
SQL in iSeries Navigator

I n V4R4, IBM added an SQL scripting tool to the standard features
included within iSeries Navigator and has continued enhancing it in

subsequent releases. Because standard features of iSeries Navigator are avail-
able to customers at no charge, this new feature marks a new era in SQL
development on the iSeries. For the first time, users can get a mainstream tool
to perform interactive SQLs without having to buy additional products. The
SQL engine has long been included within the DB2 database that ships with
every iSeries, but, the ability to send instructions to it required the installation
of additional products. The GUI scripting tool shown in Figure 2.1 can be
found within the database component of iSeries Navigator. In addition to
providing a free alternative to the STRSQL tool outlined in Chapter 1, this tool
provides a much more comfortable environment for developers new to the
iSeries. Avoiding the native 5250 interface and having the ability to perform
commonplace actions such as cut-and-paste goes a long way towards putting
new developers at ease.

23

22

Installing the Database Component of iSeries
Navigator
This component can be added, if it’s not already installed. To install the
Database component and the SQL scripting tool, open iSeries Navigator
and click on Selective Setup within the File pull-down menu. This launches
the Selective setup wizard (Figure 2.2) that controls which features of
iSeries navigator are installed on each PC. Before the setup tool itself is
launched, this small prompt window is displayed. Select which iSeries server
to use. If more than one is present in your network, all servers will be listed
in the drop-down box. Generally, I suggest you use the server that is at the
highest release level of OS/400. Some compatibility issues may exist if

CHAPTER 2: SQL in iSeries Navigator

24

Figure 2.1: Launching the Run SQL Scripts tool.

multiple iSeries servers on your network are running at different levels of
OS/400. Some features of iSeries Navigator may work with one server
and not others. To eliminate these compatibility problems, however, IBM
often provides PTFs for older versions of OS/400. After selecting the
appropriate server, you will be prompted to log into the server. The install
program then runs: It determines which components are already installed on
your PC and which other components are available for installation (Figure
2.3). If the Database component of iSeries Navigator (also referred to as
AS/400 Operations Navigator), is not selected, click the check box to select it
and click Next. The wizard then completes the installation process. Before
using the new component, be sure to apply any available patches. IBM
provides fixes to the iSeries Navigator application on a regular basis and free
of charge. If you want to download patches to iSeries Navigator, see the web
site www-1.ibm.com/servers/eserver/iseries/access/casp.htm.

Now that the database is installed and the latest patches have been applied, the
SQL scripting tool can be put to use.

Installing the Database Component of iSeries Navigator

25

Figure 2.2: Selective Setup tool.

Getting Started with the SQL Scripting Tool
Once the iSeries Navigator’s
Database component and its
scripting tool have been installed on
your PC, you can easily use SQL to
interact with the DB2 database on
your iSeries. Figure 2.4 demonstrates
how to launch the scripting tool.
Open the iSeries Navigator and right
click on Database beneath the server
you wish to work with. This opens a
list of actions to perform against that
server. Click on Run SQL Scripts…
to launch the GUI SQL scripting tool
(Figure 2.1).

CHAPTER 2: SQL in iSeries Navigator

26

Figure 2.3: Launching the Run SQL Scripts tool.

Figure 2.4: Launching the Run SQL Scripts
tool.

The primary feature of the scripting tool is a large text box. By default, this text
box contains the comment /* Enter one or more SQL statements separated by
semicolons */. The comment does not have to be deleted, but I find that it often
confuses students and interferes with writing code. So, for the sake of avoiding
future confusion, delete that comment. The text box should now be completely
empty and ready for you to enter your first SQL statement. But before running
an SQL statement, take a minute to configure the environment.

Configuring the SQL Script Environment
Click on the Options pull-down menu and select those options shown in
Figure 2.5. Five options are selected:

1. Stop on Error—Controls the behavior of the scripting tool when multiple
SQL statements are being processed in order. If any SQL statement has an
error, the processing of the remaining SQL statements is aborted. If this
option is not selected, each SQL statement is evaluated independently,
and all valid statements are processed.

