specified classes.

However, many other extensions are allowed. A Java EE product may provide additional
Java APIs, either other Java optional packages or other (appropriately named) packages.
A Java EE product may include support for additional protocols or services not specified
here. A Java EE product may support applications written in other languages, or it may
support connectivity to other platforms or applications.

WebSphere Application Server Version 7.0 is IBM’s latest implementation of the Java
EE application server. While it is compliant with the JEE 5 specification we have
examined, WebSphere Application Server Version 7.0 includes added functionality, as
allowed in the Java EE specification, including IBM’s high-performance Web services
runtime and delivery system, as well as Programming Model Extensions (PMEs),
formerly only available exclusively in the Enterprise edition of WebSphere Application
Server. The packaging set comprises an Express edition, a Network Deployment edition,
and an Extended Deployment edition. The administrative user interface (UI) of this
edition is almost identical to that of Version 6—that is, Web browser-based. The server
configuration is maintained entirely in an XML repository (a profile). All editions of the
product comply with all Java EE server requirements, including EJB.

The Agent Controller is provided with this version, which allows for remote and local
debugging, performance profiling, and publishing integration with the Rational
Application Developer set of development products.

Finally, WebSphere Application Server Version 7.0 comes with IBM HTTP Server
Version 7.0, the latest build of IBM’s adaptation of the Apache open-source Web server.

Introduction to Java EE for IBM WebSphere Application Server, Version 7.0

17

IBM Rational Application Developer

As a Java EE tool provider, IBM offers a selection of development tools to fit a wide
variety of developer needs. IBM Rational Application Developer is based on the open-
source Eclipse platform (www.eclipse.org). Varying degrees and types of functionality
are added to the Eclipse platform to suit individual development needs. IBM has sought
to provide a broad set of test configurations of WebSphere Application Server, which
support these varying degrees of functionality. WebSphere Integration Developer (WID)
adds the Eclipse Workbench, Process Choreographer, a toolset for creating SOA
solutions, custom JCA, and wizards to help deploy those adapters, EJB, and JavaBeans as
Web services. WID is beyond the scope of this book.

Summary
We have now introduced WebSphere as IBM’s foundation server product that supports
enterprise computing as it relates to the open-standard platform of Java EE, which was a
major influence on the evolution of WebSphere. In the next chapter, we will introduce the
industry-standard development environment for component-based enterprise applications
and SOA solutions: IBM Rational Application Developer Version 7.5.