2. Smart Statement Selection—When this option is activated, each time an
SQL statement is executed, the entire statement is executed, rather than
just the selected portion of the statement.

3. Display Results in Separate Window—Each time an SQL statement
runs and displays a result table, that result table is displayed as a separate
window on the desktop. If this option is not activated, the results are dis-
played in a separate tab at the bottom of this window.

4. Include Debug Messages in Job Log—Selecting this option causes any
diagnostic errors that occur to display in the job log for this session. The

Getting Started with the SQL Scripting Tool

27

Figure 2.5: Options pull-down menu.

job log can be reviewed by selecting Job Log… within the View pull-
down menu.

5. Run Statement on Double-Click—This option allows the execution of
SQL statements simply by double clicking on them. Semicolons must be
used to mark the end of each SQL statement.

After the options have been set, you are ready to execute SQL statements. For a
list of example statements that show the basic syntax of a large number of SQL
statements, open the Examples drop-down box. To insert one of the example
statements into the text box, click to select it, and then click the Insert button.
The selected example inserts into the textbox at the current cursor location.

If you already know which SQL statement you wish to run, simply type
it in. For example, type the following statement and run it by double clicking:

SELECT * FROM KPFSQL/CUST;

The following error should be displayed at the bottom of the window…

> select * from KPFSQL/CUSTMAST;
[SQL5016] Qualified object name CUSTMAST not valid.
Cause : One of the following has occurred: — The syntax
used for the qualified object name is not valid for the naming
option specified. With system naming, the qualified form of an
object name is collection-name/object-name. With SQL naming the
qualified form of an object name is authorization-name.
object-name. — The syntax used for the qualified object name is
not allowed. User-defined types cannot be qualified with the
library in the system naming convention on parameters and SQL
variables of an SQL procedure or function. Recovery . . . : Do
one of the following and try the request again: — If you want to
use the SQL naming convention, verify the SQL naming option in
the appropriate SQL command and qualify the object names in the
form authorization-id.object-name. — If you want to use the system
naming convention, specify the system naming option in the
appropriate SQL command and qualify the object names in the form
collection-name/object-name. — With the system naming convention,
ensure the user-defined types specified for parameters and
variables in an SQL routine can be found in the current path.
Processing ended because the highlighted statement did not
complete successfully

CHAPTER 2: SQL in iSeries Navigator

28

This error occurred because “/” is not a valid character for use in qualifying a
file name. To identify which library a file resides in, use the period (.) instead.
This SQL standard is followed on most platforms; the iSeries may be the only
system that uses the “/” (back-slash) character. Change the SQL statement as
below and double click on it again:

SELECT * FROM KPFSQL.CUSTMAST;

Figure 2.6 shows the results displayed in a separate window. If the results are
larger than the space provided in the window, the window can be resized; scroll
bars are provided to display different portions of the result table.

Notice that the error message from the first failed SQL statement is still listed at
the bottom of the SQL Script window. To erase the old messages, click on Clear

Getting Started with the SQL Scripting Tool

29

Figure 2.6: Result window.

Run History in the Edit pull-down menu. (The Edit pull-down menu also con-
tains the option Clear Results. This option is not used in this book. If we had
not selected the option to display results in a separate window, they would be
displayed at the bottom of the text box, similarly to the error messages. Select
Clear Results to erase previous result sets from the bottom of the text box.)

Now that the previous errors have been cleaned up, let’s look at sorting the data.
To sort the data, we’ll add an ORDER BY clause to the SQL statement. Enter
the statement as shown below and double click on it:

SELECT * FROM KPFSQL.CUSTMAST ORDER BY CUSTST;

The customers are displayed in alphabetical order by their states in a result
window as shown in Figure 2.7.

CHAPTER 2: SQL in iSeries Navigator

30

Figure 2.7: Results sorted by state.

Some SQL statements may require the SQL engine to create temporary access
paths to perform certain sorting and selecting logic. In some cases, performance
is improved if a permanent access path is built. To determine if the SQL engine
is building a temporary access path for this SQL statement click on Job Log…
in the View pull-down menu. The job log shown in Figure 2.8 is displayed.

Any SQL statements that generates the message “Access path built for file….” is
a candidate for this performance improvement task. Before building the index,
consider how often the SQL statement is executed and how much overhead the
access path will add to the database. Sometimes it is better to let the system
generate a temporary index for infrequently run SQL statements rather than cre-
ate an index that will require constant maintenance by the database engine. This
topic is reviewed in more detail in Chapter 5.

Running Multiple SQL Scripts
The SQL scripting tool supports the ability to run multiple SQL statements con-
secutively. Type the following SQL statements and click on the Run All icon:

Getting Started with the SQL Scripting Tool

31

Figure 2.8: Viewing the job log.

SELECT CUSTNAM, CUSTST FROM KPFSQL.CUSTMAST
WHERE CUSTST <> ‘OH’;

SELECT CUSTNAM, CUSTCTY from KPFSQL.CUSTMAST
WHERE CUSTST = ‘OH’;

Clicking on the Run All icon causes the execution of all SQL statements in
the text box. Figure 2.9 shows the results of each SELECT displayed in separate
windows.

By default, the windows are displayed directly on top of one another. To view
them simultaneously, they must be moved and possibly resized.

As you continue to create and execute SQL statements, at some point you may
wish to run many of the SQL statements in the script, but not all. IBM provides
the ability to begin execution at a specified point, ignoring all SQL statements
above that point in the SQL script. For example, write the following code, then
click the cursor on the second SQL statement; then click the Run from Selected
icon to execute all SQL statements from that point on:

SELECT * FROM KPFSQL.CUSTMAST;
SELECT CUSTNAM FROM KPFSQL.CUSTMAST WHERE CUSTST = ‘OH’;
SELECT CUSTNAM FROM KPFSQL.CUSTMAST WHERE CUSTST <> ‘OH’ AND
CUSTCTY = ‘MONROE’;

Clicking on the Run from Selected icon causes the execution of all SQL
statements in the text box starting with the one on which the cursor is located.
Figure 2.10 shows the results of each SELECT displayed in separate windows.

CHAPTER 2: SQL in iSeries Navigator

32

Figure 2.9: Results from Run All.

To force only one SQL statement to execute, either click the Run Selected
icon. after placing the cursor on the statement to be executed or
double-click on the statement to execute (if the Run on double-click option is
activated).

Saving and Loading SQL Scripts
After coding a number of SQL statements, or perhaps coding some particularly
complex SQL statements, you may want to save them for use at a later time.
Unlike the STRSQL tool in the native environment, this STRSQL tool does not
automatically remember your previous SQL statements. You must save them
manually. To save the three SQL statements written above, click on the Save As
option within the File pull-down menu. The Save As dialog box shown in
Figure 2.11 is displayed.

Getting Started with the SQL Scripting Tool

33

Figure 2.10: Results from Run from Selected.

Figure 2.11: Save dialog box.

Select the desired folder and file name. The file suffix defaults to .sql and should
not be changed unless absolutely necessary. If the SQL script files are saved into
a network folder or a folder on the iSeries Integrated File System (IFS), it can be
shared with other programmers or users on the iSeries. If it is stored locally on
your PC, only a user at your workstation can use it.

The history log maintained by the STRSQL tool is easy to use because it is auto-
matic. It’s harder to search, however, unless various important SQL statements
are saved into well-named files. By well-named, I mean that the names need to
intuitively reflect the SQL statements stored within them. SQL files named
TEST1.SQL, TEST2.SQL, and TEST3.SQL, don’t identify their contents. Had
they been named PartCost.SQL, TotalSales.SQL, and ProductionSchedule.SQL,
the nature of their contents would be clearer, and users would spend less time
hunting for the right SQL statement.

Once the script file has been saved, it can be recalled by selecting the Open…
option within the File pull-down menu. The Open dialog box shown in
Figure 2.12 is displayed.

Select the desired folder and file, then click on Open. All SQL statements saved
within the selected SQL script file are loaded into the text box. From there, they
can be executed as a group or individually as needed.

CHAPTER 2: SQL in iSeries Navigator

34

Figure 2.12: Open dialog box.

JDBC Setup
The SQL scripting tool has the ability to modify the user’s standard library
list to include additional libraries. In all the previous examples using the
scripting tools, the library name is hard coded. To avoid hard coding the
library name on every statement, the library can be added to the list of
libraries used by the JDBC connection to the iSeries. The scripting tool is
written in Java and connects to the iSeries DB2 database through a JDBC
driver. Configure the JDBC driver through the JDBC Setup Window, shown
in Figure 2.13. Open the window by selecting JDBC Setup… within the
Connection pull-down menu.

Getting Started with the SQL Scripting Tool

35

Figure 2.13: JDBC Setup Window.

The JDBC Setup wizard contains a number of different panels, each of which
can be displayed by selecting the corresponding tab at the top of the window. By
default, the Server tab is displayed. It controls the library list being used when
accessing data from the iSeries and the level of commitment control to be used.
If you are unfamiliar with library lists, they function similarly to Path statements
on a PC. They define the list of libraries to search for objects that are referenced,
without requiring the user or programmer to indicate where they are to be found.
The commitment control logic is generally only useful when updating the data-
base, and it requires that the files being updated already be journaled. (See the
command STRJRNPF in the CL Reference manual for more information.) If
commitment control is activated, then file updates can be made temporarily until
a COMMIT statement locks them into the database or the ROLLBACK state-
ment removes them.

The default search libraries are listed and can be modified. To eliminate the need
to specify the KPFSQL library on all the searches, add it to the end of the library
list, separated by a comma:

*libl, kpflib, kpfsql

The *libl indicates that the user’s standard library list should be used, and the
libraries KPFLIB and KPFSQL will be added to the end of the list. It does not
matter if the library names are coded in upper- or lowercase.

If you perform file updates within your SQL statements over files that are jour-
naled, you can activate commitment control. By setting the Commit mode to
*CHG, all changes are held as temporary changes to the database until a COM-
MIT statement is issued. In addition to holding the changes as temporary, the
affected records will be locked until the COMMIT is issued. If a ROLLBACK is
issued in place of the COMMIT, then all changes made since the last COMMIT
will be removed from the database. (Transaction processing and commitment
control are complex topics, beyond the scope of what we can address here. See
the SQL Reference manual for more information on Commitment Control.)

What if we wish to prevent the update of the database? The JDBC setup wizard
can limit the types of SQL statements that may be performed. To limit the SQL

CHAPTER 2: SQL in iSeries Navigator

36

Getting Started with the SQL Scripting Tool

37

Scripting tools ability to perform updates against the database, change the
Access Type. To set the Access Type, click on the Other tab within the JDBC
Setup wizard, as shown in Figure 2.14.

To restrict users to read-only access to the database, configure their JDBC
connection as read only. If read/call is configured, they will have the authority to
call SQL stored procedures on the iSeries. Note that virtually all high-level
language programs such as RPG, CL, and COBOL can be called as if they were
stored procedures. In Chapter 7, stored procedures are discussed in more detail.

SQL does not easily pull data from program-described or flat files. For example,
consider the following SQL statement:

Figure 2.14: Setting the JDBC access type.

SELECT * FROM INVHFLAT;

The results shown in Figure 2.15 return the hex translation of the data from the
non-database file.

This result is caused by the fact that program-described files are stored using
the Coded Character Set ID (CCSID) of 65535 rather than 37, as is used by
externally defined database files. To improve the way that data is returned
from a program-described file, use the JDBC CCSID Translation window
shown in Figure 2.16.

Open the window by clicking on the Translation tab within the JDBC
Setup wizard. Select the option to perform the translation of CCSID 65535,
and the data will be returned in a much more readable format. Rerun the
statement:

SELECT * FROM CUSTFLAT;

CHAPTER 2: SQL in iSeries Navigator

38

Figure 2.15: Data from a non-database file.

Figure 2.16: Translate the character set.

The result in Figure 2.17 now returns character data that is much more readable,
although the packed numbers within the record are still difficult to read. Using
the techniques explained in the previous chapter, however, the packed data can
still be displayed in a clear and readable fashion. For example:

SELECT SUBSTR(CUSTFLAT,4,30),
DECIMAL(SUBSTR(HEX(SUBSTR(CUSTFLAT,1,3)),1,5),5,0)
* CASE

WHEN SUBSTR(HEX(SUBSTR(CUSTFLAT,3,1)),2,1) =’F’
THEN 1
ELSE -1

END
FROM CUSTFLAT;

Figure 2.18 displays both the customer name and number in a readable format.
If the translation of CCSID 65535 is not selected, however, the customer name
will not display correctly, although the packed number is displayed correctly
either way. The HEX function used to format the Customer Number column
forces the data to be displayed correctly whether the character set is translated or
not. But the Customer Name column does not use the HEX function, so it
requires the character set to be translated.

Getting Started with the SQL Scripting Tool

39

Figure 2.17: Displaying the translated data.

Figure 2.18: Displaying packed numbers as decimal.

A number of other formatting issues can be controlled on the Format tab of the
JDBC Setup wizard, as shown in Figure 2.19.

The most significant of these formatting options is the naming convention.
By default, the SQL scripting tool uses the SQL naming convention that
requires a decimal point (.) between library and file names. To change the
naming convention to match that used in the native iSeries environment, set
the naming convention to *SYS. Then the back-slash (/) used to qualify the
file names in Chapter 1, will also be valid within the SQL scripting tool.
Other formatting options, such as default date and time formats, also can be
set here.

CHAPTER 2: SQL in iSeries Navigator

40

Figure 2.19: JDBC format options.

By default, the SQL Scripting tool connects to the server you selected when
launching the tool (the database icon is associated with a particular server). If
multiple servers exist within your network, the server you are connected to can be
changed dynamically by clicking on Connect to Server… within the Connection
pull-down menu. The Connect to Server dialog, shown in Figure 2.20, allows you
to change the active server. When changing servers, a new user ID and password
will be required before the connection to the new server is complete.

Redirecting the Output
Unlike the interactive tool in the native environment, the GUI SQL Scripting
tool does not provide specific tools for sending the output of SELECT
statements anywhere except to the screen. Windows, however, does provide
some of this capability. When displaying a result table, simply select (click
and drag across) all the desired rows and columns of data, as shown in
Figure 2.21.

Getting Started with the SQL Scripting Tool

41

Figure 2.20: Choosing the server to which to connect.

Figure 2.21: Selecting data to copy.

Then press Ctrl-C to copy that data. Once it has been copied into the clipboard,
it can be pasted into another object, such as an Excel spreadsheet, Word
document, or email. Figure 2.22 shows the data inserted into an Excel
spreadsheet.

Its easy to underestimate the importance of this feature. You can run SQLs inter-
actively from the GUI editor until they work correctly and returned the desired
results. Then, paste those results into applications such as an Excel spreadsheet.
This is far more efficient than testing download after download until the selec-
tion criteria are correct, or running SQL after SQL in the native environment to
create work files for download.

Using Visual Explain
In addition to allowing the user to perform SQL statements, the GUI SQL
Scripting tool now includes a powerful diagnostic tool, Visual Explain. This fea-
ture analyzes selected SQL statements and collects important statistical informa-
tion about them. A careful review of this information allows database
administrators to better optimize their applications. The Visual Explain tool is
complex and requires a fair amount of resources from the PC on which it runs.
This tool may overtax those PCs that only marginally meet the requirements for
running iSeries navigator. (In our examples, during testing, the translation of
CCSID 65535 interfered with the Visual Explain tool. IBM documents this prob-
lem in their Redpaper “Using AS/400 Database Monitor and Visual Explain.”
The recommended solution is to make sure that the translation option is not
selected before performing a Visual Explain. Temporarily turning off the transla-
tion is inconvenient, but not impractical.)

CHAPTER 2: SQL in iSeries Navigator

42

Figure 2.22: Pasting the copied data.

Launching Visual Explain
To launch Visual Explain, enter an SQL statement such as:

SELECT * FROM CUSTMAST ORDER BY CUSTST, CUSTNAM;

Place the cursor on the statement being run, and then select Run and
Explain from the Visual Explain pull-down menu. The statement executes;
Figure 2.23 shows the results displayed in a separate window, as in the
previous examples.

The results of the Visual Explain are also displayed in a separate window, shown
in Figure 2.24.

Using Visual Explain

43

Figure 2.23: Select to be explained.

Figure 2.24: Visual Explain.

The window contains extensive information on the SQL statement being ana-
lyzed, and it may take a moment to display. Sometimes it may be necessary to
run Visual Explain without actually performing the SQL statement. This is the
case with some file updates, which cannot be performed multiple times without
corrupting the data in the database. In such cases, Visual Explain can still be run
against the statement without executing it, by selecting Explain… from the
Visual Explain pull-down menu.

Understanding Visual Explain
The Visual Explain window has two sections: a graphical map of the statement
in the left-hand pane and a detailed statistical section in the right-hand pane.
Within the left-hand pane are icons for the three phases of the SQL statement
just run: the Temporary Index, Index Scan, and Final Select. Each of these sec-
tions has corresponding statistics collected for them. Click on each icon and
review the statistics in the right-hand pane. Other phases of SQL statements are
used at other times. The three phases used for this Statement are:

1. Temporary Index—The statistics include information about the name of
the index and what files it is built over, which fields to include in the
index, the amount of processing time need to create the index, the type of
index, the estimated number of entries in the index, and whether or not
the SQL engine recommends creating a permanent index for this SQL
statement.

2. Index Scan—The statistics include information about the name of the
table being used, the index being used to process the table, estimated pro-
cessing time, estimated number of rows returned, whether the optimizer
timed out, whether a permanent index should be created, the sorted order
of the data, and more.

3. Final Select—The statistics include information such as start time, end
time, processing time, number of rows returned, and estimated time spent
optimizing the statement.

If the creation of a permanent index is advised, it does not mean that it is a good
idea: When running Visual Explain on an SQL statement that is only used once a
month, the database administrator must consider the overhead involved in

CHAPTER 2: SQL in iSeries Navigator

44

having the database engine maintain that index all month long, simply to
improve the performance of one statement each month.

Some programmers have been know to create an index, run an SQL
statement that utilizes the index, and then delete the index. This should be
unnecessary if the system is already creating a temporary index that is
designed to optimize the SQL statement. Only create an index if you want a
permanent one, or unless for some reason the system is not creating an
effective temporary index.

If creating an index based on the advice from Visual Explain, click on the
Temporary Index icon in the left-hand pane, then select Create Index from the
Actions pull-down menu. The New Index wizard shown in Figure 2.25 is
displayed.

Using Visual Explain

45

Figure 2.25: Create Index wizard.

The appropriate key fields are preselected, and other settings can be changed as
needed. See Chapter 5 for information on how to optimize SQL statements with
indexes.

Approximately thirty different phases of SQL statements are represented by
icons in the graphical portion of Visual Explain. More information on these can
be found within the help text.

When certain phases of the graphical map are selected, the Actions pull-down
menu provides the ability to display Table Properties (Figure 2.26) and Table
Descriptions (Figure 2.27).

CHAPTER 2: SQL in iSeries Navigator

46

Figure 2.26: Table properties.

These displays include extensive information about the properties of the table
being processed, including information about column definitions, constraints
and triggers, record format level check, reusability of deleted records, and usage
and activity level information.

Becoming more familiar with Visual Explain and tapping into its capabilities
will greatly enhance the capabilities of any database administrator or
programmer. This chapter only briefly reviewed the topic, explaining the Run
SQL Scripts and Visual Explain tools well enough for you to take advantage of
these powerful new features from IBM. Look for continual improvement and
enhancement to these tools with each new release of OS/400.

Using Visual Explain

47

Figure 2.27: Table description.

Because this chapter focused on introducing the GUI tool, the examples mostly
used simple SELECT statements because more sophisticated SQL statements
might have obscured the significance of the tool’s features. But rest assured that
virtually any SQL statement you can run in the native interactive environment
will run here as well. (More sophisticated SQL statements are discussed in
Chapter 4.)

CHAPTER 2: SQL in iSeries Navigator

48

